Электронная библиотека

HOME
Ю.С. Потапов, Л.П. Фоминский, С.Ю. Потапов - " Энергия вращения"   

СОДЕРЖАНИЕ

Глава семнадцатая
ТЕПЛОГЕНЕРАТОР ПОТАПОВА -РЕАКТОР ХОЛОДНОГО ЯДЕРНОГО СИНТЕЗА


17.1. Кавитация как заменитель атомной бомбы

В предыдущей главе мы пришли к выводу, что для объяснения появления дополнительного тепла в теплогенераторе Потапова надо рассмотреть ещё и возможность протекания в нём ядерных реакций синтеза из одних ядер атомов других - более тяжёлых. Такой процесс необратим, а энергия связи нуклонов в ядрах атомов столь велика, что возникающего "дефекта массы" и соответствующего ему выделения энергии из ядер хватит не только на покрытие всех затрат, но и для получения большого энергетического выигрыша.
Да вот только одна проблема мешает, по-видимому, читателям без иронии воспринимать такой вывод предыдущей главы - реакции ядерного синтеза обычно протекают, как многие думают, лишь при сверхвысоких температурах и давлениях. Например, в водородной бомбе, в которой такие условия создают предварительным взрывом атомной бомбы. В теплогенераторе Потапова нет атомной бомбы для создания таких условий.
Но в нём имеется нечто другое, заменяющее атомную бомбу. А именно, кавитационные пузырьки и каверны, возникающие в воде у края тормозного устройства вихревой трубы. Кавитация (от латинского слова cavitas - пустота) - это нарушение сплошности внутри жидкости, то есть образование в ней полостей, заполненных паром, газом или их смесью (так называемых кавитационных пузырьков). Она возникает в результате местного понижения давления в жидкости ниже критического значения, которое приблизительно равно давлению насыщенного пара этой жидкости при данной температуре. Когда же понижение давления происходит вследствие местного повышения скорости в потоке жидкости (как это происходит в теплогенераторе Потапова), то такой вид кавитации называют гидродинамической. Когда же понижение давления происходит вследствие прохождения в жидкости акустических волн, то кавитация называется акустической.
Согласно существующим представлениям, большинство кавитационных пузырьков почти сразу после их возникновения стремительно схлопываются под воздействием давления окружающей среды. При этом в них в конце схлопывания на короткое время развиваются очень высокие давления парогазовой смеси, заполняющей пузырёк. А когда пузырёк прилегает к твердой поверхности, то в нём при схлопывании возникает микроскопическая кумулятивная струя из жидкости, разрушающая материал этой поверхности. Когда же пузырёк образуется в ультразвуковом поле при акустической кавитации далеко от твердой поверхности, то он может существовать довольно долго, периодически то сжимаясь, то расширяясь, чаще всего с частотой этих ультразвуковых колебаний, как отметил в своей работе И. Пирсол.
В 30-е годы при исследованиях акустической кавитации открыли сонолюминесаенцию (звукосвечение). Впрочем, с этим явлением люди были знакомы и раньше. Вспомните светящийся в темноте бурун за кормой моторной лодки - это сонолюминесценция. Но только свечение буруна долгое время объясняли свечением микроорганизмов, потревоженных винтом лодки. На поверку оказалось, что светятся кавитационные пузырьки.
Хотя сонолюминесценция была открыта ещё в 30-е годы, природа этого свечения по сих пор остаётся загадкой, вокруг которой не утихают научные споры. Одна школа упорно настаивает, что это термическое свечение, и в кавитационном пузырьке светится газ, разогревающийся при сжатии пузырька до высоких температур. Другая считает, что в кавитационных пузырьках происходят электрические разряды в результате электризации жидкости, и мы видим свечение этих микроскопических разрядов.
Исследователи Е. Мейер и Н. Куттруф только в 1959 г. выяснили, что каждая вспышка сонолюминесценции представляет собой серию импульсов излучения, длительность каждого из которых не превышает сек. При этом импульсы повторяются с частотой не менее чем .
Исследования Ф. Гайтана и Л. Крума в университете штата Миссисипи, проведенные в 80-е годы, показали, что одиночный кавитационный пузырёк, удерживаемый в сконструированной ими ультразвуковой установке, раздувается до 50 мкм, затем стремительно сжимается в миллионы раз и излучает световую вспышку длительностью сек. При этом вспышки из одного и того же пузырька повторяются с потрясающе чёткой периодичностью, стабильность которой можно сравнить разве что со стабильностью работы кварцевого генератора хронографа, отметили А. Семенов и П. Стоянов.
Основатель электрической теории сонолюминесценции Я. И. Френкель еще в 1940 г. предположил, что кавитационные полости в воде возникают точно так же, как трещина в твёрдом теле. Оно и понятно - ведь вода имеет квазикристаллическую структуру. А поскольку молекулы воды сильно полярны, то на противоположных сторонах таких трещин в жидкой воде, по мнению Френкеля, появляются значительные заряды противоположных знаков, как при растрескивании ионных кристаллов. Затем между стенками полости начинают происходить электрические разряды в парогазовой среде, ведущие к возбуждению молекул и атомов газа с последующим высвечиванием ими фотонов.
Поначалу исследователи полагали, что электризация жидкости в кавитационных пузырьках вполне соответствует широко известным представлениям Ленарда о том, что трибоэлектрическая электризация жидкости происходит только при нарушении злостности её поверхности и не зависит ни от трения жидкости о твёрдые тела или
газ, ни от природы газа, с которым контактирует жидкость. Поэтому предполагали, что после того как в кавитационном пузырьке произойдет электрический разряд, новым зарядам там появиться неоткуда.
Но опыты Гайтана и Крума продемонстрировали, что одиночный кавитационный пузырёк, не делясь, продолжает исправно излучать всё новые и новые импульсы света в течение многих циклов его расширения и сжатия в ультразвуковом поле. Как в нём за столь малое время между импульсами излучения восстанавливается электрический заряд, необходимый для следующего разряда? Восстанавливается без нарушения целостности поверхности пузырька!
Отсутствие ответа на этот вопрос пошатнуло позиции электрической теории сонолюминесценции и заставило многих вернуться к термической теории. По оценкам этих специалистов, исходивших из измеренной яркости свечения, температура газа в пузырьке при его охлопывании достигает тысяч и даже миллионов градусов, то есть термоядерных температур. Поэтому появилось много гипотез и спекуляций о термоядерных реакциях, якобы идущих в кавитационных пузырьках и ведущих к высвечиванию из них энергии в гораздо больших количествах, чем вкладывает её в воду источник ультразвука, обеспечивающий появление кавитации.
Но, увы, никому не удалось зарегистрировать в воде, в которой наблюдалась ультразвуковая сонолюминесценция, следов продуктов реакций ядерного синтеза, превышающих уровень естественного фона. Тогда появились гипотезы о том, что в кавитационных пузырьках высвобождается энергия физического вакуума (то есть происходит рождение энергии из ничего) [127]. Но расчётов, способных количественно доказать это, авторы таких гипотез представить не могли.
Опыт работы с теплогенератором Потапова показал, что генерация избыточного тепла в нем происходит лишь тогда, когда в вихревой трубе теплогенератора интенсивно идёт кавитация, усиливаемая резонансными звуковыми колебаниями столба воды в вихревой трубе. Резонанса добивались изменением длины трубы и удачным выбором точки расположения в ней тормозного устройства. При резонансе вихревая труба начинала "петь" как закипающий самовар.
Это говорило о том, что кавитация играет определяющую роль в генерации дополнительного тепла. Потому-то московский профессор Л. Г. Сапогин и выдвинул предположение, что в кавитационных пузырьках вихревой трубы теплогенератора Потапова происходит выделение энергии физического вакуума [127] .
Эта мысль потом была подхвачена и тиражирована многими популяризаторами теплогенератора Потапова, публиковавшими статьи о нём в различных газетах и в Интернете, иной раз "забывая" сказать, что теплогенератор изобретён Потаповым, а не ими, а гипотезу о выделении в нём энергии физического вакуума предложил Сапогин, а не они. Так поступают, например, инженеры В. Колесник и Г. Иваненко из г. Краматорска, распространяя в своих сайтах по сети Интернет (см., например, http://www.sns.net.ua/energo/Cavitation.htm) рекламу на вихревой теплогенератор с кавитацией, разработанный якобы ими в краматорской фирме "Энергоресурс". На самом же деле они ещё в 1995 г. приобрели у Ю. С. Потапова лицензию на использование его изобретения, откуда и почерпнули всю информацию. Увы, такое в околонаучных кругах, да иной раз и в научных, бывает сплошь и рядом, хотя академические правила требуют делать ссылки на авторов используемых или цитируемых работ.
В то же время многочисленные калориметрические измерения, проводившиеся в самых разных лабораториях, давно показали, что энергетический выход сонолюминесценции (отношение энергии излучения к энергии, вкладываемой ультразвуком в воду) крайне низок - меньше, чем КПД паровоза. Высоким оказалось лишь отношение мгновенной мощности излучения к мощности ультразвука свыше 1000. Это говорило о том, что кавитация лишь концентрировала энергию, а не создавала дополнительную. Но и факт концентрирования энергии на первый взгляд противоречил законам термодинамики, в частности принципу возрастания энтропии.
Ясность помогли нам внести эксперименты самодеятельного украинского 85-летнего физика-неформала Д. Р. Кезикова из г. Конотопа. Он с помощью сына и вопреки негодующим возгласам женской половины семьи ещё в конце 80-х годов осуществил на кухне простой опыт с чайником. На носик чайника с водой они насадили полутораметровый кусок резинового шланга. В шланг почти до самого чайника ввели проволоку, конец которой присоединили к миллиамперметру. Когда вода в чайнике, подогреваемом на плите, начала интенсивно испаряться, конденсируясь затем в шланге, миллиамперметр показал наличие электрического тока.
Явление Кезиковых можно объяснить тем, что молекулы воды обладают большим сродством к электрону. Причина этого - та же, из-за которой образуются водородные связи, о них говорилось в предыдущей главе. А именно, к положительно заряженным бугоркам-протонам на поверхности молекул воды притягиваются электроны извне. Когда молекула воды находится в плотном окружении других таких же молекул, то это спаренные электроны, общие с соседней молекулой, с которой благодаря этому устанавливается водородная связь. Когда же молекула при кипении воды отрывается от остальной массы воды, разрывая водородную связь, то частенько она прихватывает с собой оба эти электрона - и свой, и принадлежавший соседней молекуле. (Истые украинцы легко поймут это!)
При конденсации паров воды отрицательные заряды таких молекул накапливаются на поверхности образующихся капель. Этот механизм, по мнению Кезиковых, и является причиной появления атмосферного электричества, а отнюдь не трение капель воды о воздух, как полагали многие до сих пор вопреки мнению Ленарда, который доказывал, что электризация капель происходит только от разрывов поверхности воды при её распылении.
Для нас открытие Кезиковых важно тем, что оно позволяет объяснить, как появляется и обновляется электрический заряд в пульсирующих кавитационных пузырьках. При сжатии такого пузырька в нём происходит конденсация паров воды в микроскопическую капельку, заряженную по механизму Кезиковых отрицательным зарядом.
Если в капельку сконденсируется всего 10% паров воды, имевших плотность молекул , то при типичном радиусе кавитационного пузырька -20 мкм радиус капельки, образовавшейся в нём, составит -0,2 мкм. Электрическая ёмкость такого сферического микроконденсатора составит Ф, а запасённая в нём электрическая энергия - до 0,1 Дж. При этом разность потенциалов между капелькой и поверхностью пузырька может достигать В, а напряжённость электрического поля .
Увидев эти цифры, человек, разбирающийся в электротехнике, воскликнет: да разве ж можно достичь столь высокой напряжённости электрического поля в парогазовой смеси?! Она пробьется электрическим разрядом при гораздо меньших напряжениях!
Она действительно пробивается. Потому мы и видим сонолюминесцентное свечение, что это излучение от электрических разрядов в кавитационных пузырьках Но только пробивается не при обычных напряжённостях поля самопробоя в воздухе (20-30 кВ/см), а при гораздо больших, возможно, даже действительно достигающих вышеприведенной цифры. Причиной тому - так называемая импульсность - задержка времени начала пробоя относительно момента приложения напряжения к разрядному промежутку. Специалисты по импульсным процессам хорошо знакомы с этим явлением. За время задержки пробоя успевает сконденсироваться в капельку достаточно большое количество водяного пара, и её электрический заряд достигает большой величины.
Понятно, что в кавитационных пузырьках создаются все условия для возникновения электрических разрядов и разогрева ими парогазовой смеси в пузырьке до высоких температур. Но достаточно ли высоких, чтобы обеспечить протекание в этих пузырьках термоядерных реакций? Ведь электрические разряды необязательно сопровождаются нагревом газов до высоких температур. Бывают и холодные разряды, как в люминесцентных лампах дневного света. Увы, этот вопрос пока мало изучен из-за чрезвычайной кратковременности процесса разряда в кавитационном пузырьке и крайне неравновесных условий в нём.
С другой стороны, отсутствие следов продуктов ядерных реакций в воде, в которой осуществляли ультразвуковую кавитацию и наблюдали сонолюминесценцию, вызывало большие сомнения в возможности протекания таких реакций при сонолюминесценции.

17.2. Как рождается дейтерий

Последние десять лет XX века научный мир терзали сомнения насчёт возможности холодного ядерного синтеза. Сенсационные заявления М. Флейшманна и С. Понса [164] в 1989 г о том, что он уже осуществлён ими при электролизе, скоро были подвергнуты сомнениям, и они вынуждены были отказаться от своих слов, сославшись на ошибки измерений. Но Джин, как говорится, уже был выпущен из бутылки, а загнать его обратно, как известно, труднее, чем выпустить. "Крамольные" мысли о холодном ядерном синтезе уже гуляли по всему свету.
И в то же время мало кто догадывался, что почти все эти десять лет промышленный реактор холодного ядерного синтеза исправно работал в Кишиневе и не только там. Ибо вихревой теплогенератор Потапова, который был поставлен в Кишиневе на серийное производство и поставлялся во многие страны, и был тем самым реактором холодного ядерного синтеза. В том, что его детище - это реактор холодного ядерного синтеза, порой сомневался даже сам автор, ибо от теплогенератора не исходило заметного нейтронного излучения, которое, по сложившимся у всех представлениям, обязательно должно было сопровождать реакции ядерного синтеза. Кроме того, в тот период многие пытались объяснить генерацию избыточного тепла в этом теплогенераторе выделением гипотетической энергии физического вакуума из кавитационных пузырьков, рождающихся у тормозного устройства в вихревой трубе.
Физики, пытавшиеся все эти годы в разных странах тем или иным образом осуществить холодный ядерный синтез, "плясали" от термоядерных реакций, подобных идущим в водородной бомбе. Они всё пытались соединить два ядра атома дейтерия, который содержится в виде примесей тяжёлой воды (в количествах -0,015%) в любой природной воде, с тем чтобы получить ядро атома гелия-3 или трития посредством ядерных реакций:


(17.1), (17.2)

И такие реакции действительно иногда вроде бы случались как при электролизе [165], так и при механическом раскапывании льда из замороженной тяжёлой воды [173]. Но они обычно шли с ничтожной интенсивностью, не позволявшей говорить о промышленном использовании выделяющегося тепла этих ядерных реакций.
В результате каждой из ядерных реакций (17.1 ) и (17.2) получаются радиоактивные продукты реакций. В первой - это нейтроны n, губительные для всего живого и распадающиеся на протон р, электрон е- и антинейтрино , по реакции

(17.3)

с периодом полураспада 15,3 мин.
Во второй образуется слаборадиоактивный тритий , который подвержен ß-распаду с полупериодом в 12 лет:

(17.4)

По всем канонам реакции (17.1 ) и (17.2) должны бы идти с приблизительно одинаковыми скоростями. Но исследователи подметили, что при холодном ядерном синтезе, в отличие от термоядерного, интенсивность реакции (17.2), ведущей к появлению трития, почему-то на 7-8 порядков величины выше, чем реакции (17.1), ведущей к появлению гелия-3. Причина этого в течение десяти лет оставалась загадкой для физиков.
Почему исследователи так надеялись на ядерные реакции (17.1 ) и (17.2) и ориентировались именно на них? Да потому, что добывать дейтерий из воды, осуществляя обогащение содержащейся в ней тяжёлой воды, сравнительно несложно, а запасы воды на Земле практически неисчерпаемы. При энергетическом выходе ядерных реакций (17.1 ) и (17.2) более 3 МэВ на каждый атом дейтерия и содержании примесей тяжёлой (дейтериевой) воды в обычной воде -0,015% тепла, которое выделится в ядерном реакторе при использовании в нём того дейтерия, который содержится в 1 литре воды, хватит для того, чтобы нагреть до кипения 4 кубометра воды.
Откуда в земной воде взялся дейтерий?До сих пор все думали, что изначально он появился не в воде, а в том водороде, который вошёл в состав воды. А в водороде он появился, как думают астрофизики, в результате осуществления в недрах Солнца и Других звёзд гипотетической ядерной реакции между ядрами атомов полностью ионизованного водорода (протия)

(17.5)

считающейся первой реакцией так называемых водородного и углеродного циклов ядерных реакций, по которым, как предполагают астрофизики, осуществляется термоядерный синтез гелия в недрах звёзд.
Ну а на Земле, считают астрофизики, дейтерий появился потому, что звёзды когда умирают, взрываются, разбрасывая в окружающее космическое пространство огромное количество водорода, содержащего примесь дейтерия. При последующем формировании из межзвездной пыли и газов новых звёзд и планет этот дейтерий попадает в состав воды, конденсирующейся на планете. Одним словом, считают, что земной дейтерий - это пришелец из космоса, который когда-то родился в недрах звёзд по реакции (17.5).
Но вся незадача в том, что эту реакцию в земных лабораториях никто никогда не наблюдал, даже на ускорителях со встречными пучками протонов. И не удивительно - ведь эта реакция дважды запрещена законами сохранения. Во-первых, в ней нарушается закон сохранения изотопического спина. Во-вторых, она требует, чтобы при ее протекании происходил так называемый "ß -распад протона на лету" [186], заключающийся в том, что один из протонов должен распадаться по схеме

(17.6)

Но вероятность такого гипотетического распада свободного протона столь мала, что физики уже отчаялись когда-нибудь зарегистрировать его.
Тем не менее астрофизики надеялись, что запрещенная ядерная реакция (17.5) иногда всё же случается в недрах Солнца, как иногда случается переход пешеходом улицы на запрещающий красный свет светофора. Теоретики из кожи вон лезли, чтобы доказать, что при том огромном количестве водорода (~1055 атомов), которое содержится в Солнце, более чем на 70% состоящем из водорода, даже столь маловероятные и редкие события могут вести к наработке достаточного количества дейтерия.
На самом же деле все оказалось гораздо проще и интереснее. Нами в [263] было показано, что в вихревом потоке воды ядерная реакция между двумя протонами, ведущая к синтезу дейтрона , уже не дважды запрещена, а "нормально разрешена", как выражаются физики-ядерщики, и может идти с большой скоростью.
Чтобы понять как и почему это происходит, давайте перенесём в уравнении ядерной реакции (17.5) символ позитрона е+ из правой части в левую:

(17.7)

Такой перенос не запрещён правилами "ядерной алгебры", только требуется заменять переносимую частицу античастицей. В данном случае позитрон - электроном.
Ядерная реакция (17.7), в принципе, тоже возможна. Более того, она имеет ряд преимуществ перед реакцией (17.5). И то, что энергетический выход реакции возрос до 1,95 МэВ - не самое важное из них. Более важно то, что теперь уже не надо долго ждать флуктуационного слабого (а значит, очень медленного) распада протона на нейтрон, позитрон и нейтрино, как это было в реакции (17.5), ибо теперь в реакции (17.7) электрон уже изначально имеется в готовом виде и рожать его не надо. А процесс "переодевания" электрона в нейтрино во время ядерной реакции - более лёгкий, чем процесс рождения позитрон - нейтринной пары. Недаром так называемые акции К -захвата электрона из электронной оболочки атома ядром атома, при KOTO-DOM внутри ядра тоже происходит превращение электрона в нейтрино, тоже идут с довольно большими скоростями. (Периоды полураспадов большинства изотопов, осуществляющихся посредством К-захвата, составляют порядка года.) " Оценки показывают, что если в ядерной реакции (17.5) постоянная времени составляет миллионы лет, то в реакции (17.7) она уже чуть больше часа при одинаковой частоте столкновений частиц исходных "реагентов".
Но если для осуществления реакции (17.5J необходимо, чтобы столкнулись два протона, то для осуществления ядерной реакции (17.7) требуется, чтобы столкнулись уже не две, а три частицы - два протона и электрон. Вероятность такого трёхчастичного столкновения в высокотемпературной плазме крайне мала, поэтому трёхчастичные столкновения термоядерщики даже не рассматривают, пренебрегая ими. А вот химики уже не пренебрегают трёхчастистичными столкновениями при рассмотрении процессов в газах и жидкостях. Более того, в химии многие процессы (например каталитические) основываются на трёхчастичных столкновениях.
Мы тоже имеем дело не с высокотемпературной плазмой, а с жидкой водой. А в ней, оказывается, всегда имеются весьма специфические условия для сближения двух протонов и электрона. Эти условия появляются благодаря тем самым водородным связям, о которых мы уже говорили в предыдущей главе. На каждой водородной связи, соединяющей две соседние молекулы воды, обычно находится по одному протону.
При этом, как показали ещё в 30-е годы исследования структуры воды и льда Дж. Берналом и Р. Фаулером, протон сидит не посреди прямой линии этой связи, а на трети расстояния от одного атома кислорода до другого.
И протон не просто спокойно сидит там, а, как позже показал Л. Полинг, то и дело перескакивает вдоль этой связи с одной разрешённой ему позиции на другую, находящуюся уже на расстоянии трети длины связи от атома кислорода другой молекулы. Частота таких скачков протона составляет . Дважды лауреат Нобелевской премии Л. Полинг остроумно отобразил эту ситуацию тем, что оба положения протона отметил полукругами. - "Полупротонная" статистическая модель Полинга.
Точно так же ведут себя на водородных связях тяжёлой воды дейтроны - ядра атомов дейтерия.
Но иногда и в строгом мире кристаллов, а тем более в жидкой воде с ее квазикристаллической структурой, случаются осечки, и в силу той или иной причины (флуктуации, удара фотоном или др.) протон выбивается с водородной связи и оказывается на соседней. В результате на последней оказываются сразу два протона, занимающих обе разрешенные позиции. Эти водородные связи называют "ориентационно Дефектными". Такую ситуацию впервые описал в 1951 г. Н. Бьюррум, а вскоре группа Г. Гранихера экспериментально подтвердила наличие в кристаллах льда таких дефектов. Их концентрация оказалась в пределах .
Расстояние между протонами (или дейтронами в случае тяжёлой воды) на ориентационно - дефектной водородной связи составляет всего 0,73 А. Чтобы в условиях плазмы протоны сближались на столь малое расстояние, необходимо разогревать плазму до миллионов градусов Цельсия. Казалось бы, что теперь протонам на водо родной связи уже ничего не стоит протуннелировать сквозь столь узкий кулоновский барьер, разделяющий их, чтобы слиться в ядерной реакции (17.7). А необходимый для этой реакции электрон всегда имеется под рукой - ведь дело происходит среди электронных облаков атомов кислорода и водорода. Тем более, что протоны на такой водородной связи то и дело скачут вдоль этой связи, меняясь местами. Можно предположить, что такие прыжки иногда приводят к лобовому столкновению протонов Тут уж, казалось бы, протонам некуда деваться, чтобы не вступить в ядерную реакцию (17.7).
Тем не мене при обычных условиях такая реакция на водородных связях воды не идёт. Дело в том, что для её осуществления необходима ориентация спинов обоих протонов, вступающих в реакцию (17.7), параллельно друг другу, ибо спин образующегося дейтрона равен единице, а спины исходных протонов - 1/2. Параллельная же ориентация спинов двух протонов на одной водородной связи запрещена принципом Паули. Поэтому они тут имеют антипараллельную ориентацию спинов, при которой сумма спинов протонов равна нулю. Для начала ядерной реакции (17.7) требуется перевернуть спин одного из протонов на ориентационно-дефектной водородной связи.
Такое переворачивание спина осуществляется с помощью торсионных полей (полей вращения), появляющихся при вихревом движении воды в вихревой трубе теплогенератора Потапова. О торсионных полях мы уже говорили в предыдущей главе. А здесь только еще раз отметим, что явление изменения направления спинов элементарных частиц торсионными полями, предсказанное теорией этих полей, разработанной Г. И Шиповым, уже широко используется в ряде технических приложений [70].
При переворачивании торсионным полем спина одного из протонов на водородной связи не происходит нарушения принципа запрета Паули, потому что торсионное поле при этом сообщает протону хоть и очень маленькую, но конечную дополнительную энергию. В результате этот протон оказывается на другом, а не на том же энергетическом уровне, что и соседний, который не переворачивался. Происходит, как говорят физики, расщепление энергетического уровня. Принцип запрета Паули не нарушается, а обходится.
Когда спины обоих протонов на ориентационно - дефектной водородной связи оказываются параллельными, уже ничто не мешает этим протонам вступить в ядерную реакцию (17.8), ведущую к образованию ядер атомов дейтерия.
Водовороты и создаваемые ими торсионные поля существуют не только в теплогенераторе Потапова, но и в бесчисленных ручьях и реках на Земле. Да и в атмосферных вихрях много паров и капель воды.
Поэтому можно предположить, что тот дейтерий, который присутствует в воде земных водоемов, - не пришелец из космоса, а имеет земное происхождение. Теперь становятся понятными и причины отличий содержания примесей тяжёлой воды в разных водоёмах: больше их должно быть в тех, в которые впадают бурные, а не спокойные реки.
На Солнце и других звёздах тоже существует множество самых разных вихрей, намного более мощных, чем земные. А по самым последним данным астрономов, в период их формирования молодые звёзды (тогда они называются "протозвёздами") На 80% состоят, оказывается, из воды и её паров [145]. Поэтому можно полагать, что и на звёздах дейтерий появляется не в результате гипотетических термоядерных реакций (17.5), а рождается по реакции (17.7) в вихрях наиболее холодного вещества звезды, ещё содержащего молекулы воды.
Наиболее холодное вещество на Солнце находится непосредственно под его фотосферой в слое так называемых "мелких гранул". Эти гранулы представляют собой гигантские (по земным меркам) вертикальные вихри диаметром в полтысячи километров. Миллионы таких вихрей - "мелких" гранул - покрывают всю поверхность Солнца кроме областей солнечных пятен. Этот слой мелких гранул и ответствен, по-видимому, за синтез солнечного дейтерия, являющегося сырьём для последующих ядерных реакций водородного и углеродного циклов, ведущих к выделению на Солнце больших количеств тепла и образованию гелия, названного так в честь Солнца.

17.3. Туннелирование по Сапогину


Дотошный читатель, внимательно ознакомившись с предыдущим разделом, может сказать: "Ну хорошо, допустим, два протона сталкиваются на ориентационно - дефектной водородной связи, но как в той же точке оказывается ещё и электрон, необходимый для начала ядерной реакции (17.7)?". Вопрос законный, ведь сталкивающиеся здесь протоны - это ядра атомов водорода, входящих в состав молекул воды, а в атомах электроны, независимо от того, находятся ли они на стационарных круговых орбитах (модель Резерфорда) или размазаны по орбитали (квантовая модель), постоянно находятся вдали от ядра атома.
И тут нам на помощь приходит одна малоизвестная гипотеза московского профессора Л. Г. Сапогина - того самого, который в начале 90-х годов пытался объяснить появление избыточного тепла в теплогенераторе Потапова выделением в кавитационных пузырьках гипотетической энергии физического вакуума.
Но одна идея Л. Г. Сапогина заслуживает большего внимания, чем он сам придал ей.
В 1989 г. он предложил новое объяснение туннельного эффекта. Последний заключается, как известно, в том, что электрически заряженные элементарные частицы, например протоны или дейтроны, иногда способны преодолевать кулоновский барьер отталкивания ядра атома, имея запас кинетической энергии, меньший энергии кулоновского отталкивания от этого ядра. Туннелированием сквозь кулоновский барьер физики объясняют многие процессы, в том числе и сближение ядер атомов дейтерия и трития до "соприкосновения" при реакциях термоядерного синтеза, происходящих в водородной бомбе. Ведь кинетической энергии теплового движения частиц в высокотемпературной плазме там все-таки не хватило бы для преодоления кулоновского барьера напрямую без помощи такой хитрости, как туннелирование.
Физики называют туннелирование чисто квантовым эффектом и объясняют его тем, что - функция, описывающая волну частицы де Бройля, движущейся к кулоновскому барьеру, не может мгновенно спадать до нуля на границе этого барьера, а уменьшается за ней по экспоненциальному закону. Это значит, что она во всех точках под барьером и даже за ним хоть и мала, но не равна нулю. А квадрат -функции -это вероятность нахождения частицы в данной точке. Это, мол, и позволяет частице иногда ни с того ни с сего оказываться за барьером. Люди в таких случаях говорят: сам не знаю как, но проскочил!
Л. Г. Сапогин в [168] объяснил туннелирование тем, что заряд элементарной частицы не постоянен во времени, а периодически изменяется (осциллирует) с чудовищно большой частотой, то возрастая до максимума, то уменьшаясь до нуля по гармоническому закону. У людей нет приборов для измерения столь больших частот. Поэтому мы измеряем лишь усреднённый во времени эффективный заряд частицы, как с помощью вольтметра измеряем лишь эффективное напряжение на проводах переменного тока.
Но в течение того времени, когда мгновенное значение заряда протона или дейтрона близко к нулю, эта частица может свободно сблизиться с другой такой же электрически заряженной частицей, не испытывая больших сил электрического отталкивания от неё. Для того чтобы вступить в ядерную реакцию, ей надо лишь успеть проскочить расстояние, разделяющее частицы, за это ультракороткое время, то есть всё-таки нужен какой-то импульс, но гораздо меньший, чем для преодоления барьера поверх него при средних (эффективных) величинах заряда. Конечно, успевают далеко не все частицы, а лишь те, которые подлетели к барьеру в удачной фазе пульсации их заряда. Потому вероятность проскока очень мала.
В той же своей публикации Сапогин предложил и новое толкование поведения электрона на атомных орбиталях. Вдобавок к предыдущей идее он предположил, что и масса электрона тоже осциллирует во времени по гармоническому закону в пределах от нуля до максимума. (А наблюдаем мы эффективную массу.) Автор гипотезы утверждает, что находясь на ближайшей к ядру атома К-орбитали, электрон совершает квантовые скачки в пределах орбитали не беспорядочно, как думали физики, а сквозь ядро атома, каждый раз туннелируя сквозь него. Благополучно туннелирует благодаря тому, что в это мгновение находится в "нулевой фазе", при которой мгновенные значения заряда и массы электрона близки к нулю, а потому он, в силу закона сохранения импульса, в это время должен развивать очень большую скорость движения сквозь ядро атома.
Доказательством правильности такой точки зрения мы считаем то обстоятельство, что электронные орбитали Р- и d -состояний атома имеют вид восьмёрок с узловыми точками в ядре атома.
Поскольку областями, разрешёнными квантовой механикой для пребывания в них электрона, являются лишь внутренние области этих орбиталей, то чтобы попасть из одной полуветви "восьмёрки" в противоположную, электрон должен проскочить сквозь ядро атома.
Нас во всём этом интересуют не тонкости движения электрона в атоме и даже не. традиционный вопрос о том, почему он при своих скачках в пределах орбитали не излучает электромагнитные волны (фотоны), а то обстоятельство, что электрон атома то и дело пролетает сквозь ядро атома. Это позволяет нам по-новому взглянуть на механизм таинственного К-захвата электрона в атоме. Электронный захват, о котором мы уже упоминали ранее, заключается, как известно, в том, что ядра атомов некоторых изотопов химических элементов каким-то таинственным образом иногда "похищают" электрон с внутренней (К- или L-) электронной оболочки атома. Физиков давно мучает вопрос, как совершается такое похищение, если электрон в атоме, по существующим представлениям, находится очень далеко (по ядерным масштабам)
от ядра.
А вот если электрон, по Сапогину, то и дело прыгает сквозь ядро атома, как на масленницу смельчаки прыгают сквозь костёр, то всё становится понятным. Ведь любая нечаянная флуктуация в движении электрона или ядра может сбить отлаженный ритм этих рискованных трюков, и тогда электрон, вместо того чтобы благополучно вынырнуть из пламени ядра, оказывается захваченным им.
Но "похищенным" оказывается не весь электрон, а только его "шуба" и "телесная оболочка" - электрический заряд и большая часть массы, которые жадно "пожираются" одним из положительно заряженных протонов P ядра, превращающимся при этом в нейтрон n, масса которого больше массы протона. А вот "обглоданный скелет" электрона в виде электронного нейтрино ve "выплёвывается" далеко за пределы атома. Физики предполагают, что при этом в ядре атома идёт процесс:

(17.8)

который, однако, никогда не наблюдали в экспериментах по бомбардировке протонов пучками ускоренных электронов.
В результате К -захвата суммарный положительный заряд ядра уменьшается на единицу (в единицах заряда протона). Поэтому ядро при К -захвате превращается в ядро атома одного из изотопов химического элемента, стоящего в таблице Менделеева перед исходным химическим элементом. Правда, ядра атомов далеко не всех изотопов могут претерпевать такое превращение. Оно осуществляется лишь при выполнении существующих в ядерной физике правил отбора и законов сохранения. В частности, сумма масс исходного ядра и электрона должна быть больше массы получающегося ядра атома.
Доказательством правильности нашего понимания электронного захвата является наличие явления внутренней конверсии электронов в атоме. Оно заключается в том, что когда правила отбора запрещают излучение у -кванта возбуждённым ядром атома, то возбуждение чаще всего снимается за счёт передачи энергии возбуждения ядра электрону оболочки атома. Передаваемая энергия бывает столь высокой (до ~1 МэВ), что электрон выбивается из атома [186]. До сих пор механизм передачи возбуждения от ядра электрону оболочки атома был загадкой для физиков. Раньше ошибочно полагали, что возбуждение электрону передаётся у -квантом, излучаемым ядром, но оказалось, что такое излучение запрещено существующими правилами отбора. Поэтому нам остаётся только предположить, что возбуждение от ядра к электрону оболочки атома передаётся тогда, когда в соответствии с гипотезой Сапогина этот электрон пронизывает ядро атома.
Этот раздел о механизмах туннелирования и К -захвата нам потребовался для того, чтобы объяснить, как в одной точке пространства времени оказываются протон и электрон, фигурирующие в уравнении ядерной реакции (17.7). При этом суммарный электрический заряд протона и электрона оказывается близким к нулю, и если в этот момент к ним приближается ещё один протон, то ему уже не придётся преодолевать высокий кулоновский барьер. Поэтому такие трёхчастичные столкновения могут случаться даже чаще, чем столкновения между двумя протонами, ведущие к сближению их на ядерные расстояния.
Но такие трёхчастичные столкновения происходить могут, конечно же, не в полностью ионизованной плазме, а только там, где имеются атомы водорода. Заканчиваться же ядерной реакцией (17.7), ведущей к образованию дейтерия, таким столкновениям помогают торсионные поля, рождаемые вихрями вращения вещества. Атомы водорода и мощные вихри имеются на Солнце и других звёздах, где по ядерной реакции (17.7) нарабатывается дейтерий. Но гораздо интенсивнее эта реакция должна идти на водородных связях жидкой воды, например в земных условиях.

17.4. Ядерная реакция, ведущая к научному открытию

Процессы на Солнце - это, конечно, интересно, особенно когда они косвенно подтверждают наши идеи, но наша задача - описать возможные ядерные процессы в вихревом теплогенераторе. А в нём ядерная реакция (17.7), даже имей она довольно высокую интенсивность, не может приводить к значительному нагреву воды. Дело в том, что в результате этой реакции получаются только две частицы, одна из которых - нейтрино - практически не имеет массы покоя. А закон сохранения импульса требует, чтобы противоположно направленные импульсы двух разлетающихся частиц - продуктов реакции - имели одинаковую абсолютную величину. В результате безмассовые и всепроникающие нейтрино уносят с собой в космическое пространство львиную долю от энергии Е= 1,953 МэВ, выделяющейся при реакции (17.7), а на долю образующегося дейтрона, имеющего массу md, приблизительно в 2 раза превышающую массу протона, остаётся энергия отдачи

(17.9)

которая составляет всего от энергии ядерной реакции (17.7). Лишь эта кинетическая энергия ядер отдачи (1016,5 эВ) может пойти на нагрев воды. Поэтому потребовалась бы немыслимо высокая интенсивность ядерных реакций (17.7), чтобы за счёт их обеспечить наблюдаемый в теплогенераторе Потапова выход дополнительного тепла -1 кВт.
Получается, что польза от ядерной реакции (17.7) лишь в том, что она ведёт к наработке дейтерия, необходимого для осуществления других ядерных реакций, идущих с участием дейтронов как исходных "реагентов" и уже способных вести к выходу значительного количества тепла.
Обсуждая результаты экспериментов В.А. Царева по низкотемпературному ядерному синтезу, осуществляемых с использованием тяжёлой воды, в первую очередь обычно рассматривают реакции (17.1) и (17.2) между дейтронами, подразумевая, что тяжёлая вода имеет формулу D2О. Но тяжёлая вода, получаемая обычными промышленными способами выделением её из природных вод, состоит в основном из молекул ООН, так как в природных водах этих молекул в раз больше, чем молекул D2О [191]. Следовательно, в такой тяжёлой воде столкновения атомов дейтерия с атомами протия происходят в раз чаще, чем с атомами дейтерия. А когда тяжёлая вода ещё и разбавлена обычной, то и того чаще.
Поэтому нам в первую очередь следует рассматривать следующую известную ядерную реакцию водородного цикла:

(17.10)

Только в нашем случае она может идти опять же при невысоких температурах в результате столкновений протона с дейтроном на ориентационно-дефектных водородных связях, где дейтроны могут находиться с таким же правом, как и протоны.
Реакция же (17.1) с участием двух дейтронов, сопровождающаяся излучением опасных для жизни людей нейтронов, в наших условиях должна случаться гораздо реже, чем реакция (17.10), ибо вероятность столкновения дейтрона с дейтроном в воде, где дейтронов очень мало, на много порядков величины меньше, чем вероятность столкновения дейтрона с протоном. Практическое отсутствие реакций (МЛ) при работе вихревого теплогенератора на обыкновенной воде обеспечивает его радиационную безопасность.
Вы спросите, а как же жёсткое у-излучение, сопровождающее ядерную реакцию (17.10), разве оно менее опасно, чем нейтронное излучение? Не спешите, сейчас мы разберёмся и с ним.
Из уравнения реакции (17.10) понятно, что эта ядерная реакция должна идти с нарушением закона сохранения чётности: ведь чётность излучаемого при этой реакции фотона (у-кванта) отрицательна, а чётность всех остальных частиц, участвующих в реакции, - положительна.
Нарушение закона сохранения чётности указывает на то, что эта реакция должна идти с участием нейтрино, которому разрешается нарушать закон сохранения чётности. А это не отражено в уравнении реакции (17.10). Поэтому нами выдвинуто предположение, что при этой реакции происходит внутриядерный распад нейтрона в дейтроне на протон, электрон и антинейтрино.
Нарушение закона сохранения чётности или участие в реакции (17.10) нейтрино делает эту реакцию медленной (слабые взаимодействия). В результате ядерная реакция (17.10) случается тоже не так часто, как нам хотелось бы для существенного повышения теплового выхода вихревого теплогенератора.
Но ядерная реакция (17.10), если она случается в вихревом теплогенераторе, должна обладать здесь одной замечательной особенностью. Ведь если спины Дейтрона и протона ориентируются торсионным полем параллельно ему, то закон сохранения момента количества движения требует, чтобы рождаемые при реакции (17.10) жёсткие у-кванты излучались тоже в этом направлении, то есть вдоль оси вихревой трубы теплогенератора.
Наши эксперименты, описанные в [263], подробнее о которых мы расскажем чуть ниже, показали, что действительно, жёсткое ионизирующее излучение от вихревой трубы теплогенератора не только очень слабо, но и направлено в одну сторону вдоль оси этой трубы. Если устанавливать вихревую трубу этим концом книзу, то почти всё рождаемое излучение уходит в землю, а не в стороны, где возможно нахождение людей. Кроме того, при энергии у-квантов 5,49 МэВ это жёсткое излучение имеет столь малое сечение взаимодействия с веществом, что создаваемая им доза ионизирующего облучения оказывается в несколько раз ниже предельно допустимой действующими нормами радиационой безопасности НРБ-76/87 для населения, связанного в своей профессиональной деятельности с ионизирующим излучением В результате теплогенератор Потапова оказался радиационно безопасной установкой
Выявленную осевую направленность в одну сторону у-излучения, рождаемого в ядерной реакции, можно считать не только ещё одним, неизвестным ранее науке проявлением несохранения чётности, но и доказательством правильности представлений об ориентирующем действии торсионных полей на спины элементарных частиц. Это доказывает существование торсионных полей, подвергавшееся многими сомнению.
Поскольку ядерная реакция (17.10) является основной, на которую мы могли возлагать надежды в отношении вклада ею тепла в воду вихревого теплогенератора, то разберёмся с ней подробнее. В результате этой реакции образуются опять только две частицы, масса покоя у одной из которых (у у -кванта) намного больше, чем у другой (), поэтому у-квант здесь опять уносит львиную долю выделяющейся энергии реакции, то есть около 5,49 МэВ.
И хотя такой энергии у-квантов соответствует минимум сечения их взаимодействия с веществом на кривой зависимости сечения от энергии, всё же это сечение достаточно велико [192]. При этом толщина слоя 10-кратного ослабления у -излучения составляет 65 см воды [192], что соизмеримо с длиной вихревой трубы теплогенератора "Юсмар". Следовательно, большая часть энергии такого осевого у-излучения должна поглощаться водой и металлом стенок теплогенератора и превращаться в них в тепло.
Расчёты показывают, что если бы в вихревом теплогенераторе основным каналом рождения "лишнего" тепла была реакция (17.10), то для получения дополнительной тепловой мощности ~1 кВт потребовалась бы интенсивность этих реакций . Но при этом мощность у-излучения достигала бы ~1 кВт и более, что немедленно было бы зафиксировано счётчиками ионизирующего излучения. А они в непосредственной близости от теплогенератора показывают мощность дозы на уровне, не превышающем естественный фон более чем в 2 раза. Следовательно, если ядерная реакция (17.10) и идет в вихревом теплогенераторе, то она не определяет выход тепла в нём, а её интенсивность намного меньше, чем
Почему же реакция ( 17.10) не хочет идти? Наверно, не только потому, что в этой реакции нарушается закон сохранения чётности, но и потому, что концентрация дейтерия в обыкновенной воде всего -0,02% [122]. А при концентрации ориентационно дефектных связей в этой воде [140] будем иметь концентрацию nd в ней дейтронов, попавших на такие водородные связи, всего лишь . И если реакции (17.10) идут только на ориентационно-дефектных водородных связях при столкновениях дейтрона и протона, находящихся на этих связях и прыгающих навстречу друг другу, меняясь местами, то только отдельные из них могут вступить в реакцию (17.10), удачно столкнувшись.
Оценим интенсивность реакций (17.10), исходя из этого. Правда, нам неизвестны относительные скорости Vск протона и дейтрона при их квантовых скачках вдоль связи. Но будем считать, что они не превышают скорости света в вакууме С. Тогда при максимальном сечении реакции [191] легко вычислить ожидаемую максимальную интенсивность реакций:

(17.11)

При работе теплогенератора "Юсмар" нами было зарегистрировано увеличение уровня мощности экспозиционной дозы от ионизирующего излучения вдоль направления оси вихревой трубы непосредственно за её стальным фланцем до 15 мкР/час при естественном фоне 6-8 мкР/час, измеренном за минуту до включения теплогенератора.
Сразу отметим, что такая величина мощности дозы в 4 раза ниже предельно допустимой (60 мкР/час), установленной действующими Нормами радиационной безопасности (НРБ-76/87) для населения, не связанного в своей профессиональной деятельности с источниками ионизирующего излучения. Для сравнения скажем, что естественный фон ионизирующего излучения на местности в различных регионах создаёт дозу, колеблющуюся в пределах от 5 до 50 мкР/час, и на Земле мало мест, где она ниже 50 мкР/час.
Нами было выявлено, что ионизирующее излучение при работе теплогенератора имеет направленность по оси его вихревой трубы в сторону от горячего её конца. При этом расходимость излучения в воздухе за горячим концом трубы остаётся малой (<15°). А поскольку длина столба воды, пронизываемого излучением до выхода в воздух, составляет 30 см, да ещё 10 мм стали фланца, то можно сделать вывод, что это действительно жёсткое у-излучение.
Если это у-кванты с энергией 5,49 МэВ, порождаемые ядерной реакцией (17.10), то после пробега 30-сантиметрового слоя воды и 10-миллиметрового слоя стали интенсивность этого излучения в результате частичного поглощения его средой должна уменьшиться примерно в 10 раз [49]. И если мощность дозы непосредственно за фланцем горячего конца вихревой трубы составляет -10 мкР/час (за вычетом естественного фона), то в месте испускания (в вихревом потоке воды) она должна быть в 10 раз больше, то есть-100 мкР/час. Такой мощности дозы, согласно [192], соответствует плотность потока фотонов с энергией 5,5 МэВ, составляющая -. При энергии фотона 5,5 МэВ такой поток несёт мощность всего . А поскольку площадь сечения 75-миллиметровой вихревой трубы равна , то весь потоку-квантов в ней составляет и несёт всего энергии. Понятно, что этому потоку соответствует интенсивность реакций (17.10) в вихревой трубе .
Мы получили блестящее совпадение с результатом приведенных выше теоретических оценок интенсивности ядерной реакции (17.10) в вихревой трубе теплогенератора, полученным в (17.11). Это доказывает правильность наших представлений.
Таким образом, можно констатировать, что ядерная реакция (17.10) действительно не вносит ощутимого вклада в теплопроизводительность вихревого теплогенератора. Тем не менее эта реакция идёт в вихревой трубе, и рождаемое ею направленное осевое жёсткое у-излучение доступно измерениям и легко регистрируется.

17.5. Разгадка десятилетней загадки

В предыдущем разделе мы обсуждали ядерную реакцию (17.10), идущую в результате двухчастичных столкновений дейтрона с протоном на ориентационно-дефектных водородных связях воды. Но на этих связях могут происходить и трёхчастичные столкновения дейтрона, протона и электрона, ведущие к следующей ядерной реакции:

(17.12)

При этом электрон в момент сближения протона с дейтроном может туннелировать как через протон (ядро атома обыкновенного водорода - протия 1Н), так и через дейтрон - ядро атома дейтерия, вошедшего в состав молекулы воды вместо протия. Последний случай детально разобран в [263], куда мы отсылаем интересующихся.
Здесь же обратим внимание на то, что о ядерной реакции (17.12) никто из физиков никогда не помышлял. А ведь эта реакция уже не имеет никаких запретов и не ведёт к нарушению известных законов сохранения! Поэтому она должна протекать с гораздо большей скоростью, нежели реакция (17.10), несмотря на то, что она случается в результате трёхчастичных, а не двухчастичных столкновений.
В результате реакции (17.12) образуются ядра атомов трития 3Т. А вспомните, мы в разделе 17.2 упоминали о том, что исследователи во всём мире вот уже 10 лет с удивлением отмечают, что при холодном ядерном синтезе выход ядер атомов трития почему-то на 7-8 порядков величины больше выхода ядер атомов гелия-3 и нейтронов. Разгадать причину этого никому не удавалось [191].
Исследователи полагали, что тритий образуется только в результате ядерной реакции ( 17.2) между двумя дейтронами, которая идёт примерно с такой же скоростью, как и конкурирующая реакция (17.1), ведущая к появлению ядер атомов и нейтронов. В силу инертности мышления эти исследователи, привыкшие ко всему подходить с мерками термоядерщиков, пренебрегающих трёхчастичными столкновениями, никак не могли додуматься до ядерной реакции (17.12).
Трёхчастичные столкновения, как мы уже отмечали, действительно могут случаться достаточно часто лишь при сравнительно низких температурах и особенно на водородных связях в жидких и твердых телах. А именно в таких средах исследователям иногда удавалось наблюдать холодный ядерный синтез [191].
Итак, большие выходы трития при "холодном термояде" можно объяснить тем, что он получается по ядерной реакции (17.12).
Неужели десятилетняя загадка наконец-то разгадана?!
Но рождающееся при ядерной реакции (17.12) нейтрино опять, как и в случае с реакцией (17.7), уносит в просторы космоса львиную долю энергии этой ядерной реакции, оставляя тритону , застревающему в воде, лишь малые крохи от этой энергии при передаче ему импульса отдачи. Это лишает нас надежд достичь за счёт ядерных реакций (17.12) высоких выходов дополнительного тепла в вихревом теплогенераторе Потапова.
Тем не менее полученные результаты вселяют надежды на использование вихревого теплогенератора в качестве генератора дейтерия, гелия-3 и особенно трития, производство которого другими способами весьма сложно, дорого и опасно. А тритий нужен не только для изготовления водородных бомб, что в последние годы, к счастью, теряет особую насущность, но и в качестве сырья при осуществлении управляемого термоядерного синтеза, если таковой всё-таки будет когда-нибудь осуществлён и доведен до промышленного использования.
Природных месторождений трития не существует, поскольку он распадается с периодом полураспада в 12 лет. В настоящее время тритий, необходимый для производства водородных бомб, источников проникающих излучений и для исследований, получают искусственно, облучая изотоп лития-6 потоками нейтронов от ядерного реактора:

(17.13)

Но запасы лития (а тем более его изотопа лития-6) в месторождениях на Земле весьма ограниченны. К тому же литий интенсивно используют в производстве аккумуляторов и других химических источников тока. Поэтому термоядерщикам, по оценкам, сделанным в [163], лития хватит всего лет на 100.
Открываемая же ядерная реакция (17.12) вручает людям в руки неиссякаемый источник трития, не требующий строительства глубоких шахт для добычи сырья. Ведь необходимая для его производства по реакции (17.12) вода на Земле пока почти везде есть.

Наш сайт является помещением библиотеки. На основании Федерального закона Российской федерации "Об авторском и смежных правах" (в ред. Федеральных законов от 19.07.1995 N 110-ФЗ, от 20.07.2004 N 72-ФЗ) копирование, сохранение на жестком диске или иной способ сохранения произведений размещенных на данной библиотеке категорически запрешен. Все материалы представлены исключительно в ознакомительных целях.

Рейтинг@Mail.ru

Copyright © UniversalInternetLibrary.ru