Глава седьмая
ОТ ПУЛИ ДО СОЛНЦА
7.1. "Вечные двигатели" второго рода
Гипотеза противотока в вихревых струях, которой мы закончили предыдущую главу, требует особого внимания, поскольку, если она окажется верной, откроется путь к непосредственному превращению тепла вещества в кинетическую энергию его поступательного движения. Нам скажут, что в таком превращении нет ничего нового. Ведь давно известно, что в стволе пистолета тепло пороховых газов превращается именно в кинетическую энергию поступательного движения пули.
Но есть "небольшая" разница. В случае с пулей работа совершается за счет расширения нагретых газов. Их давление направлено во все стороны одинаково. И расширение происходило бы тоже во все стороны, не будь ствола, оставляющего газу только одно направление для расширения.
А вот в случае с превращением тепла воды в кинетическую энергию ее поступательного движения не происходит расширения воды. Тут тепловое движение молекул, казалось бы, непосредственно трансформируется в поступательное движение потока воды даже без направляющего ствола, если поток закручен.
В вихревой трубе Ранке то же самое происходит с газом, но способность сжатого газа расширяться, совершая при этом механическую работу, маскирует выявленный эффект, суммируясь с ним. В случае же практически несжимаемых жидкостей он может проявляться в чистом виде.
И не только при вращении жидкостей. Известно много работающих схем "вечных двигателей" с вращающимися постоянными магнитами, генерирующих электроэнергию "из ничего". Например, мотор с постоянными магнитами Г. Джонсона (патент США № 4151431 от 1979 г., мотор Р. Адамса (заявка Великобритании № 2282708 А), вакуумный триодный усилитель Ф. Свита и др. Они, как правило, генерируют сравнительно небольшую мощность (десятки ватт). При этом подмечено, что их магниты при работе "самопроизвольно" охлаждаются до довольно низких температур (ниже температуры окружающей среды.) Чаще всего именно эти магниты обвиты катушками провода, с которых снимается электрическая мощность на нагрузку. Получается, что тепло магнитов непосредственно преобразуется в электрическую энергию! Разве это не удивительно?
Разве это не противоречит второму началу термодинамики, запрещающему процессы, протекающие в направлении уменьшения энтропии системы? Ведь еще У. Томсон постулировал невозможность процесса, единственным результатом которого было бы превращение теплоты системы в работу без изменений в окружающей среде и невозможность самопроизвольной передачи тепла от более холодного тела к более теплому.
В последние годы в связи с этим в научно-популярной литературе развернулись
ожесточенные баталии насчет справедливости постулата Томсона (второго начала
термодинамики). .
Но на самом деле в большинстве экспериментов с "вечными двигателями" никакого нарушения второго начала термодинамики не происходит. Большинство из этих "вечных двигателей" производили электроэнергию отнюдь не вечно, а лишь до тех пор, пока не иссякал запас тепловой энергии в их магнитах. Далее они работали (если работали) в режиме теплового насоса: тепло окружающего воздуха согревало магниты, а из магнитов "выкачивалось" в электрическую систему. Энергия возникала отнюдь не из ничего. И отнюдь не без обмена теплом с окружающей средой. И при этом тепло отнюдь не полностью превращалось в полезно используемую работу.
Так любой тепловой насос можно объявить "вечным двигателем", ибо он затрачивает энергии на свою работу гораздо меньше, чем "выкачивает" тепла из реки или озера. Тепловой насос для того и был изобретен тем же Томсоном, чтобы брать тепло от не очень теплого тела, имеющего очень большую массу (например из моря) и отдавать его горячему, имеющему много меньшую массу. Потому тепловые насосы называют еще "трансформаторами тепла" [87].
Нет, нас в вышеприведенных и других "вечных двигателях" больше интересует не то, что их магниты "самопроизвольно" охлаждаются до низких температур, а то, что, как отмечалось многими исследователями, некоторые из этих устройств при их работе теряют в весе, а после выключения их вес возвращается к норме [34,95].
7.2. "Антигравитация" гироскопов
Первым на эффекты уменьшения при некоторых условиях веса тел обратил внимание, по-видимому, известный пулковский астроном H.A. Козырев в [34]. Проводя опыты с волчками, он заметил, что когда волчок, помещенный на весы, вращается против часовой стрелки (если смотреть на него сверху), то его вес оказывается чуточку меньше, чем вес этого же невращающегося волчка. Вращение же волчка по часовой стрелке не приводило к уменьшению веса.
Козырев объяснил уменьшение веса волчка тем, что его вращение влияет на ход времени на нем, а времени он приписывал такие физические свойства, как импульс, энергия и другие. Исследователь утверждал, что время оказывает давление на волчок, в результате чего и возникает дополнительная сила.
Думается, что тут Козырев был очень близок к истине, но все же не совсем прав. Теория движения тоже приводит к выводам, похожим на выводы Козырева, который Утверждал, что "к обычному ходу времени на вращающемся теле геометрически добавляется относительная линейная скорость этого вращения". Но приписывая времени такие физические свойства, как энергия, Козырев, по мнению В. А. Ацюковского, заблуждался. Ибо время, утверждает Ацюковский, - это не материя, а ее свой - Говорить о времени как о самостоятельной субстанции - это все равно что говорить о самостоятельности улыбки йоркширского кота: кот исчез, а улыбка остаталась[2].
Рис. 7.1.На наш взгляд, в утверждении Козырева о том, будто Солнце светит потому, что в нем идет превращение времени в энергию, хоть и есть доля истины, но на самом деле там, конечно же, в энергию превращается часть массы вещества Солнца. И это превращение происходит, по-видимому, потому, что при ускорении вращения тела его суммарная масса-энергия должна уменьшиться за счет высвечивания "лишней" энергии, а при ускорении хода времени на вращающемся теле к тому же быстрее идут процессы высвечивания энергии.
Обнаруженный Козыревым эффект уменьшения веса вращающихся тел был в 1975 г. подтвержден в Лондоне английским физиком Лейтуэйтом.
Опыты Козырева с вращающимися телами продолжил в 70-е годы минский профессор А.Й. Вейник. Он известен изданием в 60-е годы учебника "Термодинамика", тираж которого был конфискован за то, что в книге содержалась критика теории относительности Эйнштейна и второго начала термодинамики.
Как описывается в [95], в опытах Вейника гироскоп, взвешиваемый с помощью системы рычагов на точных аналитических весах, был закрыт кожухом, чтобы устранить влияние тепловых эффектов и циркуляции воздуха. При вращении рабочего тела гироскопа в одну сторону его вес уменьшался на 50 мг, а при вращении в противоположную - возрастал на те же 50 мг.
А.Й. Вейник объясняет это тем, что "скорость точек одной части вращающегося маховика гироскопа складывается со скоростью абсолютного движения Земли в космосе, а другой - вычитается из нее. И в результате появляется дополнительная сила, направленная в ту сторону, где суммарная абсолютная скорость Земли и маховика наименьшая".
Но вот в 1989 г. в Днепропетровском институте механики АН УССР была создана установка, состоящая из вращающегося ротора и помещенного под ним изолированного от него металлическим экраном свинцового груза весом до 2 кг. Соавтор этой установки А. А. Селин рассказывает, что при вращении ротора неподвижный свинцовый груз под ним терял в весе до 45 г (примерно 2%). И делает вывод, что эффект получен, по-видимому, вследствие образования "зоны гравитационной тени".
Не будем пересказывать гипотезу Селина о центробежном отбрасывании вращающимся ротором потока эфира, якобы идущего к Земле из мирового пространства, а обратим внимание на то, что данный эксперимент зачеркивает версию профессора Вейника о возникновении дополнительных сил в результате суммирования движений Земли и частей гироскопа. Он убедительно показывает, что гироскоп создает под собой поле "антигравитационных" сил, направленных кверху.
О возникновении подобного поля сил над диском из сверхпроводящей керамики, вращающимся над электромагнитами в экспериментах русского исследователя Е. Подклетова, временно работающего в Финляндии, рассказывается в [62]. Вес тел, подвешивавшихся над диском, уменьшался опять же на 2%. Кроме того, над диском уменьшалось и атмосферное давление воздуха на 4 мм рт. столба. Любопытно, что уменьшение давления воздуха было отмечено не только непосредственно над диском, но и этажом выше над установкой. Это означает, что поле "антигравитации" простиралось высоко над установкой вдоль оси вращения ее диска.
7.3. О механизме превращения тепла в энергию движения
тел при их вращении
Попробуем разобраться в эффектах уменьшения веса вращающихся тел, исходя из позиций теории движения. Взгляните еще раз на выражение (5.19), которое говорит о том, что всякое поступательное движение обязательно сопровождается каким-то вращением, описываемым мнимым членом этого выражения. То, что вращение должно описываться мнимыми числами, нам после знакомства с главой пятой данной книги уже понятно. А теперь прочтем уравнение (5.19) наоборот: всякое вращение тела должно сопровождаться поступательным перемещением его в пространстве-времени. Насчет перемещения во времени - это бесспорно, а вот обязательно ли и всегда ли должно возникать еще и перемещение тела в пространстве? Уравнение (5.19) вроде бы оставляет телу "свободу выбора". Скажем так: если появляется возможность перемещаться поступательно, то оно может перемещаться.
Это, как вы понимаете, еще не очень убедительно, это только зерно сомнения, повод для размышления. А размышлять мы начнем от торсионных полей, речь о которых велась в той же пятой главе. Если торсионные поля остронаправленные вдоль оси вращения и если переносчиками (квантами) торсионного поля являются нейтри-
- трансцедентные тахионы, летящие с бесконечно большой скоростью (а потому обладающие бесконечно малой энергией), то понятно, что эти виртуальные частицы должны излучаться вращающимся телом вдоль его оси вращения.
А теперь напомним, что, как было показано в [9,15], трансцедентный тахион, летящий с бесконечно большой скоростью, имеет нулевую энергию, но обладает не нулевым, а конечным импульсом(7.1)
Здесь m. - так называемая метамасса тахиона [15].
Импульс трансцедентного тахиона Р0, является субсветовым аналогом импульса покоя тела (2.23), о котором мы говорили в разделе 2.4. В мире сверхсветовых скоростей (горизонтальном запредельном мире "мальтийского икса") импульс трансцедентного тахиона играет такую же роль, какую в нашем мире досветовых скоростей играет масса-энергия покоя тела*.(* Те сложности и противоречия, с которыми столкнулись физики в попытках измерить массу покоя нейтрино, похоже, обусловлены тем, что нейтрино в действительности являются не тардионами и не люксонами, а тахионами, и у них надо определять не массу покоя, а метамассу).
Если вращающееся тело излучает трансцедентные тахионы-нейтрино преимущественно в одну сторону вдоль оси вращения (почему только в одну - обсудим чуть позже), то закон сохранения импульса диктует, что само тело должно приобрести импульс отдачи в противоположном направлении. То есть должна появляться сила, толкающая вращающееся тело вдоль оси вращения.
Но если тело - тардион начинает двигаться под действием этой силы, то это означает, что у него появляется кинетическая энергия аксиального движения. Откуда она черпается? Все вышеизложенное указывает на то, что в эту энергию должна превращаться часть тепловой энергии, содержащейся в теле.
Тут мы встретились с чем-то новым. До сих пор физики полагали, что сама по себе энергия теплового движения атомов тела не должна превращаться в кинетическую энергию направленного поступательного движения тела. Считалось, что она может превратиться в таковую за счет, например, направленного индуцированного излучения фотонов атомами тела - излучения, инициированного таким же, но менее интенсивным излучением, а потому летящего преимущественно в одну сторону с ним. Индуцированное излучение, открытое А.Эйнштейном еще в 1916 г. [96, 97], работает, как известно, в квантовых генераторах излучений - лазерах и мазерах [17]. Последние тоже испытывают отдачу в сторону, противоположную направлению полета луча, как испытывает ее любой прожектор. Но ни лазер, ни прожектор не начинают двигаться потому, что их массы слишком велики, а импульс отдачи весьма мал.
А вот отдельный атом газа или пара при излучении им фотона с длиной волны, например, -10 мкм, уже приобретает заметную скорость отдачи. Так, атом водорода должен начать двигаться со скоростью ~ 4 см/сек, а молекула воды - в 18 раз медленнее.
Но речь о другом. Мы остановились на том, что при излучении трансцедентных нейтрино-тахионов излучающее тело хоть и не отдает энергии этому излучению, но испытывает отдачу и начинает двигаться. Нечто похожее экспериментаторы давно (со времен А.М. Ампера) подметили в электродинамике, где отмечаются нарушения 3-го закона Ньютона (равенства действия противодействию), и помимо общеизвестных поперечных сил Лоренца, действующих на проводник с током в магнитном поле, регистрируются таинственные продольные силы, действующие вдоль направления тока [98].
Не исключено, что за подмеченным нами нюансом сил отдачи кроется целое направление механики будущего, что двигатели космических кораблей будущего будут работать именно на этом принципе, позволяющем приобретать импульс без выброса массы реактивной струёй. Впрочем, похоже, что именно такой принцип сообщения движения реализуется в "электрореактивных двигателях" на продольных электромагнитных полях, разрабатывавшихся в 70-е годы В.И. Докучаевым в Москве, в 80-е - его последователем В. П. Глушко в Алматы [98], а также Г. В. Николаевым в
Томске [99].
Но мы отвлеклись. На основании имеющихся на сегодняшний день оценок "массы покоя" нейтрино можно предположить, что импульс отдачи, приобретаемый атомом от излучения трансцедентного тахиона-нейтрино, на много порядков величины слабее импульса отдачи от излучения обыкновенного фотона. Поэтому нас больше интересует излучение фотонов, инициированное такими тахионами - квантами торсионного поля, рождаемого вращением тел. Шипов и Акимов утверждают, что торсионное поле обладает способностью легко поворачивать спины электронов [55]. А поворот спина электрона в атоме сопровождается, как известно, излучением фотона. (Интеркомбинационное излучение [6].) Поэтому торсионное поле, наверно, может инициировать направленное излучение фотонов атомами вещества, подобное индуцированному излучению лазера.
Вот тут-то атомы вращающегося тела приобретают и достаточно мощный импульс отдачи вдоль оси вращения тела, и кинетическую энергию направленного движения. Так что торсионное поле является как бы "спусковым крючком" (о котором говорили Шипов и Акимов), инициирующим вторую ступень этого двухступенчатого процесса.
В разделе 5.3 мы уже писали, как Г.И. Шипов показал, что его уравнения содержат дополнительную силу, рождаемую излучением. Он утверждал, что эта сила не равна нулю лишь в случае, когда появляется излучение заряда. Мы добавим, что, наверно, не только электромагнитное излучение ведет к появлению такой силы (тогда это давно известная сила отдачи, действующая на частицу при излучении ею фотона), но и излучение неуловимых и неосязаемых нейтрино-тахионов - квантов торсионного поля. Только в последнем случае это несоизмеримо меньшая сила. Хотя не исключено, как мы уже отмечали, что за ней огромное будущее в космонавтике.
Но нейтрино, согласно закону сохранения лептонного заряда, не могут рождаться поодиночке. Они должны рождаться либо вместе с соответствующим лептоном, как это происходит при ? -распаде, либо в паре с антинейтрино. Понятно, что нейтрино торсионных полей должны рождаться только по второму варианту - парами. Но если при этом нейтрино пары разлетаются в противоположные стороны, то никакой отдачи
мучающее их тело приобретать уже не будет. Она будет появляться, когда нейтрино рождаемой пары оказываются связанными друг с другом, как в гипотетической монополии, о которой говорилось в [9], и оба летят вместе в одну сторону.
Но если это пары трансцедентных тахионов-нейтрино, то они опять не несутэнергии. И мы снова приходим либо к необходимости новой механики, либо к ходимости одновременного излучения вместе с нейтринными парами еще и фотонов, летящих в противоположную сторону. Тогда возникающая при излучении фотона отдача атома и будет проявляться как та сила, которая стремится приподнять гироскоп при вращении его против часовой стрелки и придавить к земле при вращении в противоположную сторону.
Шипов и Акимов давно утверждают, что всякое электромагнитное излучение обязательно сопровождается торсионным излучением [63]. А если учесть, что торсионное излучение - это поток нейтрино-тахионов, то получается, что наша гипотеза не так уж нова, и мы не одиноки в наших предположениях.
В этих рассуждениях, построенных на цепочке гипотез, а потому постепенно отходящих от математической и физической строгости, можно пойти и дальше: предположить вслед за Шиповым и Акимовым, что рождение фотона в любом процессе должно сопровождаться одновременным рождением нейтринной пары (монополия или фотино). Скептики скажут, что для такой гипотезы нет экспериментальных оснований. Не спешите с выводами! Раздел 7.4 покажет, что основания все же есть.
Но вернемся к гироскопам. Возникновение сил "антигравитации" над вращающимся телом уже нельзя объяснить реакцией отдачи при излучении вращающимся телом фотонов. Она может быть объяснена только воздействием потоков нейтрино или нейтринных пар, излучаемых вращающимся телом. В связи с этим вспомним развивавшуюся в [9] гипотезу Ж. Лесаже о гравитации как результате давления на тела потока всепроникающих частиц-лесажонов, идущего со всех сторон небосвода. Там же вслед за Ф. Рейнесом, впервые в мире экспериментально зарегистрировавшим в 1956 г. совместно с К. Коуэном нейтрино от ядерных реакторов, указывалось, что лесажонами могут являться низкоэнергетичные космологические нейтрино [100]. Если торсионные поля - это тоже потоки нейтрино, то будучи направленным вдоль вертикальной оси вращения гироскопа, такой поток должен оказывать на встречающиеся ему тела давление, противоположно направленное давлению идущего сверху потока космологических нейтрино - лесажонов, и подталкивать любые тела над гироскопом кверху независимо от направления вращения гироскопа.
Почему тогда теряет в весе и груз, помещенный под гироскопом, как это было зарегистрировано в опытах A.A. Селина в Днепропетровске? Тут опять можно выдвинуть еще одну гипотезу. Можно предположить (опять вслед за Ф. Рейнесом [100]), что помимо процесса слабого рассеяния нейтрино на веществе существует и процесс слабого рассеяния нейтрино на нейтрино. Тогда в результате рассеяния идущего сверху потока космологических нейтрино встречным потоком нейтрино от гироскопа поток космологических нейтрино, давящий сверху на груз под гироскопом, ослабевает, и груз слабее притягивается к Земле.
Не исключено, что при быстром вращении достаточно больших масс вещества, как, например, в особо сильных смерчах, ослабление сил притяжения тел к Земле может оказаться настолько существенным, что достаточно даже не очень сильного потока воздуха в центральной зоне смерча, чтобы легко поднять тело на значительную высоту, как это часто наблюдается в смерчах. Ведь если бы корову или человека в смерче поднимал и переносил только поток воздуха, то оценки показывают, что его динамическое давление нанесло бы жертве сильные повреждения, чего не наблюдается. Вспомните еще описанный выше случай с переносом будильника, с котором рассказывалось в [75].
Понятно, что когда ось вращения гироскопа или вихря расположена не вертикально, а горизонтально или в другом направлении, возникающие силы давления торсионных полей будут действовать по-прежнему вдоль оси вращения. Но тогда они уже не будут оказывать столь заметное влияние на притяжение тел к Земле. Думается, что именно эти силы ведут к появлению противотока в закрученных струях и в вихревых трубах.
Тогда давление внешнего воздуха, про которое думали, что оно является движущей силой противотока в закрученных струях [88], оказывается не при чем. Такой процесс будет идти и при инжектировании закрученной струи в вакуум. Так что проверить правильность нашей гипотезы легко, осуществив инжекцию закрученной струи в вакуумную камеру. В ней давление внешней среды отсутствует, и появление противотока, если он возникнет, может быть объяснено только нашей гипотезой.
7.4. Несохранение четности в атомных излучениях и "антигравитация"
Обилие предположений и гипотез, выдвинутых в предыдущем разделе, обусловлено, конечно же, не буйством фантазии авторов, а скудностью экспериментальных данных о нейтрино, которые мы попытались привлечь к объяснению эффектов, наблюдаемых в вихрях и вихревых трубах. Но зато имеются экспериментальные данные, указывающие на возможность еще одного процесса, который может иметь прямое отношение к появлению как "антигравитации" при вращении тел, так и противотока в закрученных струях.
Новосибирскими физиками в 70-е годы было обнаружено явление несохранения четности при излучении и поглощении фотонов атомами, теоретически предсказанное Я. Б. Зельдовичем [101] и И. Б. Хрипловичем [102].
До этого было известно явление несохранения четности в слабых взаимодействиях, открытие которого в 50-е годы китайскими учеными Ц. Ли, Ч. Янгом и Ц. By, работавшими в США совместно с Э. Эмблером, было отмечено Нобелевской премией 1957 г. [103]. Оно касалось исключительно ß -распадов атомных ядер и элементарных частиц, сопровождающихся рождением нейтрино, и проявлялось, например, в том, что при ß -распаде в направлении вдоль спина ядер, ориентированных внешним магнитным полем, вылетало меньше электронов распада, чем в противоположном направлении. Такой результат объяснили тем, что рождающееся при ß - распаде антинейтрино, вылетающее в направлении, противоположном направлению вылета
электрона, обладает спиральностью. Спиральность - это направленность спина нейтрино вдоль направления его полета и "вращение" нейтрино в полете только по левовинтовой спирали. Антинейтрино же обладает правовинтовой спиральностью.
Кстати, спиральность нейтрино уже сама по себе является ярчайшим доказательством утверждения о том, что всякое движение в пространстве должно провожаться вращением.
Разработанная к 70-м годам единая перенормируемая теория слабых и электромагнитных взаимодействий предполагала существование слабых взаимодействий (осуществляемых с участием нейтрино) без изменения зарядов частиц за счет обмена нейтральными Z-бозонами. На возможность проявления слабых взаимодействий электронов в атомах и указал Зельдович в [101].
Новосибирские эксперименты [104,105] по выявлению несохранения четности в атомных процессах, давшие положительные результаты, но, увы, не отмеченные Нобелевской премией*(* Нобелевский комитет уже не впервые "не замечает" работ новосибирских физиков. Ране им "не было замечено" то, что ускорители со встречными пучками впервые были созданы в Новосибирске), сводятся к двум типам. Первый - это поиски оптического дихронизма, то есть различия в вероятностях излучения и поглощения право- и левополяризованных фотонов. Такие эксперименты осуществляют, например, облучая газ циркулярно поляризованным лучом лазера и затем регистрируя и исследуя вторичное излучение газа. Второй тип - это эксперименты по вращению плоскости поляризации света при прохождении его через газ .К вращению приводит различие в коэффициентах преломления света для право- и левополяризованных фотонов, обусловленное несохранением четности.
Вот тут-то мы можем решиться выдвинуть предположение, что должно существовать и третье проявление несохранения четности в атомных процессах. А именно, как и при ß - распаде, должна наблюдаться асимметрия в распределении излучаемых атомами фотонов вдоль спина ядра атома или вдоль оси вращения системы, состоящей из многих атомов.
Эта асимметрия и может обуславливать появление импульса отдачи у атомов преимущественно в одну сторону вдоль оси вращения системы, а именно, в сторону, противоположную преимущественному направлению излучения фотонов атомами.
При этом ориентацию спинов атомов вдоль оси вращения системы может обеспечивать торсионное поле, создаваемое этим вращением, ибо, как указывали Шипов и Акимов, торсионные поля легко поворачивают спины частиц [55].
И тогда вращающиеся системы, состоящие из атомов, при сбрасывании ими "лишней" массы-энергии путем излучения фотонов должны излучать их в одном направлении вдоль оси вращения интенсивнее, чем в противоположном. При этом сами атомы (а вместе с ними и система в целом) приобретают ускорение отдачи в противоположном направлении. Это и может обуславливать появление противотока в закрученных струях.
Кроме того, если излучаемые вдоль оси вращения системы фотоны оказываются еще и циркулярно поляризованными с явно выраженным преимущественным (левым или правым) направлением поляризации, то атомы отдачи (и вся система в целом) должны, в силу закона сохранения момента количества движения, приобретать вращение в противоположном направлении.
7.5. О связи вращения тел с их поступательным движением
Уравнение (5.19) указывает, что всякое поступательное движение обязательно сопровождается каким-то вращением. И хотя это утверждение для многих покажется спорным, указания на его правильность существуют давно. Так, А. Я. Милович в книге [91] рассказывает, как Д. И. Менделеев, впервые прокатившись на воздушном подметил, что при подъеме и опускании тот начинает раскручиваться. То же случается и с парашютами, что ведет к закрутке строп. Милович указывает, что и сантехники тоже давно подметили, как металлический шар, применяемый для прочистки канализационных труб, при движении по трубе с жидкостью начинает вращаться, закручивая тянущую его веревку. Из этого Милович делает вывод: "круглому телу легче двигаться в окружающей его среде, вращаясь вокруг оси движения". ' Он утверждает, что снижение сопротивления среды движению в ней тела "обуславливается закручиванием всего обтекающего тело потока жидкости винтообразными вихревыми шнурами, сходящими с обтекаемого тела". Эти вихревые потоки якобы и заставляют тело крутиться в противоположную сторону. Рассматривая далее данную задачу уже в системе покоя шара, Милович пишет, что часть энергии поступательного движения жидкости, обтекающей шар, переходит в энергию ее вращательного движения, и это якобы уменьшает скорость ее поступательного движения относительно шара. В результате, думает Милович, уменьшается степень разрежения, создаваемого потоком за шаром, а следовательно, и сопротивление движению шара в жидкости.
В этом сложном объяснении чувствуется явная недоговоренность: часть энергии движения шара затрачивается на приведение окружающей его жидкости во вращение и движение вслед за шаром, а в результате этого сопротивление движению шара почему-то снижается!
Теория движения дает новое объяснение этим эффектам. А именно: закручивание и среды, облекающей шар, и самого шара приводит к превращению части содержащегося в них тепла в дополнительную кинетическую энергию поступательного движения их вдоль оси вращения.
Действительно, давно подмечено, что вращающаяся пуля не только более метко попадает в цель, но и летит дальше, чем невращающаяся [106]. Пуля летит дальше по той же причине.
Но что заставляет вращаться и пулю, и сантехнический шар? Если в отношении воздушного шара можно уверять, что при его вертикальном движении обтекающий его поток воздуха заставляют вращаться силы Кориолиса, то с пулей, летящей почти горизонтально, таким простым ответом не обойтись.
Бытует мнение, что пуля вращается только потому, что вылетает из нарезного ствола, где приобретает момент вращения. И еще бытует мнение, что стволы оружейные мастера стали нарезать после того, как сообразили, что вращающаяся пуля при полете меньше отклоняется в стороны из-за случайных неровностей на ее поверхности, создающих дополнительные неучтенные завихрения воздуха. Но думается, что и в истории со стволами огнестрельного оружия практика шла впереди теории. Не оружейные мастера первыми сообразили, что надо заставить пулю вращаться, а практика стрельбы показала, что даже при стрельбе из гладкоствольного оружия пуля или ядро, подлетая к цели, быстро вращается.
В качестве доказательства приведем всего один пример. Лев Толстой в романе "Война и мир" пишет: "В двух шагах от князя Андрея... негромко шлепнулась граната.. Князь Андрей стоял в нерешительности. Граната, как волчок, дымясь, вертелась между ним и лежащим адъютантом..."
Итак, граната (орудийное ядро, начиненное взрывчаткой, срабатывающей от горящего фитиля), прилетевшая из французской пушки, вертелась как волчок. Ни у французов, ни в других армиях в 1812 г., когда это происходило, не было нарезных орудий. Артиллерия была гладкоствольной. Но граната вертелась как волчок. Лев Толстой, в прошлом боевой офицер, участник обороны Севастополя, тут не мог чего-нибудь напутать и проявить некомпетентность.
Да, сначала военные подметили, что летящие ядра и пули вращаются, а уж затем оружейники решили, что коль пулям так нравится вращаться, то пусть уж вращаются с самого начала. И стали нарезать стволы. Но заметьте, во всех армиях мира стволы нарезаны по правовинтовой спирали! И думается, что это тоже не случайно. Может стрелками было подмечено, что пули, выпущенные из гладких стволов, при полете вращаются только вправо?
А теперь вспомним, что и в атмосферном циклоне, и в тайфуне, и в смерче поднимающийся кверху воздух тоже движется чаще всего по правовинтовой спирали. Вы скажете, что так вращаться его заставляют кориолисовы силы, возникающие от вращения Земли. Правильно. Только вот в Южном полушарии, где силы Кориолиса заставляют циклоны вращаться в противоположную сторону, тайфунов и смерчей наблюдается гораздо меньше, чем в Северном. Не потому ли, что при левовинтовом вращении вихрь неустойчив и чаще не развивается, а угасает?
Объяснить это может только ссылка на спиральность нейтрино-тахионов торсионных полей, излучением которых, по нашей гипотезе, сопровождаются все процессы ускорения вращения тел. В нашем мире все состоит из вещества и почти нет антивещества. Вот и вращаются и пули, и смерчи, и планеты, и... (можно долго перечислять) только в одну сторону. В мире из антивещества они вращались бы в противоположную, излучая нейтрино противоположной спиральное™. Но физика нейтрино - все еще малоизученная область.
Движущиеся поступательно в трубе или струе газ или жидкость тоже стремятся начать вращаться вдоль оси потока. И тоже по правовинтовой спирали, если движутся в горизонтальной плоскости. В гидротехнике борются с этим явлением, устанавливая спрямители потока. Но факт остается фактом - струя стремится прийти во вращение, даже без помощи кориолисовых сил, хотя теория течения "сухой воды" утверждает, что при отсутствии первоначального вращения течение должно оставаться ламинарным [107].
7.6. От вихревой трубы до Солнца
Мы уже отмечали, что если в периферийной зоне смерча или тайфуна воздух обращаясь вокруг оси вихря, поднимается кверху по правовинтовой спирали, то в приосевой зоне он, наоборот, опускается книзу. И вот наконец-то мы можем дать объяснение наличию в центре тайфуна "глаза бури" - области штиля. Ведь опускающийся здесь воздух тоже должен стремиться вращаться по правовинтовой спирали. Но это вращение, если смотреть на него сверху, будет уже противоположно
правлению вращения основной (периферийной) массы воздуха в тайфуне. В пограничном же слое, разделяющем эти зоны, должно происходить взаимное гашение вращательного движения встречных потоков. Но масса периферийного потока много больше, поэтому гасится вращение лишь внутреннего (нисходящего) потока. Кроме того, его вращению по правовинтовой спирали в Северном полушарии противодействуют еще и силы Кориолиса, обусловленные вращением Земли. На этот раз они тоже гасят вращение. Вот и образуется в центральном нисходящем потоке область без вращательного движения.
Вернувшись к предмету нашего непосредственного интереса, скажем, что в осевом противотоке вихревой трубы Ранке газ тоже должен стремиться двигаться по правовинтовой спирали. Если при этом конструкция улитки ввода газа в трубу такова, что в периферийной зоне вихревой трубы газ движется по левовинтовой спирали, то взаимного торможения вращений встречных потоков не происходит. Наоборот, центральный противоток в этом случае вращается еще с большей угловой скоростью, чем периферийный поток. А вот если ввод правовинтовой, то будет происходить существенное торможение вращений и большая турбулизация потоков, что, безусловно, скажется на работе вихревой трубы.
В связи с этим становится понятным, почему не оправдались надежды конструкторов на прямоточные вихревые трубы, в которых отсутствует противоток. Практика показала снижение в них температурного эффекта по сравнению с противоточными трубами Ранке [82].
Теперь мы можем, наконец, и объяснить, почему в некоторых опытах Финько [84] наблюдалось встречное вращение центрального потока газа в вихревом охладителе, противоречащее общепринятой модели "квазитвердого вихря". Дело, по-видимому, в том, что благодаря конусности его вихревой трубы правовинтовое вращение периферийного потока в ней меньше тормозит встречное вращение центрального противотока, чем в цилиндрической вихревой трубе.
Наши гипотезы подтверждаются и выводами H.A. Козырева насчет причин грушевидности формы Земли, сделанными в [34]. Он указывал, что аксиальные силы должны возникать и при вращении такого гигантского волчка, как Земной шар. Согласно теории Козырева, на экваториальные массы Земли должны действовать дополнительные силы "давления потока времени", направленные к Северному полюcy, a на массы, расположенные около оси вращения Земли, - к Южному ее полюсу. В результате, утверждал астроном, Земной шар деформируется и принимает грушевидную форму, приплюснутую у Северного полюса и вытянутую к Южному.
Такая форма Земли, подтвержденная измерениями с космических аппаратов, великолепно объясняется и нашей гипотезой. Ведь Земной шар - жидкий расплав, который только снаружи покрыт, как яйцо скорлупой, относительно тонкой твердой земной корой. В экваториальных областях на этот расплав (магму) при вращении
вокруг своей оси действуют силы, направленные, согласно правовинтовой спирали, к Северному полюсу. И, наверно, происходит медленное течение магмы под земной корой в этом направлении*(* Самые последние исследования геофизиков склоняют их к убеждению, что под тонкое твердой земной корой находится не расплавленная магма, как думали раньше, а твердая, не раскаленная почти до плавления мантия, простирающаяся на глубины до 2 тысяч км. И лишь под ней лежит жидкий слой (внешнее ядро), в центре которого находится твердое (полагают, что из металлического железа) ядро Земли. Но это не очень сильно меняет нашу схему, так как даже твердые горные породы в недрах Земли на глубине всего 10 км становятся текучими из-за того, что давление здесь превышает их предел текучести при таких высоких температурах. И вместо течения магмы, описываемого далее в тексте, следует говорить строго о течении веществе мантии подземной корой.). А по оси вращения Земли устанавливается противоток магмы от Северного полюса к Южному. Так формируется медленная, но неустанная циркуляция магмы, продолжающаяся миллионы лет. Этот поток постепенно сносит материки, плавающие на поверхности магмы как льдины на озере, в Северное полушарие. В результате в Южном материков меньше.
Рис 7.2. Схема предпологаемой циркуляции магмы в недрах ЗемлиНе исключено, что осевой поток магмы, проходящий через центр Земли, не горячее, а холоднее периферийного -точно как в трубе Ранке. И тогда наличие у Земли твердого ядра может быть обусловлено не столько огромными давлениями в центре Земли, сколько пониженными температурами. Пониженными, конечно, по сравнению с температурами магмы в мантии Земли, где они максимальны. Наличие континента на Южном полюсе - Антарктиды - тогда совсем не случайно, а обусловлено выносом сюда осевым потоком магмы ее закристаллизовавшихся частиц. Из этой гипотезы еще следует, что недра Антарктиды должны быть очень богаты тяжелыми металлами, вымываемыми потоком магмы из земного ядра.
Вы скажете, что это слишком смелые гипотезы? А взгляните на Солнце! Впрочем, нет, не на само Солнце, - смотреть на него вредно для глаз, а в литературу о нем, например в [6]. И Вы узнаете, что экваториальные области Солнца обращаются вокруг его оси с гораздо большей угловой скоростью (14,4° за земные сутки), чем приполярные (10° за сутки). Ученые уже более ста лет (с тех пор как обнаружили эту странную особенность Солнца) теряются в догадках - почему так. Ведь Солнце должно бы вращаться как квазитвердый вихрь, то есть с неизменной по его радиусу угловой скоростью.
А вот если в недрах Солнца происходит такая же циркуляция раскаленных газов, как только что описанная циркуляция магмы в недрах Земного шара или как движе ние газов в вихревой трубе, то все становится понятным. В экваториальных областях Солнца раскаленные массы газа, обращаясь вокруг его оси, медленно движутся по правовинтовой спирали от одного из гелиографичес-ких полюсов к другому у приповерхностных слоев. А вдоль оси вращения Солнца образуется внутренний противоток от одного полюса к другому. При этом вещество там тоже стремится прийти к правовинтовому движению, то есть вращаться в сторону, противоположную направлению вращения экваториальных областей Солнца. Но, как и в тайфуне, вязкость газов препятствует осевому противотоку сразу же у полюсов началу вращения в противоположную сторону. В результате у полюсов он вращается в ту же сторону, что и экваториальные области, но медленнее их. Вот какое простое объяснение, данное в [108], может оказаться у столетней загадки астрономии. Это еще раз подтверждает нашу гипотезу о связи вращательного и поступательного движений.
Рис. 7.3. Схема предполагаемой циркуляции вещества Солнца [108].Исследования Солнца астрономами в 80-е годы поставили, как рассказывается в [76], еще одну загадку. Оказалось, что "ядро" Солнца вращается гораздо быстрее, чем поверхностные экваториальные области. При этом разделяющие их промежуточные слои вращаются медленнее, чем приповерхностные экваториальные области.
С учетом наших воззрений тогда позволительно спросить: а в ту ли сторону вращается "ядро", что и поверхность? Не исключено, что направление вращения осевого потока в области центра Солнца противоположно направлению вращения его поверхности, как оказалось противоположным вращение газа в осевом противотоке вихревого охладителя Финько (см. рис. 7.3). Тогда понятно, почему промежуточные слои Солнца вращаются медленнее поверхностных. Если бы быстрее вращающееся "ядро" вращалось в ту же сторону, что и поверхность, то промежуточные слои имели бы промежуточную скорость вращения.
Ускоряясь в своем вращении, осевой плазмогазовый поток, идущий от полюса Солнца к его центру, конечно же, излучает "лишнюю" массу-энергию, как того требует теория движения. Это излучение постепенно диффундирует от "ядра" к поверхностным слоям Солнца, многократно переизлучаясь ионами и атомами его плазмы и газа, как это давно расписано в литературе о Солнце [6]. Только светит Солнце не потому, что в его горячих недрах идут термоядерные реакции (хотя ядерные реакции там, наверно, все же идут, но не те, о которых предполагали астрофизики), а потому, что "ядро" Солнца быстро вращается.
Любопытно отметить, что исследователь-неформал С. М. Журавлев из Кишинева в 1998 г. выступил на IX Международном симпозиуме "Перестройка естествознания" в г. Волгодонске с докладом, в котором утверждал, что в Солнце имеется ядро из металлического водорода, находящееся при криогенных температурах.
Журавлев исходил из того, что вычисленная астрономами средняя плотность вещества Солнца составляет , то есть в раз больше плотности воды. Но высокая плотность воды объясняется наличием в молекуле воды атома кислорода, масса которого в 8 раз больше массы двух атомов водорода, тоже входящих в молекулу воды. Солнце же, по данным спектрографических исследований, на 75% (по массе) состоит из водорода, на 20% - из гелия, атомный вес которого всего в 4 раза больше, чем у водорода, и лишь 2% массы Солнца составляют тяжелые элементы [6]. Поэтому грубо можно считать, что в Солнце водород спрессован до средней плотности , а в его центре - еще до больших величин. (По данным [6] -до 100 .)
А далее Журавлев приводит простой расчет. Если атомы невозбужденного водорода, имеющие, как известно, радиус, равный первому боровскому радиусу , упаковать наиплотнейшим образом, то получится металлический водород, имеющий плотность 1,64 , что всего на 16% больше средней плотности солнечного вещества. Если же наиплотнейшей упаковке подвергнуть молекулы водорода, то получается, как известно, жидкий водород, имеющий плотность всего 0,0719 , который в обычных земных условиях кипит при температуре -253°С. А плотность водородной плазмы (ионизованного водорода) при солнечных температурах и давлениях по всем расчетам оказывается еще меньше, чем плотность жидкого водорода. Из этого Журавлев и делает заключение, что в Солнце должно существовать довольно большое твердое ядро, состоящее из металлического водорода (его радиус ~ .)
Но металлический водород, так и не полученный на Земле экспериментаторами, может существовать, по мнению физиков, только при температурах, близких к абсолютному нулю. Как совместить сосуществование сверххолодного ядра Солнца с окружающим его остальным веществом, разогретым почти до термоядерных температур?
Отсутствие теплопередачи от этих горячих областей к ядру Солнца Журавлев объясняет тем, что металлический водород - это сверхпроводник, обладающий сверхвысокой отражающей способностью по отношению к фотонам.
Не будем судить насколько верна гипотеза Журавлева, отметим только, что наша теория в дополнение к ней объясняет, отчего ядро Солнца может оказаться холодным, если в Солнце схема движения вещества приблизительно такая же, как в вихревой трубе Ранке. Внутренний противоток в ней и должен охлаждаться, отдавая свое тепло в виде излучений наружным слоям.
В гипотезе Журавлева градиент температур на границе твердого ядра и термоядерной плазмы должен составлять не менее 0,1 °/см. (Тогда толщина граничного слоя составит 1000 км, что меньше 1% от радиуса Солнца.) Достаточно сказать, что в вихревых трубах градиенты температур между холодным и горячим слоями газа достигают 50°/см, чтобы понять, что гипотеза Журавлева не столь уж фантастична.7.7. Самые устойчивые вихри, ячейки Бенара и гранулы Солнца
Солнце, о котором мы заговорили в предыдущем разделе, - это целая коллекция самых разнообразных газоплазменных вихрей. Наибольшим из них является, конечно же та циркуляция вращающегося вещества Солнца, о которой говорилось в предыдущем разделе. Такие тороидальные вихри привлекают в последние годы самое пристальное внимание исследователей [109]. Они образуются не только в недрах Еемли и Солнца. Кольцо дыма, выпущенное курильщиком, представляет собой тоже тор, долго висящий в комнате. Долго висит потому, что тороидальные вихри обладают особой устойчивостью.
Много изучавший их В. А. Ацюковский, утверждающий, что элементарные частицы - это тороидальные вихри гипотетического эфира, в [79] показал, что тонкая вихревая нить в газе является неустойчивым образованием, устойчиво только вихревое кольцо, а наиболее устойчив винтовой тороидальный вихрь. Он объясняет это тем, что градиент скорости на поверхности такого тора максимален, а значит, вязкость пограничного слоя в нем минимальна. А с уменьшением вязкости уменьшается передача энергии движения соседним слоям внешней среды, что и ведет к росту стабильности вихревого образования.
Уменьшение же коэффициента динамической вязкости в пограничном слое тороидального вихря Ацюковский, а до него авторы работ [110, 111], объясняют снижением температуры в пограничном слое по формуле(7.2)
где Рr. - число Прандтля, определяемое выражением
(7.3)
U - скорость граничной поверхности слоя,
Ср - теплоемкость среды при постоянном давлении,
- коэффициент теплопроводности среды.
Ацюковский утверждает, что газ комет в небе тоже закручен в гигантском тороидальном вихре, что обеспечивает стабильность и нерасплывание газового облака кометы даже в космическом вакууме [112].
Но не все тороидальные вихри одинаково устойчивы. При значительном превышении диаметра кольца D над диаметром d его тела (при D/d>= 86) тороидальное кольцо неустойчиво относительно его формы [113]. В результате развития этих неустойчивостей такие кольца сворачиваются в петли, похожие на цифру 8, а затем
делятся в точке перекрестия на два кольца меньшего диаметра. Если и эти два тора все еще имеют слишком большое отношение D/d, то образовавшиеся новые кольца именем тоже сворачиваются и опять делятся. Такую цепочку последовательных делений можно наглядно наблюдать, говорит Ацюковский, капнув в банку с водой
каплю чернил с высоты 2-3 см (см. рис. 7.4).
Это сворачивание и деление колец на более мелкие происходит из - за стремления к минимуму ее энергии. Деление продолжается до тех пор, пока форма ториодора не приблизится к форме вихря Хилла с уплотненными стенками [114].
Рис. 7.4. Образование и деление
тороидальных вихревых колец в жидкости при падении капли [79]. |
Рис. 7.5. Тороидальный газовый вихрь [79].
|
М. А. Лаврентьев и Е. В. Шабат в [115] показали, что винтовые вихревые тороиды в воздухе представляют собой образования типа свернутой трубы (см. рис. 7.5.). В ее полости давление и плотность газа ниже, чем в свободной среде, но в стенках газ существенно уплотнен. Эта согнутая в тор "труба" имеет эллипсоидальную в своем сечении форму, в результате чего наружный диаметр тороида D меньше двух, но больше одного диаметра тела тора d и составляет обычно примерно 1,6-1,7d. Диаметр же внутреннего отверстия тора а составляет примерно 0,25 d. A отношение осевых размеров эллипса его сечения равно примерно 0,62. Обращает на себя внимание близость этих цифр к коэффициентам "золотого сечения" 0,618 и 1,618.
Схема тороидального вихря Хилла, приведенная на рис. 7.5, очень напоминает приводившуюся на рис. 7.2 нашу схему предполагаемого движения магмы в недрах Земного шара. Она оставляет для твердого ядра Земли как раз тот размер < 0,25d, который приписывают ядру геофизики. И для гипотетического твердого ядра Солнца из металлического водорода тороидальный вихрь Хилла оставляет место с диаметром < 0,25d, которого тоже достаточно для размещения такого ядра.
Но в недрах Солнца, размеры которого в 109 раз больше размеров Земли, а вязкость вещества которого (газа) много меньше вязкости земных недр, описанный в разделе 7.6, основной вихревой поток может оказаться энергетически не самым выгодным и иметь тенденцию если не к делению, то к образованию помимо него еще нескольких более мелких вихревых потоков, в сумме обеспечивающих меньшую суммарную энергию системы. А всякая система, как известно, стремится к состоянию наименьшей энергией. Это может происходить так же, как в описанном в [107] случе более быстрого вращения внутренней трубы, чем наружной. На рис. 7.6 поток жид кости между этими концентрическими трубами самопроизвольно разбивается У ряд тороидов, которые затем изгибаются, образуя так называемый "поток Куеттс Исследователи потока Куеттэ*(* В частности английский исследователь Тейлор.) выявили, что в нем рождаются еще и поперечные механические колебания, частота которых определяется размерами тороидов, как частота звуковых колебаний определяется размерами резонатора [107].
Рис. 7.6. Вот почему поток разбивается на полосы [107].Так появляются "супергрануляции" Солнца, имеющие размеры около 30 тысяч км, которые наблюдаются астрономами на поверхности нашего светила, и "гигантские ячейки", расположенные глубже в его конвекционной зоне и имеющие еще большие размеры. Эти гигантские ячейки и супергрануляции являются тоже огромными тороидальными вихрями, охватывающими Солнце. В них газы движутся уже по своим вихревым траекториям и препятствуют газам, дрейфующим у поверхности Солнца к его полюсу, увеличивать скорость своего вращения вокруг оси Солнца по мере их приближения к полюсу. Вместо того чтобы двигаться по сходящейся спирали к полюсу, газы сначала ныряют в вихрь гигантской ячейки и некоторое время циркулируют в ней со скоростью, определяемой уже гидродинамикой этой ячейки.
Вся эта система крупномасштабных вихревых и круговых движений в недрах Солнца испытывает еще и поперечные механические колебания, как поток Куеттэ. Следствием этих поперечных периодических колебаний является эффект "гидродинамического динамо" [6], ведущий к изменениям крупномасштабного магнитного поля Солнца с периодичностью в 22 года, при которых каждые 11 лет происходит смена полярности магнитных полюсов Солнца на противоположную.
Но самыми характерными и многочисленными вихревыми проявлениями, постоянно наблюдаемыми на поверхности Солнца, являются "мелкие грануляции" в его тосфере. В телескоп они видны как тысячи светлых точек, покрывающих поверхность Солнца. Общее число таких гранул на его диске ~ 2 o 10б. Их средний радиус О км, хотя встречаются гранулы как вдвое большие, так и вдвое меньшие [6]. мулы разделены темными промежутками шириной ~ 300 км (рис. 7.7.)
Исследования доплеровского смещения спектральных линий излучения гранул показали, что в центральной части гранулы газ движется кверху со скоростью ~1 км/сек, а затем растекается от центра к периферии гранулы. Иногда наблюдаются кольцевые гранулы, которые взрываются, просуществовав ~10 минут. Среднее же
время "жизни" гранул -8 минут [6].
Все это указывает на то, что мелкие гранулы Солнца - тоже типичные тороидальные вихри Хилла. Но отчего они появляются и почему имеют именно такие одинаковые размеры?
Астрофизики считают, что причиной появления гранул являются процессы конвекции в той среднетемпературной зоне Солнца, которая расположена между очень горячим его "ядром" со сплошной ионизацией и поверхностной фотосферой, прозрачной для лучей видимого диапазона, из которой тепло уходит уже в виде солнечного излучения [6].
Рис. 7.7. Мелкие гранулы Солнца в окрестностях солнечного пятна [119].При конвекции, как известно, нагретые газы поднимаются кверху, унося с собой тепло к поверхности, а на их место опускаются более холодные. В этом процессе существуют свои закономерности. Так, давно подмечено, что при нагреве снизу слоя воды в плоском сосуде после достижения некоторой пороговой разности температур хаотичное тепловое движение молекул воды скачкообразно сменяется на упорядоченное [76]. Сплошной слой воды при этом словно разделяется невидимыми вертикальными стенками на одинаковые, похожие на пчелиные соты, шестигранные ячейки, называемые "ячейками Бенара", высота и радиус которых равны толщине слоя воды. В каждой из этих ячеек конвекционное движение воды точно такое, как движение в описанном выше вихре Хилла: вверх в центре ячейки и вниз по ее периферии или наоборот (см. рис. 7.8).
А толстая конвекционная зона Солнца помимо этого, как полагают астрофизики [6], разбивается еще и на слои - "этажи", толщина каждого из которых такова, что в нем плотность газа изменяется по высоте в е = 2,7 раза. Например, в атмосферах планет давление убывает в е раз при изменении высоты на величину(7.4)
где - молекулярная масса газа, g - ускорение силы тяжести.
Величину He еще называют "высотой однородного слоя атмосферы" [6].
У горячего основания конвекционной зоны Солнца, где, как полагают, с увеличением глубины растет не только давление, но и температура Т, плотность газа из-за этого должна слабее изменяться с высотой. Поэтому толщина Не нижнего слоя ячеек должна быть самой большой, ячейки здесь должны быть гигантскими. В следующих над ним слоях ячейки поменьше - супергрануляции. И, наконец, в самом верхнем слое - фотосфере - образуются те мелкие ячейки - гранулы, которые мы можем непосредственно видеть в телескоп.
Казалось бы, что при таком делении толстенной конвекционной зоны на слои размер гранул самого верхнего слоя - фотосферы, равный толщине этого слоя, должен
Рис. 7.8. Вихри в дисперсных средах [76]:
а - циркуляции в вибрирующей емкости;
б- ячейки Бекара в нагреваемой жидкости.
А и - амплитуда и частота колебаний соответственно;
Т -температура.зависеть только от общей толщины всей конвекционной зоны. Но вот что странно: средний радиус мелкой гранулы (350 км) плюс половина толщины 300-километрового промежутка между соседними гранулами (то есть суммарный радиус ячейки Бенара) тут точно равен длине
(7.5)
которая в [9] была названа "звездной длиной" из-за того, что совпадает с типичным радиусом нейтронных звезд. А в нейтронные звезды, как известно, в конце своей жизни превращается большинство обычных звезд.
Определяемая как среднегеометрическое от классического радиуса электрона Rе и радиуса Вселенной R0, длина Я, может характеризовать объект, рождаемый в результате взаимодействия между нуклоном, имеющим комптоновскую длину волны ~Rе, и всей Вселенной, осуществляемого посредством гравитонов, имеющих комптоновскую длину волны, как полагают, ~R0 [9].
В нейтронных звездах плотность вещества приближается к плотности ядра атома, которая зависит, как известно, от массы и размеров нуклона. Так что радиус нейтронных звезд R. отнюдь неслучаен, о чем уже говорилось в разделе 5.1.
С другой стороны, в объеме мелкой солнечной гранулы, как и в объеме нейтронной звезды, имеющей радиус Я" вмещается ровно объемов нуклона . А если мы разделим массу Солнца, являющегося типичной желтой звездой-карликом, на массу электрона mе, то получим то же самое удивительно круглое число , на особую роль которого в природе указывалось в [8, 9]. Ведь отношение самой большой длины в природе - радиуса Вселенной Rо к самой маленькой - так называемой планковской длине L тоже равно , а отношение массы Вселенной к массе планке-она, являющегося, по мнению многих физиков, керном элементарных частиц [116], тоже равно . И, наконец, в объеме всей Вселенной вмещается ровно объемов .
Все это говорит о том, что такие размеры гранул Солнца далеко неслучайны и за этим фактом может скрываться что-то очень важное, чего мы пока не в состоянии осознать.
Впрочем, другой ответ на вопрос, почему мелкие гранулы Солнца имеют именно такие размеры, подсказывают описанные в [76] эксперименты с наложением вертикальных высокочастотных механических колебаний на плоский зернистый слой. Тут тоже появляются ячейки Бенара при достижении пороговой амплитуды колебаний частиц среды, при которой она переходит в состояние псевдосжиженного слоя. Только размеры этих ячеек тут зависят еще и от длины волны колебаний.
В [76] рассказывается, как американскими исследователями в 80-е годы было выявлено, что в недрах Солнца существуют миллионы форм акустических колебаний с самыми разными частотами. Солнце полно звуков! Только звуковые колебания в раскаленных и плотных газах Солнца распространяются со скоростями, в тысячи раз большими, чем скорость звука в воздухе, и амплитуды их там могут достигать гораздо больших величин, чем это возможно в воздухе. Поэтому Солнце можно назвать ревущим.
Эти колебания поддерживаются потоками энергии, рождаемой в Солнце. Внутренние его области представляют собой как бы целый набор самых разных акустических резонаторов, "стенками" которых являются перепады температур и плотностей между разными слоями Солнца и его структурными элементами. Случайные звуковые колебания широкого спектра частот усиливаются на некоторых частотах в таких резонаторах и приобретают упорядоченный характер. Они-то, наверно, и могут обуславливать формирование у поверхности Солнца гранул с размерами, кратными длине волны этих акустических колебаний или равными ей или ее целочисленной доли.
Не исключено, что по этой причине на Солнце нет не только более мелких, но и более крупных конвекционных ячеек, и что вообще конвекционный слой гранул является монослоем, а то, что угадывается под ним - и называется астрономами "супергрануляцией" и "гигантскими ячейками", на самом деле к конвекции отношения не имеет и является проявлениями потока Куеттэ, о котором говорилось выше в данном разделе.
Ну и, наконец, обратим внимание на то, что схема движения газов в солнечных гранулах весьма напоминает схему конвекционного восхождения воздуха в земных циклонах и тайфунах. А в них кориолисовы силы заставляют восходящий воздух закручиваться в мощные вихри, о которых мы говорили в разделе 6.1. На Солнце тоже действуют кориолисовы силы, а скорости восхождения горячих газов в гранулах в сотни раз больше, чем в земных тайфунах. Да и размеры мелких гранул по высоте в сотни раз больше толщины земной атмосферы (тропосферы). Поэтому можно предполагать, что в центрах солнечных гранул развиваются такой силы "торнадо", какие на Земле и не снились. Скорости вращения газа вокруг вертикальной оси там должны достигать десятков, а то и сотни километров в секунду! В столь мощных вихрях все те вихревые эффекты, о которых мы говорили ранее (торсионные поля, высвечивание "лишней" массы-энергии, "антигравитация" и др.), должны проявляться в тысячи раз в большей степени, чем в земных атмосферных вихрях.
До сих пор ученые полагали, что мелкие гранулы Солнца являются всего лишь проявлением конвекционных процессов при переносе тепла от внутренних областей Солнца к его поверхности [6]. Мы же приходим к выводу, что они играют более важную роль, что эти гранулы являются, по-видимому, как впервые предположено в [117], одним из важнейших структурных элементов Солнца, обеспечиващих сам процесс трансформации внутренней энергии вещества на Солнце в излучения. В мелких гранулах, а не только в глубинах Солнца, протекают, по-видимому, и ядерные реакции, необходимые для перестройки структуры вещества после потери им части массы-энергии, трансформируемой в излучение фотонов при ускорении вращения вещества в гранулах. Необходимость в этих ядерных реакциях обуславливается действием законов сохранения электрического, лептонного и барионного зарядов. Но это не обязательно должны быть высокотемпературные термоядерные реакции, о которых привыкли рассуждать астрофизики. Средне- и низкотемпературные ядерные реакции, не идущие с заметной скоростью в обычных условиях, в мощных торсионных полях солнечных вихрей становятся, по-видимому, не только возможными, но и бурно протекающими.
Гранулы Солнца являются, по-видимому, теми идеальными термоядерными реакторами, которые физики вот уже почти полвека все пытаются сконструировать на Земле. История развития проектов этих устройств (от "магнитной бутылки" Будкера до циклопических "Токамаков" показывает их постепенное приближение к схеме и размерам солнечной гранулы. Только в гранулах работают не высокотемпературные термоядерные реакции, к которым стремились физики, а другие, исследованию которых большинство физиков не уделяло достаточного внимания.
Автор теории движения в 1998 г. писал в газете: "Солнце светит потому, что вращается. Махина Солнца, как огромный жернов, "перемалывает" вещество в излучение, которое согревает всех нас" [118]. И вот мы вплотную приблизились к рассмотрению механизма работы "солнечной мельницы".
Неслучайно и В. А. Ацюковский в [112] сравнивает тороидальный вихрь кометы с мельницей, которая "перемалывает вещество до нуклонов и перестраивает ядра атомов". А далее пишет, что "внутри тороида могут происходить трансмутации атомов, чем, возможно, и объясняется элементный состав метеоритов, на которые разваливаются кометы". Как видите, сходные с нашими мысли буквально витают в воздухе.
А теперь пришла пора по-новому объяснить, почему края солнечного диска в телескоп выглядят темнее, чем его середина. Напомним: это обстоятельство считалось доказательством того, что в фотосфере Солнца и под ней температуры растут с глубиной, хотя оптические измерения показывают, что самые высокие температуры на Солнце наблюдаются именно на его поверхности: в короне до 106(10 в шестой степени) К, в хромосфере - до 104(10 в четвертой степени) К, а в лежащей под ней тонкой фотосфере, в которой формируется львиная доля доходящего до нас солнечного излучения, - только до 6 тысяч К [6]. То есть на поверхности Солнца наблюдается четкая тенденция к снижению температуры по мере углубления в его недра, какую мы видели и в вихревой трубе, где поверхностные слои газа тоже самые горячие.
Лишь общепринятая гипотеза о термоядерных реакциях в центре Солнца заставляла астрономов предположить, что под фотосферой по мере углубления в недра Солнца температура должна непрерывно возрастать до 107(10 в седьмой степени) К в его центре. Пожалуй, единственным подтверждением этого было то, что края солнечного диска выглядели темнее, чем его середина. Это объясняли тем, что на краю диска при касательном направлении луча зрения видны лишь поверхностные слои фотосферы. А коль света от них приходит меньше, то и делали вывод, что они холоднее, чем более глубокие слои.
На самом же деле причина, по-видимому, в том, что фотоны, излучаемые солнечными гранулами, как вращающимися вокруг вертикальной оси вихрями, излучаются преимущественно вдоль оси вращения вихря. (Об этом уже говорилось в разделах 7.3. и 7.4.). То есть излучение исходит преимущественно по нормали к поверхности Солнца. А у края диска Солнца нормаль к его поверхности направлена отнюдь не в сторону Земли. Потому-то в сторону земного наблюдателя от края солнечного диска летит меньше фотонов, чем от его середины.
Этот небольшой нюанс может фактически разрушить всю установившуюся, почти безупречную, но тем не менее не исключено, что ошибочную общепринятую теорию теплообразования на Солнце, в основу которой была положена гипотеза термоядерных реакций в его центре.
В почти замкнутом вихревом потоке солнечной гранулы, схема которой весьма напоминает схему движения газов в вихревой трубе Ранке, происходит не только высвечивание "лишней" массы-энергии, но и разделение газов на горячий и холодный потоки. Потому-то гранулы на Солнце и выглядят светлыми точками в темном окаймлении, что температуры и светимость газа внутри и в пограничном слое гранулы - этого огромного тороидального вихря, существенно различны (разница светимостей достигает, по данным [119], до 25%), как различны они и в вихревой трубе.Выводы к главе
1. В опытах многих исследователей обнаружено, что вес тел при вращении слегка уменьшается.
2. Поскольку торсионные поля направлены вдоль оси вращения тел, создающих эти поля, то потоки виртуальных частиц-квантов торсионного поля должны излучаться вращающимися телами вдоль осей их вращения.
3. Если торсионное поле легко ориентируют спины электронов в атомах по оси вращения тел, создающих эти поля, как утверждают Г.И. Шипов и А.Е. Акимов, то торсионные поля должны вызывать индуцированное излучение фотонов атомами, возникающее при повороте спина (интеркомбинационное излучение), направленное вдоль оси вращения.
4. Атомы вещества, генерирующие индуцированное торсионным полем интеркомбинационное излучение, должны приобретать импульс отдачи вдоль оси вращения системы и энергию направленного движения. Этим можно объяснить появление осевых сил в опытах с вращающимися гироскопами и появление противотоков в закрученных струях.
5. Если торсионные поля - это потоки низкоэнергетических нейтрино, то одновременное появление осевых потоков фотонов и нейтрино при приведении тел во вращение подтверждает утверждение Г.И. Шилова и А.Е. Акимова о том, что всякое электромагнитное излучение сопровождается торсионным излучением.
6. Спиральность нейтрино является ярчайшим подтверждением правильности утверждения
теории движения о том, что всякое движение в пространстве должно сопровождаться вращением.
7. В атомных процессах помимо двух известных проявлений несохранения четности, выявленных в конце 70-х годов новосибирскими физиками, должно существовать еще и третье,
заключающееся в том, что как и при ?-распаде, должна наблюдаться асимметрия в распределении излучаемых атомами фотонов вдоль направления спина ядра атома или оси вращения
системы, состоящей из многих атомов. Эта асимметрия может являться причиной появления
осевых сил и противотока в закрученных струях.
8. В литературе описано много экспериментальных результатов и наблюдений, подтверждающих утверждение теории движения о том, что всякое поступательное движение обязательно
сопровождается вращением. При этом тела, движущиеся в среде, приобретают правовинтовое
вращение. Можно предположить, что это обусловлено правовинтовой спиральностью излучаемых при этом нейтрино.
9. Движение потоков магмы в мантии Земли по правовинтовой спирали объясняет формирование в ней центрального противотока магмы от Северного полюса к Южному и грушевидность формы Земного шара.
10. В недрах Солнца происходит такая же глобальная циркуляция вещества, как в вихревой трубе, с центральным противотоком от полюса к полюсу, вращающимся в сторону, противоположную направлению вращения поверхностных слоев Солнца и обеспечивающим охлаждение ядра Солнца, которое, не исключено, холоднее его фотосферы.
11. Самые устойчивые в природе вихри - это тороидальные вихри Хилла, схеме которых соответствует глобальное движение вещества как в Солнце, так и в недрах Земного шара.
12. Солнце - это целая коллекция разнообразных газоплазменных вихрей.
13. Самые многочисленные и наиболее мелкие вихревые образования на Солнце - видимые в телескоп "мелкие гранулы" - тоже имеют тороидальную структуру вихрей Хилла и являются конвекционными ячейками Бенара в фотосфере Солнца.
14. Типичный радиус "мелкой" солнечной гранулы равен среднегеометрическому от классического радиуса электрона и гравитационного радиуса Вселенной и совпадает с типичным радиусом нейтронных звезд. При этом объем "мелкой гранулы", как и объем нейтронной звезды, содержит ~1060 объемов нуклона - столько же, сколько в объеме Вселенной содержится объемов нейтронной звезды. Эти совпадения, по-видимому, не случайны, а отражают объясняемую теорией движения взаимосвязь вещей в природе и взаимодействие разных полей.
15. В недрах Солнца существуют акустические резонаторы, которые усиливают рождаемые его вихрями звуковые колебания, а последние способствуют формированию в фотосфере "мелких гранул" с одинаковыми размерами.
16. Схема движения газов в "мелких гранулах" Солнца напоминает схему циркуляции воздуха в земных тайфунах, только с гораздо большими скоростями и энергиями.
17. В "мелких гранулах" Солнца происходит разделение газов на высокотемпературный поток, который выбрасывается вверх в фотосферу, и низкотемпературный, который отводится в глубь солнечных недр.
18. "Мелкие гранулы" являются важнейшим структурным элементом Солнца, обеспечивающим при ускорении вращения газов в них процесс трансформирования внутренней энергии вещества в излучение под влиянием мощных торсионных полей этих вихрей. Повидимому, именно в них, а не в центре Солнца происходят реакции ядерного синтеза, обеспечивающие тепловыделение и излучение.
19. Солнце светит потому, что вращается. Вращение его как целого и вращение множества "мелких гранул" является как бы тем катализатором, который вызывает превращение части массы солнечного вещества в энергию излучений.
Наш сайт является помещением библиотеки. На основании Федерального закона Российской федерации "Об авторском и смежных правах" (в ред. Федеральных законов от 19.07.1995 N 110-ФЗ, от 20.07.2004 N 72-ФЗ) копирование, сохранение на жестком диске или иной способ сохранения произведений размещенных на данной библиотеке категорически запрешен. Все материалы представлены исключительно в ознакомительных целях.
Copyright © UniversalInternetLibrary.ru