Электронная библиотека
Форум - Здоровый образ жизни
Акупунктура, Аюрведа Ароматерапия и эфирные масла,
Консультации специалистов:
Рэйки; Гомеопатия; Народная медицина; Йога; Лекарственные травы; Нетрадиционная медицина; Дыхательные практики; Гороскоп; Правильное питание Эзотерика


ПРЕДИСЛОВИЕ

Электротехника является важнейшей отраслью науки и техники. Электротехническая продукция широко используется в промышленности и сельском хозяйстве, на транспорте, в медицине и бытовой технике. Изучение и использование электрических и магнитных явлений, передач электроэнергии, электрических машин, аппаратов и устройств, электрического освещения, силовой электроники, электротермии, электрохимии происходило на протяжении более двух столетий и связано с деятельностью многих поколений выдающихся ученых, которая сопровождалась развитием теории, многочисленными открытиями, изобретениями и созданием все более совершенных электротехнологий.

Пионером идеи о связи электрических и магнитных явлений был русский ученый Ф.У. Эпинус (1758 г.). К первым работам в области электрического разряда относятся исследования М.В. Ломоносова и Г.В. Рихмана. Они были развиты В.В. Петровым, которому принадлежит открытие электрической дуги (1802 г.), практическая реализация которой была осуществлена П.Н. Яблочковым в изобретенной им электрической свече (1878 г.). Им же был изобретен трансформатор (1877 г.). В дальнейшем электрическую дугу для электросварки применил Н.Н. Бернадос (1882 г.) и Н.Г. Славянов (1891 г.). Почти сразу же после открытия М. Фарадеем явления электромагнитной индукции (1831 г.) академик Б.С. Якоби разработал и создал электродвигатель постоянного тока (1834 г.). В последующие десятилетия изобретения и разработки ученых Западной Европы в области машин постоянного тока приблизили их конструкцию к современной. Э.Х. Ленц (Россия) и независимо от него Д.П. Джоуль (Англия) установили закон теплового действия электрического тока (1833 и 1835 гг.). Он был использован в лампах накаливания А.Н. Лодыгиным (1873 г.). Особенно важно отметить исключительное значение работ М.О. Доливо-Добровольского — создателя систем трехфазного тока, трехфазных двигателей и трансформаторов. Ему же принадлежит идея создания трехфазной линии электропередачи протяженностью 175 км (1891 г.). Важное значение для развития электротехники в России имела организация в 1880 г. по инициативе известного русского электротехника В.Н. Чиколева журнала «Электричество». Большое значение для развития электротехники в России имела также организация в 1879 г. электротехнического отдела Русского технического общества.

Таким образом русским ученым удалось внести большой творческий вклад уже в начальную стадию развития электротехники. Работы этого времени в нашей стране и за рубежом получили достаточно полное освещение в настоящей книге.

По мере накопления и углубления знаний в области электротехники появилась необходимость их практической реализации. Создание и развитие электротехнических производств требовало со своей стороны новых идей, конструкций и производственных процессов. Все это привело к увеличению количества электротехнических заводов, особенно в конце предыдущего и начале текущего столетия. Это прежде всего относится к Западной Европе и США. В России, как слаборазвитой в промышленном отношении стране, создавались главным образом филиалы западно-европейских фирм. Положение коренным образом изменилось, когда в 1921 г. был принят план Государственной электрификации России (ГОЭЛРО). В его составлении участвовали видные электротехники страны: К.А. Круг, М.А. Шателен, А.А. Горев, B.C. Кулебакин, А.Н. Ларионов, А.А. Глазунов и др. Все работы велись под руководством Г.М. Кржижановского.

Основная идея плана состояла в индустриализации страны на базе электрификации. Предусматривалось строительство 30 электростанций. Особое внимание уделялось повышению производительности труда на базе новой техники. План был рассчитан на 10–15 лет. Для исключения зависимости нашей страны от иностранных государств была взята ориентация на развитие собственной электротехнической промышленности, как важнейшей технической базы электрификации. Опорными предприятиями стали заводы «Электросила», Московский электрозавод «Динамо» и др. В 1921 г. был образован научный и экспериментальный центр отечественной электротехники — Всесоюзный электротехнический институт (ВЭИ). Институт положил начало широкому развитию фундаментальных и прикладных исследований в области высоковольтной техники, электрической изоляции, светотехники, электромеханики. Таким образом наряду с научной работой в высших учебных заведениях получила развитие отраслевая научная деятельность. Были также созданы научно-исследовательские институты по классам электротехнических изделий и оборудования.

Дальнейшее развитие электротехники в предвоенные и послевоенные годы привело к образованию крупной экономической структуры — Министерства электротехнической промышленности.

Аналогичное укрупнение экономических структур произошло в странах Западной Европы, США, Японии и др. В качестве примера можно привести американскую фирму «Дженерал Электрик», с которой у нас было тесное научно-техническое и производственное сотрудничество, начиная со времени строительства Днепрогэса. Небольшое предприятие, организованное Т.А. Эдисоном, превратилось в крупнейшую фирму мира со своей сетью заводов, исследовательских институтов и лабораторий.

В трудных экономических условиях, переживаемых Россией в настоящее время, для подъема промышленного производства и выпуска конкурентоспособной продукции на внутреннем и внешнем рынках необходимо развитие существующих и создание новых крупных экономических структур с научно-исследовательскими институтами и проектно-конструкторскими организациями, а также коренное улучшение научной деятельности в институтах Российской академии наук и крупнейших высших учебных заведениях России. Особое значение приобретает проблема подготовки инженерных и научных кадров.

Бурное развитие электротехники в XX в. обусловлено творческой деятельностью очень большого числа специалистов. Тем не менее следует выделить среди них тех, кто внес решающий вклад в создание и развитие теории, разработку методов расчета и проектирования, новые виды производственных процессов и инженерную деятельность непосредственно на производстве.

Авторами данной книги дано последовательное изложение истории создания новых видов электротехнических изделий в мире на протяжении почти двух столетий и особенно в последнюю половину текущего столетия в связи с быстрым развитием электротехники в это время. Наряду с этим показаны конкретные творческие достижения выдающихся ученых, инженеров и специалистов производства во всем мире и особенно в России.

Краткие сведения о наиболее крупных отечественных и зарубежных ученых и специалистах в области электротехники,из числа упомянутых в книге, приведены в главе 13 «Персоналии».

Основные идеи и положения книги были предложены президиумом Академии электротехнических наук Российской Федерации (АЭН РФ) и одобрены редакционной коллегией, в которую входят выдающиеся ученые нашей страны, члены РАН и АЭН РФ, в том числе известный ученый-энергетик член-корреспондент РАН А.Ф. Дьяков. Без спонсорской поддержки РАО «ЕЭС России» издание настоящей книги было бы невозможно. В связи с этим авторы книги выражают глубокую признательность руководству РАО «ЕЭС России» за оказанную помощь.

Академия электротехнических наук планирует в дальнейшем издание электротехнической энциклопедии.

Академик РАН И.А. Глебов
Авторы глав:

Глава 1 — Я.А. Шнейберг

Глава 2 — О.Н. Веселовский, Я.А. Шнейберг

Глава 3 — О.Н. Веселовский, Я.А. Шнейберг

Глава 4 — К.С. Демирчян, В.Г. Миронов

Глава 5 — В.А. Баринов, И.М. Бортник, В.П. Васин, А.А. Глазунов, А.Ф. Дьяков, В.Д. Ковалев, В.В. Кривенков, И.П. Кужекин, В.П. Ларионов, А.К. Лоханин, РА. Лытаев, Б.К. Максимов, А.К. Михайлов, Н.И. Овчаренко, Ю.П. Рыжов, В.А. Семенов, В.А. Старшинов, Н.Н. Тиходеев, В.В. Худяков, В.В. Шматович

Глава 6 — Н.А. Акимова, В.Н. Антипов, В.Я Беспалов, Г.С. Васильев, И.А. Глебов, Н.Ф. Ильинский, И.П. Копылов, В.А. Прозоров, Ю.К. Розанов, В.В. Хрущев

Глава 7 — Н.В. Коровин, А.Б. Кувалдин, В.П. Рубцов

Глава 8 — С.В. Акимов, В.М. Амелин, Г.М. Грязное, В.Б. Елисеев, Ю.М. Иньков, В.П. Надоров, Б.И. Петленко, Ю.Ф. Подоплекин, А.В. Розанов, Ю.В. Трифонов, Ю.И. Фельдман, П.И. Щербинин

Глава 9 — А.Е. Атаев, С.М. Лебедкова

Глава 10 — И.Б. Пешков, В.А. Филиков, В.П. Чепарин

Глава 11 — С.Г. Обухов, В.И. Переводчиков, Э.Д. Шлифер

Глава 12 — В.Ю. Кончаловский, Ю.С Солодов

Глава 13 — П.А. Бутырин, В.Г Герасимов, Я.А. Шнейберг


ВВЕДЕНИЕ

Читатель, открывая эту книгу, надеется узнать что-то новое или уточнить то, что не сохранилось в памяти. Ему также полезно выяснить, когда и кем было открыто то или иное физическое явление или создано какое-то электротехническое устройство.

Данная книга посвящена истории развития и современному состоянию электротехники. Быть может, читатель, знающий современную электротехнику и электронику, подумает: а нужно ли ему знать историю электротехники? А нам хотелось бы задать ему встречный вопрос: можно ли представить хорошего музыканта, не знающего истории музыки, или художника, тоже, конечно, хорошего, не изучившего истории живописи? Наверное, читатель согласится с тем, что такого музыканта или художника представить трудно. А вот инженера, научного работника или преподавателя вуза, не знающих истории своей специальности, оказывается представить можно. Но сотни выдающихся изобретателей и ученых всем своим творчеством убедительно показали, что, зная прошлое, легче ориентироваться в настоящем и, главное, предвидеть будущее.

Знание истории развития естествознания, истории конкретной отрасли науки и техники, в частности электротехники и электроники, избавит современного специалиста от узкого технократического мышления, поможет ему повысить общую культуру и овладеть самыми современными способами производства электротехнических изделий, методами организации и управления производственными процессами. Ведь в современном взаимосвязанном, противоречивом и бурно развивающемся мире развитие науки и техники тесно связано с социальными, экономическими, историческими, экологическими процессами. И чтобы творчески решать актуальные научно-технические проблемы, специалист должен уметь глубоко осмысливать все эти сложные взаимосвязи научно-технического процесса.

Очень полезно также ознакомиться с творческим путем наиболее выдающихся деятелей науки и техники, раскрывающим логику инженерной мысли и оригинальной методологии, пути преодоления неизбежных в процессе творчества трудностей, нередко связанных не только с техническими, но и с социальными проблемами.

Только на конкретных примерах зарождения и совершенствования тех или иных электротехнических устройств можно глубже познать диалектику научно-технического процесса.

В последнее время резко возросла ответственность ученого и инженера за социальные последствия своей деятельности. Исключительное значение для современного специалиста приобретает умение изыскивать наиболее эффективные методы организации и управления производством, прогнозирования научно-технической деятельности. И в успешном решении этих проблем специалисту, несомненно, поможет хорошее знание истории развития и современного состояния электротехники и электроники.

Известно, что решающая роль в развитии современных отраслей промышленности, транспорта, сельского хозяйства и экономики страны в целом принадлежит электрификации. Под электрификацией понимается внедрение в народное хозяйство и быт электрической энергии. Сегодня нет такой области техники, где в том или ином виде не использовалась бы электрическая энергия. Под электротехникой в широком смысле слова подразумевается область науки и техники, использующая электрические и магнитные явления для практических целей.

Это общее определение электротехники можно раскрыть более подробно, выделив те основные направления, в которых используются электрические и магнитные явления: преобразование и использование энергии природы (энергетическое); преобразование веществ и материалов (технологическое); получение, передача и применение информации (информационное). Поэтому более полно понятие «электротехника» можно определить как область науки и техники, в которой используются электрические и магнитные явления для осуществления процессов преобразования энергии природы и превращения вещества, а также для передачи сигналов и информации.

В последнее столетие из электротехники выделилась промышленная электроника с тремя ее направлениями: энергетическим, технологическим и информационным, которые с каждым годом приобретают все большее значение.

В развитии электротехники условно можно выделить следующие этапы.

1. Предыстория электротехники (до 1800 г.). К этому периоду относятся первые наблюдения электрических и магнитных явлений, создание первых электростатических машин и приборов, исследования атмосферного электричества, разработка первых теорий электричества, установление закона Кулона, зарождение электромедицины.

2. Начальный этап развития электротехники (18001870 гг.). Начало этого периода ознаменовано созданием «вольтова столба» — первого электрохимического генератора, а вслед за ним «огромной наипаче батареи» В.В. Петрова, с помощью которой была получена электрическая дуга и сделано много новых открытий. Важнейшими достижениями этого периода являются открытие законов Ампера, Био и Савара, Ома, создание прообраза асинхронного двигателя, первого индикатора электрического тока (мультипликатора), установление связей между электрическими и магнитными явлениями. Одним из самых знаменательных событий этого периода явились открытие явления электромагнитной индукции и создание первого электромашинного генератора. Разрабатываются разнообразные конструкции электрических машин и приборов, открываются законы Ленца и Кирхгофа, создаются первые источники электрического освещения, первые электроавтоматические приборы, зарождается электроизмерительная техника. Однако широкое практическое применение электрической энергии было невозможно из-за отсутствия экономичного электрического генератора.

3. Становление электротехники как самостоятельной отрасли техники (18701891 гг.). Создание первого промышленного электромашинного генератора с самовозбуждением открывает новый этап в развитии электротехники, которая становится самостоятельной отраслью техники. В связи с развитием промышленности, ростом городов возникает острая потребность в электрическом освещении, начинается строительство «домовых» электрических станций, вырабатывавших постоянный ток. Электрическая энергия становится товаром. И все более остро ощущается необходимость централизованного производства и экономичной передачи электроэнергии на значительные расстояния.

4. Создание и развитие электроэнергетики, электрификации и электроники (с 1891 г.). Развивающееся производство требовало комплексного решения сложнейшей научно-технической проблемы: экономичной передачи энергии

на дальние расстояния и создания экономичного и надежного электрического двигателя, удовлетворяющего требованиям промышленного электропривода. Это решение было найдено на основе многофазных, в частности трехфазных, систем. Важнейшей предпосылкой разработки трехфазных систем явилось открытие (1888 г.) явления вращающегося магнитного поля.

В разработку трехфазных систем большой вклад сделали ученые и инженеры разных стран. Но как будет показано далее, наибольшая заслуга принадлежит М.О. Доливо-Добровольскому, сумевшему придать своим работам практический характер, создавшему трехфазные синхронные генераторы и асинхронные двигатели, трансформаторы. Убедительной иллюстрацией преимуществ трехфазных цепей была знаменитая Лауфен-Франкфуртская электропередача (1891 г.), сооруженная при активном участии М.О. Доливо-Добровольского.

С этого времени начинается бурное развитие электрификации: строятся мощные электростанции, возрастает напряжение электропередач, разрабатываются новые конструкции электрических машин, аппаратов и приборов. Электрический двигатель занимает господствующее положение в системе промышленного привода.

Процесс электрификации постепенно охватывает все новые области народного хозяйства: развиваются электротехнология, электрохимия, электротранспорт и др.

Электрическая энергия широко используется в самых разнообразных отраслях промышленности, на транспорте, в сельском хозяйстве и в быту.

Широкое применение переменного тока потребовало теоретического осмысливания и математического описания физических процессов, происходящих в электрических машинах, линиях электропередачи, трансформаторах и других электротехнических устройствах.

Рост потребности в постоянном токе (электрохимия, электротранспорт и др.) вызывает необходимость в развитии преобразовательной техники, что привело к зарождению, а затем бурному развитию промышленной электроники.

Электротехника становится базой для разработки автоматизированных систем управления энергетическими и производственными процессами.


Глава 1.
ПРЕДЫСТОРИЯ ЭЛЕКТРОТЕХНИКИ (ДО 1800 г.)

1.1. ПЕРВЫЕ НАБЛЮДЕНИЯ МАГНИТНЫХ И ЭЛЕКТРИЧЕСКИХ ЯВЛЕНИЙ

Первые наблюдения магнитных и электрических явлений относятся к глубокой древности [1.1–1.7]. О таинственных способностях магнита притягивать железные предметы упоминается в старинных летописях и легендах, дошедших до нас из Азии (Индии и Китая), Древней Греции и Рима.

Очень образное объяснение свойств магнита дано в знаменитой поэме «О природе вещей» римского поэта Лукреция (99–55 гг. до н.э.), написанной более 2 тыс. лет назад.

Из древних сказаний и летописей, относящихся ко второму тысячелетию до н.э., мы узнаем о многих интересных фактах практического использования магнита. Древние индийцы использовали магнит для извлечения железных наконечников стрел из тел раненых воинов. В китайских летописях рассказывается о волшебных магнитных воротах, сквозь которые не мог пройти человек, спрятавший металлическое оружие. При раскопках городища ольмеков (Центральная Америка) найдены скульптуры трехтысячелетней давности, высеченные из магнитных глыб.

Происхождение слова «магнит» древние ученые объясняют по-разному. По утверждению древнегреческого философа Платона (427–347 гг. до н.э.) слово «магнит» происходит от названия древнегреческой провинции Магнезии, жителей которой называли «магнетами», а камни из Магнезии — магнитами. А известный римский писатель и ученый Плиний (29–73 гг. до н.э.) в своей 37-томной «Естественной истории» ссылается на легенду о пастухе Магнесе, пасшем стада у подножия горы на о. Крите, близ которой были разбросаны загадочные черные камни, притягивавшие железные гвозди его сандалий и железный наконечник посоха. В честь Магнеса эти камни будто бы назвали магнитами, а само явление притяжения — магнетизмом.

В Китае во втором тысячелетии до н.э. уже применялись первые компасы разных конструкций. В одном из музеев хранится китайский компас тысячелетней давности, напоминающий ложку (рис. 1.1).

Небезынтересно заметить, что в XIII–XIV вв. капитаны-католики пользовались компасом тайно, опасаясь попасть на костер инквизиции, которая видела в компасе дьявольский инструмент, созданный колдунами.

Довольно широкое распространение получили легенды о мистических способностях магнитной стрелки передавать сообщения на расстоянии. Об этом выразительно рассказывает Галилео Галилей (1564–1643 гг.). Один «изобретатель» предложил ему продать «симпатическую» магнитную стрелку, посредством которой можно поддерживать связь с человеком, находящимся за 2–3 тыс. миль. «Когда я сказал, — писал Г. Галилей, — что согласен приобрести секрет, но хочу сначала испытать его на деле; причем для меня совершенно достаточно, если испытание будет произведено так, что я буду находиться в одной из комнат моего дома, а он в другой, изобретатель сказал, что на таком малом расстоянии я не смогу видеть действие его изобретения. На этом я с ним и расстался, заявив, что не чувствую никакого желания ехать в Каир или Московию для того, чтобы производить опыт, но, что если он сам пожелает туда отправиться, я согласен быть другой стороной, оставшись в Венеции».

Естественно, что древние ученые и естествоиспытатели задумывались над причиной загадочных свойств магнита. Платон, например, объяснял их божественным происхождением.

Рис. 1.1. Китайский компас

С именем одного из древних мудрецов — Фалеса (640–550 гг. до н.э.) связаны дошедшие до нас предания о свойстве натертого янтаря притягивать легкие тела. По его мнению, в янтаре, как и в магните, имеется душа, являющаяся первопричиной притяжения.

Изделия из янтаря, блестящие и красивые, широко использовались древними людьми для украшения, поэтому вполне вероятно, что многие могли заметить, что натертый янтарь притягивает легкие соломинки, кусочки тканей и пр.

Греки называли янтарь «электрон». От этого спустя много веков и произошло слово «электричество». Известно, что в одном из древнегреческих сочинений описывался камень (по-видимому, драгоценный), который, подобно янтарю, электризовался при трении. Но об электризации других тел древние греки, вероятно, не знали.

И еще одно любопытное явление не осталось незамеченным древними народами, жившими на побережье Средиземного моря и в бассейне р. Нила. Речь идет об «электрических» рыбах — скате и соме. Греки их называли «наркэ», что означает «парализующий». При соприкосновении с этими рыбами, имеющими электрические органы, человек испытывал сильные удары. Известно, что в I веке н.э. римские врачи использовали электрический скат для лечения подагры, головной боли и других болезней.

И, конечно, древние народы наблюдали грозные раскаты грома и яркие вспышки молний, внушавшие им естественный страх, но ни одному из мудрецов тех времен не могла прийти в голову мысль о том, что и притяжения натертого янтаря, и удары электрических рыб, и явления грозы в атмосфере имеют одну и ту же природу.

Упадок античной культуры заметно отразился и на изучении электрических и магнитных явлений. Из многочисленных источников следует, что практически до 1600 г. не было сделано не одного открытия в области электрических явлений, а в области магнетизма лишь описаны способы использования мореплавателями компаса (арабами в IX, а европейцами в XI в.).

В XIII в. ученым удалось установить ряд свойств магнита: существование разноименных полюсов и их взаимодействие; распространение магнитного действия через различные тела (бумагу, дерево и др.); были описаны способы изготовления магнитных стрелок, а французский ученый Пьер Перегрин (1541–1616 гг.) впервые снабдил компас градуированной шкалой.

В течение многих веков магнитные явления объясняли действием особой магнитной жидкости, и как это будет показано далее, лишь выдающийся французский физик A.M. Ампер в 20-х годах XIX в. впервые объяснил электрическую природу магнетизма.


1.2. НАЧАЛО ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ЭЛЕКТРИЧЕСТВА И МАГНЕТИЗМА

В XVI–XVII вв. в Европе все большее распространение получает экспериментальный метод научных исследований, одним из основоположников которого по праву называют Леонардо да Винчи (1452–1519 гг.). Изобретения и открытия этого «титана эпохи Возрождения» поражают своей глубиной и разносторонностью. Он был не только искуснейшим всадником, фехтовальщиком, поэтом, музыкантом, но и конструктором разнообразных машин и приборов, гениальным художником, математиком, астрономом, геологом, ботаником, анатомом, военным инженером, мыслителем-материалистом.

Его записные книжки, эскизы различных машин и механизмов насчитывают более 7 тыс. листов. Очень важно отметить, что он сумел сделать поразительный рывок в будущие века и оставил чертежи и эскизы не только летательных аппаратов и цилиндра паровой машины с поршнем, но и предсказал волновую природу света и магнетизма, что было подтверждено учеными спустя лишь около 400 лет. В одной из его записных книжек можно найти знаменательные слова: «Не слушай учения тех мыслителей, доводы которых не подтверждены опытом».

Экспериментальный метод исследований нанес заметный удар по мистицизму и разного рода вымыслам и предрассудкам.

Значительный перелом в представлениях об электрических и магнитных явлениях наступил в самом начале XVII в., когда вышел в свет фундаментальный научный труд видного английского ученого (врача английской королевы Елизаветы) Вильяма Гильберта (1554–1603 гг.) «О магните, магнитных телах и о большом магните — Земле» (1600 г.). Будучи последователем экспериментального метода в естествознании, В. Гильберт провел более 600 искусных опытов, открывших, как он писал, тайны «скрытых причин различных явлений» [1.2; 1.6].

В отличие от многих своих предшественников В. Гильберт считал, что магнитная стрелка движется под влиянием магнетизма Земли, которая является большим магнитом. Свои выводы он основывал на оригинальном эксперименте, впервые им осуществленном. Он изготовил из магнитного железняка небольшой шар — «маленькую Землю — тереллу» и доказал, что магнитная стрелка принимает по отношению к поверхности этой «тереллы» такие же положения, какие она принимает в поле земного магнетизма. Он установил возможность намагничивания железа посредством земного магнетизма.

Исследуя магнетизм, В. Гильберт занялся также и изучением электрических явлений. Он доказал, что электрическими свойствами обладает не только янтарь, но и многие другие тела: алмаз, сера, смола, горный хрусталь — электризующиеся при их натирании. Эти тела он назвал «электрическими» в соответствии с греческим названием янтаря (электрон). Но В. Гильберт безуспешно пытался наэлектризовать металлы, не изолируя их, и поэтому пришел к ошибочному выводу о невозможности электризации металлов трением. Это заключение В. Гильберта было убедительно опровергнуто спустя два столетия выдающимся русским электротехником академиком Василием Владимировичем Петровым [1.8].

В. Гильберт правильно установил, что «степень электрической силы» бывает различна, и влага снижает электризацию тел при натирании.

Сравнивая магнитные и электрические явления, В. Гильберт утверждал, что они имеют разную природу: например, «электрическая сила» происходит только от трения, тогда как магнитная постоянно воздействует на железо; магнит поднимает тела значительной тяжести, электричество — только легкие тела. Этот ошибочный вывод В. Гильберта продержался в науке более 200 лет.

Представления о том, что электрические явления обусловлены присутствием особой «электрической жидкости», аналогичной «теп-лотвору» и «светотвору», были характерны для науки того периода, когда механические взгляды на многие явления природы были господствующими.

Фундаментальный труд В. Гильберта выдержал в течение XVII в. нескольких изданий, он был настольной книгой многих естествоиспытателей в разных странах Европы и сыграл огромную роль в развитии учения об электричестве и магнетизме. Великий Г. Галилей писал о сочинениях В. Гильберта: «Я воздаю величайшую похвалу и завидую этому автору».


1.3. ОТКРЫТИЕ НОВЫХ СВОЙСТВ ЭЛЕКТРИЧЕСТВА

Одним из первых, кто, познакомившись с книгой В. Гильберта, решил получить более сильные проявления электрических сил, был известный изобретатель воздушного насоса и опыта с полушариями магдебургский бургомистр Отто фон Герике (1602–1686 гг.). В 1650 г. он изготовил шар из серы размером с детскую голову, насадил его на железную ось, укрепленную на деревянном штативе (рис. 1.2). При помощи ручки шар мог вращаться и натирался ладонями рук или куском сукна, прижимаемого к шару рукой. Это была первая простейшая электростатическая машина. О. Герике удалось заметить слабое свечение электризуемого шара в темноте и, что особенно важно, впервые обнаружить, что пушинки, притягиваемые шаром, через некоторое время отталкиваются от него — это явление ни О. Герике, ни многие его современники долго не могли объяснить. Немецкий ученый Г.В. Лейбниц (1646–1716 гг.), пользуясь машиной О. Герике, наблюдал электрическую искру — это первое упоминание об этом загадочном явлении.

Рис. 1.2. Электростатическая машина Герике 

В течение первой половины XVII в. электростатическая машина претерпела ряд усовершенствований: серный шар был заменен стеклянным (так как стекло более интенсивно электризовалось), а позднее вместо шаров или цилиндров (которые труднее было изготовить, и при нагревании они нередко взрывались) стали применять стеклянные диски. Для натирания использовались кожаные подушечки, прижимаемые к стеклу пружинками; позднее для усиления электризации подушечки стали покрывать амальгамой.

Важным новым элементом конструкции машины стал кондуктор (1744 г.) — металлическая трубка, подвешенная на шелковых нитях, а позднее устанавливаемая на изолированных опорах. Кондуктор служил резервуаром для Сбора электрических зарядов, образованных при трении. После изобретения лейденской банки ее также устанавливали рядом с машиной. В 60-х годах XVIII в. электростатическая машина приобрела основные современные черты.

Заметные успехи в изучении электрических и магнитных явлений привели к открытию ранее неизвестных фактов: обнаружению двух родов электричества и установлению законов их взаимодействия; установлению «быстроты передачи электричества»; созданию новых электрических приборов, позволявших получать и накапливать электричество в больших количествах; изучению явлений атмосферного электричества; разработке первых теорий электрических явлений.

Значительным шагом в изучении свойств электрических зарядов были исследования члена английского Королевского общества Стефана Грея (1670–1736 гг.) и члена Парижской академии наук Шарля Франсуа Дюфе (1698–1736 гг.).

В результате многочисленных экспериментов С. Грею удалось установить, что электрическая способность стеклянной трубки притягивать легкие тела может быть передана другим телам, и он показал (1729 г.), что тела в зависимости от их отношения к электричеству можно разделить на две группы: проводники (например, металлическая нить, проволока) и непроводники (например, шелковая нить).

Продолжая опыты С. Грея, Ш.Ф. Дюфе (в 1733 г.) обнаружил два рода электрических зарядов — «стеклянные» и «смоляные» и их особенность отталкивать одноименные и притягивать противоположные заряды. Дюфе также создал прототип электроскопа в виде двух подвешенных и расходящихся при их электризации нитей.

После того как было установлено разделение тел на проводники и непроводники, а опыты с электростатическими машинами получили широчайшее распространение, совершенно естественной была попытка «накопить» электрические заряды в каком-то стеклянном сосуде, который мог их сохранить:

Среди многих физиков, занявшихся подобными экспериментами, наибольшую известность получил голландский профессор из г. Лейдена Питер Мюсхенбрук (Мушенбрук) (1692–1761 гг.).

Рис. 1.3. Опыт Мюсхенбрука (со старинной гравюры) 

Зная, что стекло не проводит электричества, он (в 1745 г.) взял в правую руку стеклянную банку (колбу), наполненную водой (которая являлась проводником), опустил в нее медную проволоку, висевшую на кондукторе электростатической машины, и попросил своего помощника вращать шар машины. При этом он правильно предположил, что заряды, поступавшие с кондуктора, будут накапливаться в стеклянной банке (рис. 1.3). После того как, по его мнению, в банке накопилось достаточное количество зарядов, он решил левой рукой отсоединить медную проволоку. При этом он ощутил сильный удар, ему показалось, что «пришел конец». Он писал, что этот «новый страшный опыт советую самим никак не повторять» и что ради короны Франции он не согласится подвергнуться «столь ужасному сотрясению».

Так была изобретена лейденская банка (по названию г. Лейдена), а вскоре и первый простейший конденсатор — одно из распространеннейших электротехнических устройств. Опыт П. Мюсхенбрука произвел подлинную сенсацию не только среди физиков, но и среди многих любителей, интересовавшихся электрическими опытами. Уже в 1746–1747 гг. были разработаны первые теории лейденской банки.

Рис. 1.4. Электростатическая машина Болотова 

Одним из важнейших последствий изобретения лейденской банки явилось установление влияния электрических разрядов на организм человека, что привело к зарождению электромедицины — это было первое сравнительно широкое практическое применение электричества, сыгравшее большую роль в углублении изучения электрических явлений. Одним из пионеров в области электромедицины был известный русский ученый-энциклопедист Андрей Тимофеевич Болотов (1738–1833 гг.). В его сочинении [1.9] подробно описаны многочисленные опыты по лечению «разных болезней» с помощью созданной им оригинальной и простой электрической машины с лейденской банкой (рис. 1.4) и разнообразных инструментов. Им также были изобретены компактные складные и дорожные машины с диаметром стеклянного шара 20 см. В созданной им первой в России стационарной электролечебнице была оказана помощь тысячам больных. А.Т. Болотовым был написан «Краткий электрический лечебник» (1793 г.) и «История моего электризования и врачевания разных болезней оным» в трех томах (1792 г.).

Опыт П. Мюсхенбрука был повторен в присутствии короля французским аббатом Нолле (1700–1770 гг.); он образовал цепь из 180 гвардейцев, взявшихся за руки, причем первый держал банку в руке, а последний прикасался к проволоке, извлекая искру. Удар почувствовался всеми в один момент. От этой цепи солдат и произошел термин «электрическая цепь».

Постепенно конструкция лейденской банки совершенствовалась: воду заменили дробью, а затем наружная поверхность покрывалась тонкими свинцовыми пластинами, а позднее внутреннюю и наружную поверхности стали покрывать оловянной фольгой, и банка приобрела современный вид.

При проведении исследований с банкой было установлено (в 1746 г. англичанином Б. Вильсоном), что количество электричества, собираемое в банке, пропорционально толщине обкладок и обратно пропорционально толщине изоляционного слоя. В 70-х годах XVIII в. металлические пластины стали разделять не стеклом, а воздушным промежутком. Так появился простейший конденсатор.

Электростатические машины и лейденские банки использовались медиками в разных странах Европы. Как уже отмечалось, значительный вклад в электромедицину был сделан В.В. Петровым, который использовал для этих целей не только электростатические машины, но как это будет показано в следующей главе, и электрохимические источники, в частности созданную им «огромную наипаче» гальваническую батарею [1.6; 1.8; 2.1].

Успехи в области исследования электростатических явлений и их практического применения, достигнутые к концу XVIII столетия, подготовили почву для открытия новых, ранее не известных явлений, создания источников постоянного электрического тока и изучения его свойств. Все это привело к становлению и последующему бурному развитию электротехники.


1.4. ИЗУЧЕНИЕ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА

Важным и вполне закономерным шагом на пути изучения электрических явлений был переход от качественных наблюдений к установлению количественных связей и закономерностей, к разработке основ теории электричества. Наиболее значительный вклад в решение этих проблем был сделан петербургскими академиками М.В. Ломоносовым, Г.В. Рихманом и американским ученым Б.Франклином [1.1; 1.6; 1.10; 1.14].

Выдающийся ученый-энциклопедист XVIII в. Михаил Васильевич Ломоносов (1711–1765 гг.) явился основоположником изучения электрических явлений в России, автором первой теории электричества. При поддержке М.В. Ломоносова его коллега академик Георг Вильгельм Рихман (1711–1753 гг.) разработал в 1745 г. оригинальную конструкцию первого электроизмерительного прибора непосредственной оценки — «электрического указателя» (рис. 1.5), который принципиально отличался от уже известного электроскопа тем, что был снабжен деревянным квадрантом со шкалой, разделенной на градусы. Именно это усовершенствование, по словам Г.В. Рихмана, позволило измерять «большую или меньшую степень электричества». Для экспериментов Г.В. Рихману была предоставлена «при дворе особливая камера», которая, по-видимому, была первой отечественной электрической лабораторией. Электрический указатель М.В. Ломоносов и Г.В. Рихман использовали при создании «громовой машины» — первой стационарной установки для наблюдения за интенсивностью электрических разрядов в атмосфере (в середине XVIII в. это явление было еще совершенно неизученным).

«Громовая машина» (рис. 1.6) в принципе отличалась от «электрического змея» Б. Франклина (см. далее) и приспособлений других исследователей, так как позволяла непрерывно наблюдать за изменением электричества, содержащегося в атмосфере при любой погоде.

С помощью «громовой машины» М.В. Ломоносов и Г.В. Рихман установили, что электричество содержится в атмосфере и при отсутствии грозы, они убедительно доказали электрическую природу молнии. Описывая их эксперименты, газета «Санкт-Петербургские ведомости» (1752, № 58) сообщала: «Итак, совершенно доказано, что электрическая материя одинакова с громовою материею, и те раскаиваться будут, которые … доказывать хотят, что обе материи различны».

Рис. 1.5. Электрический указатель Рихмана
1 — деревянный квадрант с делениями; 2 — металлическая линейка; 3 — металлический шест; 4 — льняная нить
Рис. 1.6. Схема «громовой машины»
1 — электрический указатель; 2 — соединительная проволока; 3 — металлический шест на крыше дома 

Летом 1753 г. М.В. Ломоносов и Г.В. Рихман провели уникальный эксперимент и с помощью «громовой машины» доказали, что, как писала та же газета (1753, № 45),«… сие наблюдение почитается за чрезвычайное. Из сего наблюдения явствует, что … электрическая сила без действительного грому быть может. Ежели второе правда, то не гром и молния причина электрической силы в воздухе, но сама электрическая сила грому и молнии причина». Ученые при огромном стечении народа устроили пальбу из целой батареи пушек, гром «сотрясал небо», но «электрический указатель» ничего не показывал («искусством произведенный гром электрической силы не показывает»).

Выводы М.В. Ломоносова послужили одной из основ впервые разработанной им теории атмосферного электричества. На публичном собрании Академии наук в сентябре 1753 г. Г.В. Рихман, — писал М.В. Ломоносов, — «будет предлагать опыты …, а я — теорию и пользу от оной происходящую…».

Как известно, 25 июня 1753 г. во время грозы Г.В. Рихман, приблизившись к «электрическому указателю», был убит ударом в лоб «бледно-синеватым огненным шаром».

Трагическая смерть ученого послужила поводом для нападок на ученых, стремившихся проникнуть в тайны природы, со стороны духовенства и реакционных дворянских кругов. Опыты М.В. Ломоносова и Г.В. Рихмана называли кощунственными и требовали их прекратить, подчеркивая, что смерть Г.В. Рихмана — это «наказание господне за вторжение в область божью».

Но огромный научный авторитет М.В. Ломоносова и поддержка прогрессивных отечественных ученых позволили ему доказать недопустимость нанесения ущерба «славе и престижу» России, и в ноябре 1753 г. он выступил со своим знаменитым докладом «Слово о явлениях воздушных, от электрической силы происходящих», в котором (отметим, произнесенным на русском языке) впервые была изложена разработанная им строго научная материалистическая теория атмосферного электричества. По утверждению современных специалистов эта теория в своей принципиальной основе вполне соответствует современному представлению об этих явлениях. Кстати, М.В. Ломоносов подчеркивал, что он в своей теории «Франклину ничем не обязан», все у него «собственное и новое» [1.10].

По утверждению М.В. Ломоносова атмосферное электричество возникает в результате трения пылинок и других взвешенных частичек воздуха с капельками воды, происходящего при вертикальных перемещениях воздушных потоков. Он указывал, что существуют вертикальные восходящие и нисходящие потоки воздуха, которые «не токмо гремящей на воздухе электрической силы, но и многих других явлений в атмосфере и вне оной суть источник и начало».

Процесс электризации М.В. Ломоносов объяснял так: поток теплого воздуха, устремляющийся вверх (восходящий поток), увлекает за собой различные «жирные и горючие пары» и другие примеси, находящиеся в воздухе. Частицы этих паров М.В. Ломоносов называл «шаричками». Эти «шарички», по его мнению, имеют свойства, близкие к свойствам твердого тела, и не могут поэтому смешиваться с частичками воды (каплями дождя), встречающимися на их пути. В результате трения между «шаричками» и капельками воды возникают электрические заряды как на тех, так и на других. М.В. Ломоносов писал: «… жирные шарички горючих паров, которые ради разной природы с водяными слиться не могут и ради безмерной малости к свойствам твердого тела подходят, скорым встречным движением сражаются, трутся, электрическую силу рождают, которая, распространяясь по облаку, весь оный занимает».

В разработке этой теории М.В. Ломоносов ближе, чем кто-либо из его предшественников, подошел к современным теориям грозы.

М.В. Ломоносова не удовлетворяли многочисленные теории статического электричества, разработанные зарубежными исследователями, так как в большинстве из них, как он подчеркивал, «некоторые к составлению электрической теории самые нужнейшие вещи не довольно наблюдены были», и он явился инициатором объявления Академией наук конкурса на тему: «Сыскать подлинную электрической силы причину и составить точную ее теорию».

Свои воззрения на явления электричества М.В. Ломоносов сформулировал в 1756 г. в неопубликованном и сохранившемся лишь в виде тезисов труде «Теория электричества, разработанная математически путем». В отличие от большинства своих современников М.В. Ломоносов полностью отрицает существование особой электрической материи и рассматривает электричество как форму движения эфира. В его труде нет ни слова о различных субстанциях, с помощью которых многие ученые того времени пытались объяснить электрические явления. «Электрическая сила есть действие, вызванное легким трением… оно состоит в силах отталкивательных и притягательных, а также в произведении света и огня», пишет М.В. Ломоносов в своем труде.

«Эфирная» теория электричества, разработанная М.В. Ломоносовым, была передовой для своего времени; она являлась новым шагом к материалистическому взгляду на явления природы. Следует отметить, что эта теория получила дальнейшее развитие в трудах Леонарда Эйлера, а, позднее, в XIX в., ее придерживались Майкл Фарадей и другие крупнейшие ученые. М. Фарадей, например, считал электричество движением некоей заполняющей все пространство, пронизывающей все тела упругой среды.

Северные сияния, по мнению М.В. Ломоносова, также имеют электрическую природу; он рассматривал их как свечение, вызываемое электрическими зарядами в верхних слоях атмосферы.

М.В. Ломоносовым были проделаны интересные опыты со свечением разреженного воздуха в стеклянном наэлектризованном шаре. Это свечение он сравнивал с северным сиянием: «Возбужденная электрическая сила в шаре, из которого воздух вытянут, внезапные лучи испускает». Опыты М.В. Ломоносова по воспроизведению северных сияний на моделях были повторены только спустя 175 лет. Наблюдавшееся М.В. Ломоносовым свечение было по существу явлением электрического разряда в разреженном воздухе.

Рис. 1.7. Прибор Ломоносова
1 — металлический стержень с трезубцем; 2 — проволочная пружина, припаянная к металлическому кружку 

В поисках более безопасных методов измерения «электрической громовой силы» М.В. Ломоносов разработал своеобразный автоматический регистратор максимального значения грозового разряда (рис. 1.7); после удара молнии по прибору «сему увидеть можно коль велика была самая большая громовая сила». Основываясь на многочисленных опытах, М.В. Ломоносов пришел к выводу о целесообразности широкого применения громоотводов. Он писал: «Такие стрелы на местах, от обращения человеческого по мере удаленных, ставить за небесполезное дело почитаю, дабы ударяющая молния больше на них, нежели на головах человеческих и на храминах, силы свои изнуряла».

В отличие от Б. Франклина М.В. Ломоносов правильно указал на решающую роль заземления в устройстве громоотвода.

Весьма оригинальные представления о сущности электрических явлений были высказаны в уже упоминавшемся фундаментальном труде А.Т. Болотова [1.9]. Он, в частности, писал:

«… но в том сумневаться не можно, что она («электрическая материя». — Авт.) по примеру других состоит из частичек и что частичкам сим надобно быть чрезвычайной и непостижимой для нас мализны, причем эти частички способны к движению, которое происходит с непостижимой скоростью». Затем А.Т. Болотов задает вопрос: «А какой они — эти частички — фигуры, то есть формы», и отвечает, что по их действию и способности к быстрому передвижению «… догадываться только можем, что надлежит им быть только круглыми». Примечательно, что в этом произведении мы не находим стандартных упоминаний об электрической жидкости — ведь с этого начинали изложение сути электрических явлений почти все физики того времени. Отметим, кстати, что А.Т. Болотов подчеркивает, что одна и та же электрическая материя есть повсюду — ив атмосфере, и в недрах земли, и во всех телах, но не везде она находится в равных количествах и поэтому по-разному себя проявляет.

Большой вклад в изучение электрических явлений, в особенности атмосферного электричества, был сделан известным американским ученым и общественным деятелем Бенджамином Франклином (1706–1790 гг.) [1.1; 1.2; 1.6]. Им были произведены (1747–1752 гг.) многочисленные опыты по улавливанию и изучению атмосферного электричества, усовершенствован молниеотвод, разработана так называемая «унитарная» теория электричества (1747 г.). Б. Франклин высказал правильные предположения о материальном характере электричества, считая, что оно представляет собой элемент, состоящий из чрезвычайно тонких частиц. Ему удалось подойти к представлению об «электризации через влияние», т.е. к явлению электростатической индукции. Он впервые (1749 г.) экспериментально доказал электрическую природу молнии и ее тождество с уже известными свойствами «электрической жидкости». Знаменитый опыт Б. Франклина с воздушным (электрическим) змеем убедительно показал возможность «извлечения» электричества из облаков, которым он заряжал лейденскую банку подобно тому, как это осуществлялось посредством электростатической машины. Предполагается, что им впервые были введены такие термины, как «батарея», «заряд», «разряд»; он первым соорудил батарею из лейденских банок.

Среди ученых рассматриваемого периода, занимавшихся изучением электрических явлений, следует отметить чешского естествоиспытателя Прокопа Дивиша (1698–1765 гг.). Он соорудил большую электростатическую машину, предложил несколько типов молниеотводов, изучал влияние электрических разрядов на рост посевов различных культур.


1.5. УСТАНОВЛЕНИЕ СХОДСТВА И ПОДОБИЯ МЕЖДУ ЭЛЕКТРИЧЕСКИМИ И МАГНИТНЫМИ ЯВЛЕНИЯМИ

Постепенно электрические эксперименты перестают быть модными развлечениями и все более превращаются в мощное средство познания неизведанных тайн природы.

Мировую известность приобрел трактат петербургского академика Франца Ульриха Теодора Эпинуса (1724–1802 гг.) «Опыт теории электричества и магнетизма», изданный в Петербурге в 1759 г. [1.11]. Ф. Эпинус впервые указал на связь между электрическими и магнитными явлениями. К этому выводу он пришел в результате многочисленных экспериментов с электризацией кристаллов турмалина при их нагревании и охлаждении (1752 г.). Это явление позднее получило название пироэлектричества. Образование разноименных зарядов на противоположных сторонах кристаллов он уподоблял двум противоположным полюсам магнита. В своей речи на общем собрании Академии наук в 1758 г. Ф. Эпинус говорил «не только о некоем союзе и сходстве магнитной и электрической силы, но и сокровенном обеих сил точном подобии» и, будто испугавшись дерзости своих мыслей о «подобии» этих различных — по утверждениям многих его современников — явлений, он в конце речи добавил: «Но я таким образом заключать не отважусь». И не удивительно, прошло почти три четверти столетия, пока «сходство и подобие» электрических и магнитных явлений было убедительно доказано М. Фарадеем.

Независимо от Ф. Эпинуса итальянский ученый Джамбаттиста Беккария (1716–1781.гг.) в 1758 г. выдвинул гипотезу о существовании тесной связи между «циркуляцией электрического флюида и магнетизмом».

Ф. Эпинусу принадлежит открытие явления электростатической индукции; он впервые отверг утверждение Б. Франклина об особой роли стекла в лейденской банке и применил плоский конденсатор с воздушной прослойкой. Он правильно утверждал, что чем меньше расстояние между обкладками банки и чем больше их поверхность, тем выше «степень электричества».

Предполагая, что «сила электрического потрясения» зависит главным образом от степени «сгущения электрической жидкости», Ф. Эпинус близко подошел к понятиям о потенциале и емкости. Ф. Эпинусом были поставлены эксперименты, воспроизводящие явления, имеющие место в приборе, названном позднее «электрофором». Изобретение электрофора обычно приписывают А. Вольта, но сам А. Вольта отмечал, что Ф. Эпинус осуществил на практике идею электрофора, «хотя и не сконструировал законченного лабораторного прибора».

В своем сочинении Ф. Эпинус предложил теорию электрических и магнитных явлений, которая основывалась на существовании электрической и магнитной жидкостей. Заслуживает внимания его попытка впервые применить математические расчеты для характеристики взаимодействия заряженных тел. При этом он задолго до Кулона высказал предположение о том, что силы взаимодействия электрических и магнитных зарядов изменяются обратно пропорционально квадратам расстояния между ними. Ф. Эпинусом также была высказана правильная мысль о сохранении количества электричества: для увеличения «количества электрической материи» в одном теле ее «неизбежно нужно взять вне его и, следовательно, уменьшить ее в каком-либо другом теле».

Говоря о возникновении понятий «потенциал» («напряжение») и «емкость», необходимо отметить большой вклад выдающегося итальянского физика Алессандро Вольта (1745–1827 гг.) [1.1; 1.6; 1.12]. Его по праву можно назвать основателем электрической метрологии. В ряде своих работ (1778–1782 гг.) он четко формулирует количественные зависимости между электрическим зарядом, емкостью и напряжением. «Когда емкость больше, то данное количество электричества вызывает меньшее напряжение… емкость и электрическое действие, или напряжение, находятся в обратном отношении». Причем под термином «напряжение» он понимает интенсивность «или усилие, производимое каждой точкой наэлектризованного тела». А. Вольта создал более совершенные электрофоры и электроскопы, в частности конденсаторный электроскоп.

Среди ряда теорий электричества, разработанных в XVIII в., заслуживает внимания теория петербургского академика Леонарда Эйлера (1707–1783 гг.) — одного из выдающихся ученых своего времени. Подобно М.В. Ломоносову Л. Эйлер отрицал существование особой электрической материи и считал, что электрические явления обусловлены разрежением и сгущением эфира. Эта теория является дальнейшим развитием идей М.В. Ломоносова и приближается к эфирным теориям электричества XIX в. Л. Эйлером описана также и одна из конструкций электростатической машины (1761 г.), от которой заряжалась лейденская банка.

Углубление исследований в области статического электричества не могло не привести к опровержению ряда ошибочных выводов, сделанных физиками в начальный период изучения явления электричества. Одним из таких ошибочных выводов было, как уже отмечалось, утверждение о невозможности электризации металлов трением.

В конце XVIII в. ряд европейских ученых, а также В.В. Петров приходят к заключению о том, что металлы могут быть наэлектризованы посредством трения при условии их тщательной изоляции. Наиболее убедительно это было доказано В.В. Петровым в его труде, изданном в 1804 г. [1.8]. Он показал, что особенно эффективным способом электризации металлов является «стегание» их выделанным мехом некоторых животных; он разработал ряд новых методов электризации различных тел, а также установил влияние влажности окружающего воздуха на интенсивность электризации. Эти выводы В.В. Петрова, а также его указание на неустойчивость явления электризации тел подтверждены современными исследованиями.

Заслуживает внимания утверждение В.В. Петрова о возможности электризации человеческого тела посредством «стегания». Это позволяло врачам (он подчеркивает это в своем труде) применять электролечение без установки электростатической машины, которую не всякий медик мог иметь в своем распоряжении.

Результаты опытов по электризации тканей, осуществленных В.В. Петровым, привели его к созданию электрофора оригинальной конструкции, в котором основание из смолы было заменено тщательно просушенной «мягкой байкой», сложенной в четыре слоя. Ученый провел целую серию новых экспериментов по электризации ртути и других веществ посредством трясения их в стеклянных сосудах.

В.В. Петров специально изучал явления статического электричества в разреженном воздухе и атмосфере различных газов. С этой целью он построил совершенно оригинальную электростатическую машину (рис. 1.8), помещавшуюся под колоколом воздушного насоса. Установленный там же термометр позволял исследовать электрические разряды при разных температурах [1.8].

В частности, В.В. Петров убедительно подтвердил возрастание электрической проводимости воздуха при его нагревании; обнаружил образование оксидов азота при электрических разрядах в воздухе.

Рис. 1.8. Электростатическая машина Петрова 

В последней четверти XVIII в. начинает все более проявляться новый образ мышления ученых, исследующих электрические и магнитные явления. Сделанные еще в 40–50-х годах М.В. Ломоносовым и Г.В. Рихманом первые шаги от качественных наблюдений к установлению количественных закономерностей вызывают все больший интерес. Возможность перехода к количественным исследованиям обусловливалась как успехами математики, так и совершенствованием измерительных устройств.

Как уже отмечалось, Ф. Эпинус пытался аналитически определить силу взаимодействия электрических зарядов. Вслед за ним английский ученый Генри Кавендиш (1731–1810 гг.) в своей статье (1771 г.) указывал на то, что притяжение двух электрических зарядов обратно пропорционально расстоянию в степени меньше третьей. В 1766 г. англичанин Т. Лейн изобрел новый тип электрометра, представлявшего собой разрядник с градуированием расстояния между электродами. С помощью такого электрометра можно было по расстоянию, при котором происходил пробой, определять напряжение электростатической машины. Известны также попытки физиков найти закон магнитного действия.

Важнейшим шагом в развитии количественных исследований электрических и магнитных явлений было установление закона о силе взаимодействия между наэлектризованными телами и магнитными полюсами. Этими вопросами занимались многие ученые (Ф. Эпинус, Г. Кавендиш и др.), высказавшие предположение о «законе обратных квадратов».

Но наибольших успехов сумел достичь французский военный инженер Шарль Огюстен Кулон (1736–1806 гг.). В течение нескольких лет он проводил эксперименты с помощью прибора, который вначале был предназначен для изучения законов закручивания шелковых и волосяных нитей, а также металлических проволок. В 1785 г. Ш. Кулон установил, что «сила кручения пропорциональна углу закручивания». Он решил использовать этот прибор для измерения «малых электрических и магнитных сил». Прибор позволял измерять «мельчайшие степени силы», и Ш. Кулон назвал его «крутильными весами» (рис. 1.9) [1.1; 1.2; 1.6].

В результате многочисленных экспериментов он установил, что сила взаимодействия наэлектризованных тел пропорциональна «количеству электричества» (этот термин был им впервые введен в науку) заряженных тел и обратно пропорциональна квадрату расстояния между ними. При этом в любой точке поверхности сила направлена перпендикулярно к этой поверхности. Так был открыт Ш. Кулоном знаменитый закон, носящий его имя. Этот закон Ш. Кулон распространил и на взаимодействие магнитных полюсов.

Рис. 1.9. Крутильные весы Ш. Кулона
1 — микрометрический круг с указателем и зажимом для подвешивания металлической нити 2, на которой висит стрелка 3 с бузиновым шариком; 4 — неподвижный бузиновый шарик, заряжаемый электрическим зарядом 

Ш. Кулон аналитически и экспериментально доказал, что электричество распространяется по поверхности проводника, а также равномерно распределяется по поверхности изолированной проводящей сферы. Исследования Ш. Кулона способствовали применению математического анализа в теории электричества и магнетизма, распространению математического понятия потенциала (ранее введенного в механику) на электрическое и магнитное поля.

СПИСОК ЛИТЕРАТУРЫ

1.1. Кудрявцев П.С. История физики. М: Учпедгиз, М., 1948; т. 2, 1956.

1.2. Лебедев В. Электричество, магнетизм и электротехника в их историческом развитии. Дофарадеевский период. М. — Л.: Гостехиздат, 1937.

1.3. Кузнецов Б.Г. История энергетической техники. М. — Л.: Гостехиздат, 1937.

1.4. Белькинд Л.Д., Конфедератов И.Я., Шнейберг Я.А. История техники. М.: Госэнергоиздат, 1956.

1.5. История энергетической техники / Л.Д. Белькинд, О.Н. Веселовский, И.Я. Конфедератов, Я.А. Шнейберг. М.: Госэнергоиздат, 1960.

1.6. Веселовский О.Н., Шнейберг Я.А. Очерки по истории электротехники. М.: Изд-во МЭИ, 1993.

1.7. Карцев В.П. Магнит за три тысячелетия. М.: Энергоатомиздат, 1988.

1.8. Петров В.В. Новые электрические опыты. СПб., 1804.

1.9. Болотов А.Т. Краткие и на опытности основанные замечания о электрицизме и о способности электрических махин к помоганию от разных болезней. СПб., 1803.

1.10. Ломоносов М.В. Избранные философские произведения. М.: ГосПолитиздат, 1950.

1.11. Эпинус Ф.У. Опыт теории электричества и магнетизма. СПб., 1759.

1.12. Льоцци М. История физики. М.: Мир, 1970.

1.13. Околотин B.C. Вольта. М.: Молодая гвардия, 1986.

1.14. История энергетической техники СССР. М.: Госэнергоиздат, 1957.


Глава 2.
НАЧАЛЬНЫЙ ЭТАП РАЗВИТИЯ ЭЛЕКТРОТЕХНИКИ
(1800–1870 гг.)

2.1. ИССЛЕДОВАНИЯ ЛУИДЖИ ГАЛЬВАНИ

В течение многих столетий вплоть до последней четверти XVIII в. ученым были известны только явления статического электричества. Промышленный переворот в XVIII в. дал мощный толчок развитию различных отраслей науки, в том числе науки об электричестве. Как уже отмечалось в гл. 1, в изучении электрических явлений были достигнуты определенные успехи, ими начинают все более интересоваться не только физики, но и естествоиспытатели, в особенности врачи, пытавшиеся (и небезуспешно!) применять электричество для лечебных целей.

Отдельные ученые высказывали предположения, что если «вся природа электрическая», то и в организмах человека и животных по жилам и мускулам должна протекать эта таинственная материя. Одним из подтверждений указанных воззрений были электрические рыбы, известные еще с древних времен. Так возникло представление о новом виде электричества, названном «животным».

И не случайно исследованием мышечных движений лягушек занялся в 1773 г. профессор анатомии Болонского университета Луиджи Гальвани (1737–1798 гг.). Первые электрофизиологические опыты Л. Гальвани над лягушками относятся к 1770 г. Спустя 11 лет он опубликовал результаты своих исследований в знаменитом «Трактате о силах электричества при мышечном движении», получившем широкую известность [1.6; 1.12].

Во время одного из экспериментов, когда препарированная лягушка лежала на столе, на котором находилась электростатическая машина, Л. Гальвани заметил, что если прикоснуться скальпелем (или любым проводником) к бедренному нерву лягушки в момент, когда из кондуктора машины извлекается искра, то мышцы лягушки судорожно сокращаются. Естественно было предположить, что и атмосферное электричество должно действовать аналогично. И, действительно, при возникновении молнии мышцы лягушки сокращались. Желая выяснить, какие явления будут наблюдаться при ясной погоде, Л. Гальвани прикрепил медный крючок к железным перилам балкона. Прижимая другой конец крючка к перилам, он снова наблюдал сокращение мышц. Подозревая, что состояние атмосферы не действует на лягушку, он повторил эксперимент в своей домашней лаборатории: положив препарированную лягушку на металлическую обшивку стола и прижав медный крючок, продетый через спинной мозг лягушки, к столу, он снова увидел сильные сокращения. Однако после замены одного из металлов непроводником сокращений не происходило. Но сокращения были «энергичнее и продолжительнее», если лягушка лежала не на железном листе, а на серебряной пластине.

Л. Гальвани сделал правильное предположение о том, что сокращение мышц вызывается действием электрических сил, что мышцы и нервы образуют как бы две обкладки лейденской банки. Но нужно было решить очень важный вопрос: как и где во всех этих опытах возникает электричество? Ни железная пластинка, ни медный крючок, соприкасавшиеся с телом лягушки, не могли, по представлениям физиков того времени, служить источником электричества, так как на металлы смотрели только как на проводники, считая, что они могут становиться «электрическими» лишь через прикосновение к другим, наэлектризованным телам; тогда оставалось предположить, что таким источником является сама лягушка. Все это создавало почву для представлений о существовании особого — «животного» электричества; такую мысль и высказал Л. Гальвани для объяснения наблюдавшихся им фактов. Этому предположению Л. Гальвани придал форму теории, изложенной в упомянутом «Трактате о силах электричества при мышечном движении». Тело животного являлось, согласно взглядам Л. Гальвани, своеобразной лейденской банкой, способной на непрерывное повторное действие.

Опыты Л. Гальвани вызвали большой интерес. Среди физиологов стала еще больше, чем ранее, укрепляться мысль об электричестве как удивительном новом средстве для исцеления. Что касается физиков, то их взгляды на явления, наблюдавшиеся Л. Гальвани, разошлись. Одни соглашались с Л. Гальвани и считали, что «гальваническое», или «животное», электричество имеет совершенно иную природу, чем электричество трения; другие отождествляли оба вида электричества; наконец, третья группа физиков оспаривала вообще существование «животного» электричества. К этой группе принадлежал профессор физики в Павийском университете Алессандро Вольта.


2.2. СОЗДАНИЕ ПЕРВОГО ИСТОЧНИКА ЭЛЕКТРИЧЕСКОГО ТОКА

В течение нескольких лет (1792–1795 гг.) А. Вольта не только повторил все опыты Л. Гальвани, но и произвел ряд новых исследований. И если Л. Гальвани искал причину обнаруженных им явлений как физиолог, то А. Вольта, будучи физиком, искал в них физические процессы [1.1; 1.6; 1.12; 1.13].

А. Вольта прежде всего обратил внимание на факт, уже известный Л. Гальвани, что сокращения мышц наиболее интенсивно происходят при использовании двух разнородных металлов. Продолжая исследования, он отверг идеи Л. Гальвани о «животном» электричестве и пришел к выводу, что источником электричества является контакт двух разнородных металлов: «Металлы не только прекрасные проводники, но и двигатели электричества», — утверждал А. Вольта. А «… лягушка, приготовленная по способу Гальвани, есть чувствительнейший электрометр» [1.1; 1.2].

Обобщением исследований А. Вольта была предложенная им теория «контактного электричества». Эта теория утверждала, что при соприкосновении различных металлов происходит разложение их «естественного» электричества; при этом электричество одного знака собирается на одном металле, а другого — на другом. Силу, возникающую при контакте двух металлов и разлагающую их «естественное» электричество, А. Вольта назвал электровозбудительной, или электродвижущей силой; эта сила «перемещает электричество так, что получается разность напряжений» (между металлами. — Авт.) [1.2].

Произведя исследование этого вопроса при помощи созданного им весьма чувствительного прибора — электроскопа с конденсатором, А. Вольта установил, что металлы можно распределить в некоторый ряд, в котором «разность напряжений» между двумя металлами будет тем больше, чем дальше они расположены один от другого.

С современной точки зрения совершенно очевидна ошибочность идеи Вольта о возможности получения электрического тока посредством простого контакта разнородных металлов, т.е. получения электрической энергии без затраты для этого какого-либо другого вида энергии. Однако в начале прошлого века эта теория контактного электричества нашла много сторонников и на некоторое время удержалась в науке.

Многочисленные эксперименты привели А. Вольта к выводу, что непрерывный электрический «флюид» может возникнуть лишь в замкнутой цепи, составленной из различных проводников — металлов (которые он называл проводниками первого класса) и жидкостей (названных им проводниками второго класса).

Опыты А. Вольта завершились построением в 1799 г. первого источника непрерывного электрического тока, составленного из медных и цинковых кружков (пар), переложенных суконными прокладками, смоченными водой или кислотой. Этот прибор, о котором он впервые сообщил президенту Лондонского королевского общества в марте 1800 г., был назван им «электродвижущим аппаратом», а позже французы стали его называть «гальваническим или вольтовым столбом» (рис. 2.1).

Рис. 2.1. Вольтов столб

Необходимость применения проводников второго класса (суконных кружков, смоченных водой или кислотой) А. Вольта объяснял следующим: при соприкосновении двух различных металлов электричество одного знака сосредоточивается на одном металле, а электричество противоположного знака — на другом. Если составить столб из нескольких пар различных металлов, например цинка и серебра (без прокладок), то каждая цинковая пластина будет находиться в соприкосновении с одинаковыми серебряными пластинами и их общее действие будет взаимно уничтожаться. Для того чтобы действие отдельных пар суммировалось, необходимо обеспечить соприкосновение каждой цинковой пластинки только с одной серебряной. Это осуществляется с помощью проводников второго рода — суконных кружков, смоченных водой или кислотой, разделяющих пары металлов и не препятствующих движению электричества. Таким образом, А. Вольта, не понимая того, что электрический ток возникает в результате химических процессов между металлами и жидкостями, практически пришел к созданию гальванического элемента, действие которого основывалось именно на превращении химической энергии в электрическую. Хотя А. Вольта и заметил, что поверхности приведенных в контакт разнородных металлов, составляющих гальваническую пару, подвергаются изменению — окисляются, тем не менее он не придал этому факту никакого значения.

Рис. 2.2. Чашечная батарея Вольта 

А. Вольта предложил кроме столба еще и несколько иную конструкцию источника электрического тока — так называемую чашечную батарею (рис. 2.2), действие которой, по его мнению, также было основано на контакте между двумя металлами (влажную суконную прокладку столба заменяла жидкость). Чашечная батарея представляла собой соединение отдельных элементов, имевших форму банок, наполненных разбавленной серной кислотой, в которую погружались одна медная и одна цинковая пластины. Кроме предложенных А. Вольта конструкций источника электрического тока вскоре были разработаны некоторые другие его модификации.

Создание вольтова столба подготовило почву для закладки фундамента электротехники. Современник А. Вольта, выдающийся французский ученый академик Доменик Франсуа Араго (1786–1853 гг.) считал вольтов столб «самым замечательным прибором, когда-либо изобретенным людьми, не исключая телескопа и паровой машины». В этом определении нельзя усматривать преувеличения. Вольтов столб — это первый источник непрерывного электрического тока, сыгравший громадную роль как в развитии науки об электричестве, так и в расширении его практических приложений. Вольтов столб в различных своих модификациях долгое время оставался самым распространенным источником электрического тока. Как будет видно из последующего, крупнейшие ученые первой половины XIX в. В.В. Петров, X. Дэви, А. Ампер, М. Фарадей широко применяли вольтов столб для своих опытов.

Научный вклад итальянского ученого был высоко оценен его современниками. Легенды об А. Вольта ходили среди ученых уже при его жизни. Создав вольтов столб, А. Вольта подарил миру, как писал один из его биографов, «невиданный ранее источник электричества, не порциями, как от банок и электрофоров, а непрерывным потоком».

Заслуживают внимания трактат А. Вольта «Об идентичности гальванического и электрического флюидов», его высказывания о «сходстве» электричества и магнетизма.

Современники называли А. Вольта самым великим физиком, жившим в Италии после Галилея. В 1881 г. на Международном конгрессе электриков в Париже единице напряжения было присвоено наименование «Вольт».


2.3. ОБНАРУЖЕНИЕ И ИЗУЧЕНИЕ ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

Первые же опыты с электрическим током[1] не могли не привести к открытию некоторых присущих ему свойств. Поэтому рассматриваемый период в истории электричества характеризуется главным образом обнаружением и изучением различных действий электрического тока. Исследования электрического тока, производившиеся в большом масштабе в первые годы XIX в., привели к открытию химических, тепловых, световых и магнитных его действий.

В 1800 г. вскоре после получения известия об изобретении вольтова столба члены Лондонского Королевского общества Антони Карлейль (1768–1840 гг.) и Вильям Никольсон (1753–1815 гг.) [1.6] произвели ряд опытов с вольтовым столбом, которые привели их к открытию нового явления: при прохождении тока через воду имело место выделение газовых пузырьков; исследовав выделявшиеся газы, они правильно установили, что это кислород и водород. Таким образом впервые был осуществлен электролиз воды. Вскоре после опубликования работ А. Карлейля и В. Никольсона (июль 1800 г.) немецкий физик Иоганн В. Риттер (1776–1810 гг.) также осуществил разложение воды током. После открытия действия тока на воду ряд ученых заинтересовался вопросом о том, к каким результатам приведет пропускание тока через другие жидкости. В том же 1800 г. голландский химик Вильям Крейкшенк (1745–1800 гг.), пропуская ток через раствор поваренной соли, получил на отрицательном полюсе едкий натр, не подозревая, что здесь имела место вторичная реакция: поваренная соль разлагалась на Na и Сl, причем натрий, жадно соединяясь с водой, образовывал едкий натр.

Указанные эксперименты положили начало исследованию химических действий гальванического тока, получивших впоследствии важное практическое применение.

Тепловые действия тока были обнаружены в результате накаливания тонких металлических проводников и воспламенения посредством искр легко воспламеняющихся веществ. Световые явления наблюдались в виде искр различной длины и яркости.

В 1802 г. итальянский ученый Джовани Д. Романьози (1761–1835 гг.) обнаружил, что электрический ток в проводнике вызывает отклонение свободно вращающейся магнитной стрелки, находящейся вблизи этого проводника. Однако тогда, в первые годы изучения электрического тока, явление, открытое Д. Романьози, имевшее, как впоследствии выяснилось, громадное значение, не получило должной оценки. Только позднее, в 1820 г., когда наука об электричестве достигла более высокого уровня, магнитное действие тока, описанное датским физиком Гансом Христианом Эрстедом (1777–1851 гг.), стало предметом глубокого и всестороннего изучения.

Среди многочисленных исследований явлений электрического тока, произведенных в первые годы после построения вольтова столба, наиболее выдающимися были труды первого русского электротехника, профессора физики Санкт-Петербургской Медико-хирургической Академии, академика Василия Владимировича Петрова (1761–1834 гг.), так как в них впервые была показана и доказана возможность практического применения электричества [2.1; 2.2; 2.20].

Поистине трагическая судьба постигла этого выдающегося ученого, который в истории русской физики, по словам бывшего президента Академии наук СССР академика СИ. Вавилова, по значению своих трудов «непосредственно следует за М.В. Ломоносовым». Какими же заслугами нужно было обладать сыну скромного приходского священника в г. Обояни (Курской губернии), чтобы удостоиться звания академика Петербургской Академии наук, значительная часть членов которой имела знатное происхождение, а многие были иностранцами. Несмотря на то что В.В. Петров был не только талантливым физиком и химиком, но и блестящим педагогом, основателем первого крупного физического кабинета, «превосходнейшего во всей Российской империи», он постоянно испытывал враждебное отношение официальных кругов. После смерти В.В. Петрова делается все для того, чтобы имя его было забыто. И это удалось. Целое поколение русских физиков в течение полувека (1834–1886 гг.) ничего не знали о своем выдающемся соотечественнике. И только в 1886 г. был обнаружен его главный труд «Известия о гальвани-вольтовских опытах» (СПб., 1803). Книга вызвала огромный интерес. Видные физики выступают с докладами о вкладе В.В. Петрова в отечественную электротехнику, в 1887 г. в журнале «Электричество» появляется первая статья о забытом русском электротехнике.

В 30-х годах нашего века были проведены более полные исследования трудов В.В. Петрова, а в 1935 г. Президиум ЦИК СССР принял постановление «Об ознаменовании столетия со дня смерти первого русского электротехника академика В.В. Петрова». В своих трудах по электричеству В.В. Петров собрал обширный опытный материал, который им был тщательно проанализирован. В.В. Петров глубоко понимал значение эксперимента для всестороннего изучения явлений природы. Он писал: «… гораздо надежнее искать настоящего источника электрических явлений не в умствованиях, к которым доселе только прибегали почти все физики, но в непосредственных следствиях самих опытов».

Будучи хорошо знакомым с опытами, производящимися с вольтовым столбом как в России, так и за границей, В.В. Петров пришел к правильному выводу о том, что наиболее полное и всестороннее изучение гальванических явлений возможно только при условии создания большой батареи, т.е. по современной терминологии источника электрической энергии высокого напряжения. Поэтому он добивается у руководства Медико-хирургической Академии выделения средств для постройки «такой огромной величины батареи, чтобы оною можно было надежнее производить такие новые опыты», каких не производил никто из физиков.

Рис. 2.3. Примерное расположение и соединение элементов в батарее Петрова 

В апреле 1802 г. батарея В.В. Петрова, состоявшая из 4200 медных и цинковых кружков, или 2100 медно-цинковых элементов (В.В. Петров называл ее «огромная наипаче батарея»), была готова. Она располагалась в большом деревянном ящике, разделенном по длине на четыре отделения (рис. 2.3). Стенки ящика и разделяющих его перегородок были покрыты сургучным лаком. Общая длина гальванической батареи В.В. Петрова составляла 12 м — это был крупнейший в мире источник электрического тока. Как показали современные экспериментальные исследования с моделью батареи В.В. Петрова, электродвижущая сила этой батареи составляла около 1700 В, а максимальная полезная мощность 60–85 Вт. Ток короткого замыкания батареи не превышал 0,2 А. В.В. Петров вначале производил, как он указывал, уже известные опыты других физиков, а потом старался производить и такие опыты, «… о которых дотоле не имел … никакого известия».

Долгое время точная дата первых экспериментов с «огромной наипаче батареей» была неизвестна. Но в 1950 г. была обнаружена статья в журнале «Северный вестник» (1804 г.), в которой указывается дата первых публичных опытов В.В. Петрова — 1802 г. (рис. 2.4) [2.2].

Свои разнообразные опыты В.В. Петров подробно описал в своем труде — первой книге на русском языке, посвященной исследованиям в области гальванизма «Известие о галвани-вольтовских опытах …» (рис. 2.5).

Следует отметить, что и за границей не только до выхода в свет книги В.В. Петрова, но и в течение двух десятилетий после ее публикации не появилось не одного оригинального сочинения, в котором были бы с такой полнотой освещены явления электрического тока.

В.В. Петрову было хорошо известно, с каким интересом относятся в России к изучению явлений электрического тока. Поэтому он в своей книге подробно описал не только опыты с гальванической батареей, но и способы ее изготовления, ухода за ней, методику экспериментов и т.п. Важно подчеркнуть, что книга написана на русском языке, в первую очередь для тех русских людей, которые не владеют иностранными языками и живут в «отдаленных от обеих столиц местах».

Рис. 2.4. Страница из журнала «Северный вестник»
Рис. 2.5. Титульный лист книги В.В. Петрова

В книге В.В. Петрова описаны его опыты по электролизу различных жидкостей, исследованию явлений прохождения электрического тока в разреженном воздухе, наблюдению «светоносных» явлений, сопровождающих действие электрического тока, изучению тепловых действий тока.

В.В. Петров впервые подошел к пониманию того, что действие батареи основано на химических процессах, происходящих в гальваническом элементе медь — цинк, и правильно установил роль крайних металлических кружков, которые служили лишь проводниками электричества. В.В. Петров также верно указал на то, что окисление поверхности металлических кружков вызывает ослабление действия батареи.

Петровым была впервые установлена важнейшая закономерность в электрической цепи — зависимость тока в проводнике от площади поперечного сечения проводника. Он правильно указал на то, что при увеличении площади поперечного сечения проводника ток в нем возрастает. Поэтому В.В. Петров раньше всех предшественников Г. Ома, сформулировавшего в 1826 г. известный закон, носящий его имя, установил, что через вещества, обладающие большим сопротивлением, гальвани-вольтовская жидкость (так он называл электрический ток. — Авт.) может протекать лишь тогда, когда «количество ее весьма знатно увеличится», т.е. по современной терминологии при повышении напряжения в цепи. Термин «сопротивление» впервые введен в электротехнический язык В.В. Петровым.


2.4. ОТКРЫТИЕ ЭЛЕКТРИЧЕСКОЙ ДУГИ И ЕЕ ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ

Наибольший интерес из всех работ В.В. Петрова представляет открытие им в 1802 г. явления электрической дуги между двумя угольными электродами, соединенными с полюсами созданного им источника высокого напряжения. Создание источника высокого напряжения явилось необходимым условием для получения устойчивой электрической дуги при небольших токах. Указывая на возможность широкого практического применения электрической дуги, В.В. Петров писал, что пламенем дуги «темный покой довольно ясно освещен быть может», что в пламени дуги различные «металлы иногда мгновенно расплавляются, сгорают…», что «посредством огня» дуги он превращал оксиды различных металлов в «металлический вид». Следовательно, опыты В.В. Петрова давали прямое указание на возможность применения электричества для целей освещения, плавки металлов и восстановления металлов из их оксидов.

Широкая практическая реализация этих прогрессивных идей В.В. Петрова началась лишь спустя 75–80 лет. Но ни изобретатель первой широко распространенной дуговой электрической лампы («электрические свечи») П.Н. Яблочков, ни изобретатели электросварки и электроплавки металлов Н.Н. Бернардос и Н.Г. Сла-вянов ничего не знали о трудах В.В. Петрова, имя и труды которого, как уже упоминалось, в течение полувека после его смерти умышленно замалчивались реакционным руководством Министерства просвещения и Академии наук России. А открытие электрической дуги приписывалось X. Дэви, и она была известна под названием «вольтовой дуги», хотя А. Вольта к ее открытию не имел никакого отношения.

До В.В. Петрова никто так ясно и четко не указывал на возможность практического применения электричества. Поэтому В.В. Петров является одним из основоположников электротехники.

До В.В. Петрова физики не могли наблюдать явления дуги, так как они использовали небольшие гальванические батареи, состоявшие большей частью из 100–200 элементов; ЭДС таких батарей были недостаточны для получения устойчивой дуги при огромных внутренних сопротивлениях батарей того времени. Известному английскому ученому Хэмфри Дэви (1778–1829 гг.) удалось получить электрическую дугу только в 1808 г., когда им была построена большая гальваническая батарея, состоявшая из 2000 элементов. Подробное описание явления электрической дуги X. Дэви дал в 1812 г., при этом он сам ни в какой степени не претендовал на первенство в открытии этого явления.

В.В. Петровым было положено начало всестороннему исследованию явлений электрического разряда в вакууме. Он установил зависимость этих явлений от материала, формы и полярности электродов, расстояния между ними и степени вакуума. Позднее эти выводы получили подтверждение и развитие в трудах других ученых, в частности М. Фарадея.

Пропуская электрический ток через разные жидкости и тела, В.В. Петров внимательно исследовал влияние материала и формы электродов на протекающие процессы; он применял самые разнообразные электроды: железные, серебряные, медные, оловянные, золотые, древесно-угольные, графитовые, марганцевые и др. В.В. Петровым была правильно определена степень электропроводности некоторых веществ (древесного угля, льда, серы, фосфора, растительных масел) и выявлены их физико-химические свойства.

В.В. Петров впервые применил параллельное соединение электродов для демонстрации явления электролиза в нескольких трубках с водой, происходящего одновременно при пропускании электрического тока через жидкости (рис. 2.6).

Работа В.В. Петрова с источником тока высокого напряжения не могла не привести его к выводу о важном значении изоляции проводов; им было предложено изготовлять электрические проводники, покрытые сургучом или воском. Разработанный В.В. Петровым принцип изоляции проволочных проводников, заключающийся в покрытии их поверхности изолирующим слоем, нашел дальнейшее развитие в производстве кабельных изделий. В.В. Петров пришел к правильному выводу о высоких электроизоляционных свойствах жирных (растительных) масел.

В.В. Петров явился одним из первых физиков, высказавших правильный взгляд на общность и различие в проявлениях статического и гальванического электричества. Он сделал попытку выяснить сущность электрических явлений, установить причины образования электричества, однако при состоянии науки того времени такую задачу решить было невозможно. Заслуживает внимания мысль В.В. Петрова о том, что электрические явления обусловлены определенными физико-химическими процессами.

В своем труде [2.1] В.В. Петров пытается решить вопрос о скорости и направлении электрического тока.

Отдельная глава его книги посвящена действию тока «на тела живых, особливо животных», и даются рекомендации для врачей. Использование гальванических батарей дает новый толчок развитию электромедицины.

Труды В.В. Петрова были хорошо известны его современникам и изучались русскими физиками первой трети XIX в. Широкое распространение трудов В.В. Петрова в России оказало большое влияние на развитие науки об электричестве, на расширение его практического применения.

Рис. 2.6. Схема опыта с параллельным соединением электродов
1 — стеклянные трубки с водой; 2 — металлические проволоки; 3 — батарея

Первые электрохимические опыты, произведенные вскоре после изобретения вольтова столба, вызвали значительный интерес к этим вопросам. Специальному исследованию электрохимических явлений были посвящены труды X. Дэви, имевшие важное значение для практики. X. Дэви доказал своими опытами несостоятельность мнений, господствовавших в то время среди ученых, что при электролизе соды на одном полюсе получается кислота, а на другом основание. Он показал, что кислоты и основания, получаемые при электролизе, являются продуктами последующих вторичных реакций. Повторив опыты разложения воды в разных условиях (стеклянные, агатовые и золотые сосуды; в воздухе и в атмосфере водорода), X. Дэви доказал, что пресная вода разлагается при электролизе только на кислород и водород, причем объем водорода, образовавшегося при этом, вдвое больше объема кислорода. Он установил, что химически чистая вода не поддается электролизу и что электрический ток только разлагает соединения, но не создает никаких новых соединений. X. Дэви одним из первых высказал правильные взгляды на то, что электрический ток, полученный от вольтова столба, возникает в результате химических процессов между металлами и электролитом [1.6].

Рис. 2.7. Схема опыта Страхова. При опускании рук в чаши цепь замыкается и человек ощущает прохождение тока 

В 1807 г. X. Дэви впервые получил электролитическим путем щелочные элементы — калий и натрий, ранее неизвестные в чистом виде; в 1808 г. им были также получены магний, бор, барий, стронций и кальций. Эти открытия наглядно иллюстрировали практическую ценность электролиза и еще больше усилили интерес ученых к химическим действиям тока.

В 1802–1807 гг. ряду ученых, в том числе профессору Московского университета Петру Ивановичу Страхову (1756–1827 гг.), удалось установить опытным путем, что земля и вода являются проводниками тока (рис. 2.7). Этим открытием была показана возможность применения земли и воды в качестве обратного (второго) провода при осуществлении установок и устройств для передачи электрического тока от генератора к приемникам [1.6].

В 1807 г. профессор Московского университета Федор Федорович Рейс (1778–1852 гг.) обнаружил явление, получившее впоследствии название электроосмоса. В выводах из своих опытов Ф.Ф. Рейс указывает, что под действием электричества жидкость может переноситься сквозь пористые тела. Явление электроосмоса в современной технике получило практическое применение, в частности при осушке намывных плотин (электродренаж).

Широкое применение вольтовых столбов и других источников электрического тока не могло не усилить интереса к вопросу о том, в результате каких действий в них появляется электрический ток. Все яснее становилось, что химические реакции в гальванических элементах являются первичными, а возникновение тока есть их следствие, т.е. явление вторичное. Контактная теория А. Вольта становилась малоубедительной, и ей все энергичнее стали противопоставлять химическую теорию гальванизма, согласно которой возникновение электричества определяется химическими процессами. Эта теория впервые наиболее четко была разработана петербургским академиком Георгом Парротом (1767–1852 гг.), считавшим, что явления в вольтовом столбе и других гальванических элементах происходят исключительно за счет окисления металлов, т.е. за счет изменения одного из веществ элемента. М. Фарадей также выступал против контактной теории электричества, указывая, что нет такого случая, даже при ударах электрического угря и ската, когда электричество получалось бы без затраты какого-либо другого вида энергии.

Многочисленные опыты по электролизу различных жидкостей вскоре привели к необходимости объяснения механизма электролиза, вызвали потребность в теоретических обоснованиях происходящих явлений. Теории электролиза были предложены рядом ученых, но наиболее приближающейся к современным воззрениям на процессы электролиза явилась теория электролиза литовского профессора Теодора Гротгуса (1785–1822 гг.), которая была, по существу, первой ионной теорией электролитических явлений. Т. Гротгус в 1805 г. опубликовал «Мемуар о разложении при помощи гальванического электричества воды, а также растворенных в ней тел» [1.2; 1.6].

Теория Т. Гротгуса была передовой для своего времени, она продержалась в науке более 70 лет, уступив место теории электролитической диссоциации. Известные законы электролиза были сформулированы М. Фарадеем в 1833–1834 гг. Им же были предложены термины электрод, анод, катод.


2.5. ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА И МАГНИТА

Расширение и углубление исследований электрических явлений привели к открытию и изучению новых свойств электрического тока. О связи электрических и магнитных явлений говорили многие факты, наблюдавшиеся, в частности, при ударах молнии в компас: магнитная стрелка перемагничивалась. В 1775 г. два английских корабля шли параллельным курсом из Лондона на запад и на широте Бермудских островов попали в сильный шторм с грозой. В один из кораблей ударила молния, сломавшая мачту и порвавшая паруса. Капитан второго судна, которое не пострадало, с удивлением увидел, что первое судно почему-то повернуло назад и направляется в Англию. После проверки компасов обоих судов было установлено, что полярность стрелки компаса пострадавшего корабля изменилась на противоположную, и капитан судна полагал, что он плывет на запад, а в действительности плыл на восток, в Англию.

Первым ученым, убедительно показавшим связь между электричеством и магнетизмом, был Г.Х. Эрстед. Хотя, как уже отмечалось, значительно ранее эту связь обнаружил Д. Романьози [1.1; 1.6].

Г.Х. Эрстед, будучи доктором философии, размышляя о взаимодействии различных физических явлений, пришел к заключению, что должна быть связь между теплотой, светом, магнетизмом и электричеством. Еще в 1812 г. в одном из своих трудов Г.Х. Эрстед высказывал предположение о связи между электрическими и магнитными явлениями: «Следует испробовать, не произведет ли электричество в своей самой скрытой стадии каких-либо действий на магнит как таковой». Поэтому когда во время его лекции студентам Копенгагенского университета он демонстрировал нагревание проволоки электрическим током и стрелка компаса, случайно находившегося рядом, отклонилась, Г.Х. Эрстед убедился в справедливости своей давней догадки.

В 1820 г. после дополнительных экспериментов Г.Х. Эрстед опубликовал результаты своих наблюдений действия тока на магнитную стрелку, возбудившие большой интерес среди ученых разных стран и получившие в их трудах дальнейшее углубление и развитие. Небольшая брошюра (менее пяти страниц) Г.Х. Эрстеда «Опыты, касающиеся действия электрического конфликта на магнитную стрелку» произвела сенсацию среди европейских физиков. Секретарь Парижской академии наук Д.Ф. Араго, узнав об опытах Г.Х. Эрстеда, воскликнул: «Господа! Произошел переворот!».

Заслуживает внимания заключение Г.Х. Эрстеда о том, что «электрический конфликт» (т.е. встречное движение положительной и отрицательной «электрической материи») в проводнике «… не ограничен проводящей проволокой, но имеет обширную сферу активности вокруг этой проволоки …. Этот конфликт «образует вихрь вокруг проволоки» (курсив мой — Я.Ш.). Очевидно, конечно, что Эрстед заблуждался, полагая, что на магнитную стрелку действует столкновение разнородных электричеств. Но дорога к новым открытиям для других ученых была уже проложена!

Вскоре после опубликования этой брошюры (в 1820 г.) немецкий физик Иоган Х.С. Швейггер (1779–1857 гг.) предложил использовать отклонение магнитной стрелки электрическим током для создания первого измерительного прибора — индикатора тока. Его прибор, получивший название «мультипликатора» (т.е. умножающего) представлял собой магнитную стрелку, помещенную внутри рамки, состоящей из нескольких витков проволоки (рис. 2.8) [1.6].

Рис. 2.8. Схема мультипликатора Швейггера 

Однако вследствие влияния земного магнетизма на магнитную стрелку мультипликатора его показания были неточными. А. Ампер в 1821 г. показал возможность устранения влияния земного магнетизма с помощью астатической пары, представляющей собой две магнитные стрелки, укрепленные на общей медной оси и расположенные параллельно, с полюсами, обращенными в противоположные стороны. В 1825 г. флорентийский профессор Леонардо Нобили (1784–1835 гг.) скомбинировал астатическую пару с мультипликатором и построил таким образом более чувствительный прибор — прообраз гальванометра.

В 1820 г. Д.Ф. Араго было обнаружено новое явление — намагничивание проводника протекающим по нему током. Если медная проволока, соединенная с полюсами вольтова столба, погружалась в железные опилки, то последние равномерно к ней прилипали; при выключении тока опилки падали. Когда Д.Ф. Араго брал вместо медной проволоки железную (из мягкого железа), то она временно намагничивалась; кусочек стали при таком намагничивании становился постоянным магнитом. По рекомендации А. Ампера Д.Ф. Араго заменил прямолинейную проволоку проволочной спиралью, при этом намагничивание иголки, помешенной внутри спирали, усиливалось. Так был создан соленоид. Опыты Д.Ф. Араго дали первое указание на электрическую природу магнетизма и показали возможность намагничивания стали электрическим током [1.6].

В процессе своих исследований Д.Ф. Араго обнаружил (в 1824 г.) еще одно новое явление, названное им «магнетизмом вращения», правильное объяснение которого, как будет показано далее, было дано М. Фарадеем только после открытия явления электромагнитной индукции.

Новым шагом от качественных наблюдений действия тока на магнит к определению количественных зависимостей явилось установление французскими учеными Жаном Батистом Био (1774–1862 гг.) и Феликсом Саваром (1791–1841 гг.) закона действия тока на магнит. Проведя ряд экспериментов, они в 1820 г. установили следующее: если неограниченной длины провод с проходящим по нему током действует на частицу северного или южного магнетизма, находящуюся на известном расстоянии от середины провода, то равнодействующая всех сил, исходящих из провода, направлена перпендикулярно к кратчайшему расстоянию частицы от провода и общее действие провода на любой, южный или северный, магнитный элемент обратно пропорционально расстоянию от последнего до провода. Обнаружение тангенциальной составляющей силы позволило объяснить вращательный характер движения проводника относительно магнита.

Французский ученый Пьер Симон Лаплас (1749–1827 гг.) показал впоследствии, что сила действия, создаваемая небольшим участком проводника, изменяется обратно пропорционально квадрату расстояния.

Важнейшее научное и методологическое значение в расширении исследования новых явлений имели труды одного из крупнейших французских ученых — Андре Мари Ампера (1775–1836 гг.), заложившие основы электродинамики [1.1; 1.6; 2.3].

А. Ампер был необыкновенно одаренным от природы человеком и, несмотря на плохое состояние здоровья, сумел найти в себе силы, чтобы неустанно заниматься фундаментальными научными исследованиями и сделать немеркнущий вклад в сокровищницу мировой цивилизации.

Его исследования в области электромагнетизма открыли новую страницу в истории электротехники. И при изучении этих явлений ярко проявились поразительные способности А. Ампера.

Он впервые узнал об опытах Г.Х. Эрстеда на заседании Парижской академии наук, где их повторил во время своего сообщения Д.Ф. Араго. Вместе с восхищением А. Ампер интуитивно почувствовал важность этого открытия, хотя ранее он не занимался изучением электромагнитных явлений. И ровно через неделю 18 сентября 1820 г. А. Ампер выступает на заседании академии с докладом о взаимодействии токов и магнитов, а затем почти подряд — неделю за неделей (заседания Парижской академии наук проводились еженедельно) он излагает перед крупнейшими французскими учеными результаты своих экспериментальных и теоретических исследований, которые позднее были отражены в его знаменитом труде по электродинамике.

В одном из писем А. Ампер подчеркивает, что он «создал новую теорию магнита, сводящую все явления к явлениям гальванизма».

Поразительна логика его обобщений: если ток — это магнит, то два тока должны взаимодействовать подобно магнитам. Теперь это кажется очевидным, но до А. Ампера никто так четко на это не указал. Блестящие познания в области математики позволили А. Амперу теоретически обобщить результаты своих исследований и сформулировать известный закон, носящий его имя.

Рассмотрим более подробно работы А. Ампера в области электромагнетизма.

Отметим прежде всего, что А. Ампером впервые были введены термин «электрический ток» и понятие о направлении электрического тока. Он предложил считать за направление тока направление движения «положительного электричества».

Наблюдая отклонение магнитной стрелки под влиянием тока в проводнике, А. Ампер сформулировал правило, позволяющее определить направление отклонения стрелки в зависимости от направления тока в проводнике. Это правило было в то время широко известно под названием «правило пловца».

Рис. 2.9. Станок Ампера
1 — подвижная рамка; 2 — неподвижный проводник 

Особенно важное значение имели исследования А. Ампером взаимодействия круговых и линейных проводников с токами. К этим исследованиям он подошел, основываясь на следующих рассуждениях: если магнит по своим свойствам аналогичен катушке или кольцевому проводнику, обтекаемым током, то два круговых тока должны действовать друг на друга подобно двум магнитам.

Открыв взаимодействие круговых проводников с током, А. Ампер начал исследование взаимодействия линейных проводников с токами. С этой целью он построил так называемый «станок Ампера» (рис. 2.9), в котором один проводник мог изменять положение относительно другого проводника. В ходе этих опытов было установлено, что два линейных проводника с токами притягиваются или отталкиваются в зависимости от того, имеют токи одинаковое направление или различное. Серия опытов этого рода позволила А. Амперу открыть закон взаимодействия линейных проводников с токами: два параллельных и одинаково направленных тока взаимно притягиваются, между тем как два параллельных и противоположно направленных тока взаимно отталкиваются. Обнаруженные явления А. Ампер предложил назвать электродинамическими в отличие от электростатических явлений.

Обобщая результаты своих экспериментальных работ, А. Ампер установил математическое выражение количественных соотношений взаимодействующих токов подобно тому, как это сделал Ш. Кулон по отношению к взаимодействию статических зарядов. Эту задачу А. Ампер решил аналитическим приемом, исходя из принципов И. Ньютона о взаимодействии масс и уподобляя этим массам два элемента тока, произвольно расположенных в пространстве. При этом А. Ампер предположил, что взаимодействие элементов тока происходит по прямой, соединяющей середины этих элементов, и что оно пропорционально длине элементов тока и самим токам. Первый труд А. Ампера о взаимодействии электрических токов был опубликован в 1820 г.

Электродинамическая теория А. Ампера изложена им в сочинении «Теория электродинамических явлений, выведенная исключительно из опыта», изданном в Париже в 1826–1827 гг.

Опираясь на труды предшественников, а также на важные результаты своих исследований, А. Ампер пришел к принципиально новому выводу о причине явлений магнетизма. Отрицая существование особых магнитных жидкостей, А. Ампер утверждал, что магнитное поле имеет электрическое происхождение. Основываясь на тождестве действия круговых токов и магнитов, А. Ампер пришел к выводу о том, что магнетизм какой-либо частицы обусловлен наличием круговых токов в этой частице, а свойства магнита в целом обусловлены электрическими токами, расположенными в плоскостях, перпендикулярных к его оси. Разработанная А. Ампером гипотеза молекулярных круговых токов явилась новым, прогрессивным шагом на пути к материалистической трактовке природы магнитных явлений.

А. Ампером в 1820 г. была высказана мысль о возможности создания электромагнитного телеграфа, основанного на взаимодействии проводника с током и магнитной стрелки. Однако А. Ампер предлагал взять «столько проводников и магнитных стрелок, сколько имеется букв …, помещая каждую букву на отдельной стрелке». Очевидно, что подобная конструкция телеграфа была бы весьма громоздкой и дорогой, что, по-видимому, помешало практической реализации предложения А. Ампера. Потребовалось некоторое время для того, чтобы найти более реальный путь создания телеграфа.

Значение работ А. Ампера для науки было весьма велико. Своими исследованиями А. Ампер доказал единство электричества и магнетизма и нанес решительный удар царившим до него представлениям о магнитной жидкости. Установленные им законы механического взаимодействия электрических токов принадлежат к числу крупнейших открытий в области электричества.

Выдающийся вклад А. Ампера получил высочайшую оценку: в 1881 г. Первый Международный конгресс электриков присвоил единице силы тока наименование «Ампер» [1.6].


2.6. ОТКРЫТИЕ ЯВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСТВА И УСТАНОВЛЕНИЕ ЗАКОНОВ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

Дальнейшее изучение явлений электричества и магнетизма привело к открытию новых фактов [1.4–1.6].

В 1821 г. профессор Берлинского университета Томас Иоганн Зеебек (1770–1831 гг.), занимаясь исследованием возможности получения электрического тока посредством двух разнородных металлов без участия какой-либо жидкости, открыл новое явление, заключавшееся в следующем. К висмутовой пластине 7–2 (рис. 2.10) была припаяна медная пластинка 3. Внутри образовавшегося контура помещалась магнитная стрелка SN. При подогревании одного из спаев магнитная стрелка отклонялась, что указывало на прохождение по контуру электрического тока. Так, например, если прибор был установлен в направлении плоскости магнитного меридиана, то при нагревании спая 2 северный полюс магнитной стрелки отклоняется на восток. Это отклонение показывает, что в металлах идет ток, имеющий направление над стрелкой справа налево, а под нею слева направо.

Если вместо нагревания спая 2 охлаждать спай 7, то в контуре возникает ток такого же направления, как и в предыдущем случае. Т.И. Зеебек правильно установил, что причина появления электрического тока в этих опытах связана с теплотой, сообщаемой спаю или отнимаемой от него, и назвал обнаруженное явление «термомагнетизмом» (позднее этот термин был заменен на «термоэлектричество»).

Рис. 2.10. Схема опыта Зеебека

Фундаментальное исследование вопроса о направлении термоэлектрического тока произвел французский ученый Антуан Сезан Беккерель (1788–1878 гг.). Ему удалось расположить металлы в термоэлектрический ряд, в котором каждый предыдущий металл дает ток через нагретый спай к каждому последующему. А.С. Беккерель показал, что термоэлектрический ток может возникнуть не только при использовании разнородных металлов, но и при различии в структуре или плотности проводника с одной и другой стороны от нагреваемого места.

В течение длительного времени термоэлементы вследствие их крайней неэкономичности получали применение только для измерения температур. Как известно, благодаря успехам современной науки и техники в области полупроводников созданы предпосылки для разработки более экономичных термоэлементов.

В 1834 г. французским ученым Жаном Шарлем Пельтье (1785–1845 гг.) были обнаружены более широкое проявление термоэлектрических действий и их обратимость: при прохождении электрического тока через спай двух различных металлов имеет место выделение или поглощение теплоты в зависимости от направления тока. В 1838 г. явление Ж.Ш. Пельтье было изучено в Петербурге академиком Эмилием Христиановичем Ленцем (1804–1865 гг.), который, пользуясь этим методом, заморозил воду, окружавшую место спая. Позднее были созданы специальные устройства — термопары, применяемые для измерения температур, лучистой энергии и др.

Открытие явления термоэлектричества явилось существенным вкладом в науку и сыграло свою роль в подготовке к открытию закона сохранения и превращения энергии.

Как уже отмечалось, еще В.В. Петров в начале XIX в. указал на связь между поперечным сечением проводника и значением тока в нем. В 1821 г. X. Дэви установил, что проводимость проводника зависит от материала и температуры; он также пришел к выводу о зависимости проводимости от площади поперечного сечения проводника. Более глубоко эти явления были исследованы немецким физиком Георгом Симоном Омом (1789–1854 гг.) [1.6; 2.4].

Первый этап исследований, начатых Г.С. Омом в 1821 г., когда он работал преподавателем математики и физики в г. Кельне, относился к изучению проводимости различных проводников. Значение тока измерялось по магнитному действию: для этих целей он соорудил прибор, подобный крутильным весам Ш. Кулона (см. гл. 1), но вместо бузиновых шариков над проводником была подвешена магнитная стрелка. По углу кручения нити можно было судить о токе, действующем на стрелку. Располагая проводник в направлении магнитного меридиана, Г.С. Ом установил постоянство угла кручения нити, что подтверждало постоянство тока на различных участках цепи. Г.С. Ом стремился определить проводимость проволок из различных материалов, он убедился во влиянии температуры на проводимость проводников.

Во время проведения опытов Г.С. Ом столкнулся с большими трудностями: электродвижущая сила гальванических элементов заметно снижалась в процессе их эксплуатации, механизм работы источников питания был неизвестен, общепринятых методов определения электропроводности проводников не существовало, в научную практику не были введены величины, характеризующие ток в цепи, не было приборов для измерения этих величин. Нужно было разработать не только методику проведения экспериментов, но и создать соответствующие приборы, обеспечить большую точность измерений. Все это потребовало от Г.С. Ома незаурядного мастерства, упорства и находчивости. Ему пришлось отказаться от гальванических батарей и заменить их термоэлементом, изготовить несколько конструкций мультипликаторов.

На основе многочисленных экспериментов Г.С. Ому удается вывести формулу, связывающую «силу магнитного действия проводника» (т.е. ток) с электровозбуждающей силой (ЭДС) источника и сопротивлением цепи, — это уже была основа закона электрической цепи. Продолжая совершенствовать измерительную установку, Г.С. Ом разрабатывает оригинальные теоретические положения, характеризующие процессы в электрических цепях. С этой целью он внимательно изучает теоретические исследования в области теплопроводности и гидравлики и впервые проводит аналогию между движением электричества и тепловым или водяным потоками; при этом разность потенциалов играет роль падения температур или разности уровней воды в трубах.

В 1827 г. выходит в свет его фундаментальный труд «Гальваническая цепь, разработанная математически доктором Г.С. Омом» (он также известен под названием «Теоретические исследования электрических цепей»). Закон, носящий его имя, Г.С. Ом сформулировал следующим образом: «Величина тока гальванической цепи пропорциональна сумме всех напряжений и обратно пропорциональна сумме приведенных длин»[2] (под «приведенными длинами» подразумевается сопротивление внешней части цепи).

Г.С. Ом доказал справедливость формулы при оценке силы тока как по магнитному, так и по химическому действию тока. Несколько лет закон Г.С. Ома не получал признания, отчасти потому, что в первых его публикациях были допущены неточности, а также по причине недостаточной известности имени скромного школьного учителя.

Однако после подтверждения правильности закона Г.С. Ома такими известными электротехниками, как петербургские академики Эмилий Христианович Ленц и Борис Семенович Якоби (1801–1874 гг.), а также присуждения Г.С. Ому Золотой медали Лондонским Королевским обществом (1842 г.) его труд по праву занял почетное место. Он явился фундаментом теоретической электротехники и сохранил свое значение до наших дней. На Первом Международном конгрессе электриков единица сопротивления была названа «Ом».

Выдающиеся открытия в области электричества и магнетизма, связанные с именами А. Ампера, Г.С. Ома, М. Фарадея, Э.Ф. Ленца, требовали более точного количественного описания этих явлений, их математического анализа и разработки расчетных методов, необходимых для решения практических задач, выдвигаемых развивающимся производством. Выдающимся вкладом в решение этих проблем явились труды профессора Берлинского университета Густава Роберта Кирхгофа (1824–1887 гг.).

В 1845 г., когда Г.Р. Кирхгофу был всего 21 год, он написал работу «О протекании электрического тока через плоскую пластину, например, круглой формы». В примечании к этой работе были сформулированы два закона Г.Р. Кирхгофа, являющиеся фундаментальными законами теоретической электротехники, которые еще при жизни Г.Р. Кирхгофа вошли во все учебники физики и широко применяются электротехниками всего мира. В последующих трудах Г.Р. Кирхгофа были рассмотрены количественные соотношения, связанные с явлением электромагнитной индукции и изучением переходных процессов. Г.Р. Кирхгоф проявил себя как блестящий исследователь и экспериментатор в различных областях физики (механики, оптики, теории излучения) [1.1; 1.6; 2.5].


2.7. ОТКРЫТИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Большой вклад в современную электротехнику сделал английский ученый Майкл Фарадей, труды которого, в свою очередь, были подготовлены предшествовавшими работами по изучению электрических и магнитных явлений [1.1; 1.6; 2.6].

Есть нечто символическое в том, что в год рождения М. Фарадея (1791 г.) был опубликован трактат Луиджи Гальвани с первым описанием нового физического явления — электрического тока, а в год его смерти (1867 г.) была изобретена «динамомашина» — самовозбуждающийся генератор постоянного тока, т.е. появился надежный, экономичный и удобный в эксплуатации источник электрической энергии. Жизнь великого ученого и его неповторимая по своим методам, содержанию и значению деятельность не только открыли новую главу физики, но и сыграли решающую роль в рождении новых отраслей техники: электротехники и радиотехники.

Вот уже более ста лет многие поколения учащейся молодежи на уроках физики и из многочисленных книг узнают историю замечательной жизни одного из самых знаменитых ученых, члена 68 научных обществ и академий. Обычно имя М. Фарадея связывают с самым значительным и потому наиболее известным открытием — явлением электромагнитной индукции, сделанным им в 1831 г. Но еще за год до этого, в 1830 г. за исследования в области химии и электромагнетизма М.Фарадей был избран почетным членом Петербургской Академии наук, членом же Лондонского Королевского общества (Британской академии наук) он был избран еще в 1824 г. Начиная с 1816 г., когда увидела свет первая научная работа М. Фарадея, посвященная химическому анализу тосканской извести, и по 1831 г., когда стал публиковаться знаменитый научный дневник «Экспериментальные исследования по электричеству», М. Фарадеем было опубликовано свыше 60 научных трудов.

Огромное трудолюбие, жажда знаний, прирожденный ум и наблюдательность позволили М. Фарадею достичь выдающихся результатов во всех тех областях научных исследований, к которым обращался ученый. Признанный «король экспериментаторов» любил повторять: «Искусство экспериментатора состоит в том, чтобы уметь задавать природе вопросы и понимать ее ответы».

Каждое исследование М. Фарадея отличалось такой обстоятельностью и настолько согласовывалось с предыдущими результатами, что среди современников почти не находилось критиков его работ.

Если исключить из рассмотрения химические исследования М. Фарадея, которые в своей области также составляли эпоху (достаточно вспомнить об опытах сжижения газов, об открытии бензола, бутилена), то все прочие его работы, на первый взгляд иногда разрозненные, как мазки на полотне художника, взятые вместе, образуют изумительную картину всестороннего исследования двух проблем: взаимопревращений различных форм энергии и физического содержания среды.

Рис. 2.11. Схема «электромагнитных вращений» (по рисунку Фарадея)
1, 2 — чаши с ртутью; 3 — подвижный магнит; 4 — неподвижный магнит; 5, 6 — провода, идущие к батарее гальванических элементов; 7 — медный стержень; 8 — неподвижный проводник; 9 — подвижный проводник 

Работам М. Фарадея в области электричества положило начало исследование так называемых электромагнитных вращений. Из серии опытов Эрстеда, Араго, Ампера, Био, Савара, проведенных в 1820 г., стало известно не только об электромагнетизме, но и о своеобразии взаимодействий тока и магнита: здесь, как уже отмечалось, действовали не привычные для классической механики центральные силы, а силы иные, стремившиеся установить магнитную стрелку перпендикулярно проводнику. М. Фарадей поставил перед собой вопрос: не стремится ли магнит к непрерывному движению вокруг проводника стоком? Опыт подтвердил гипотезу. В 1821 г. М. Фарадей дал описание физического прибора, схематически представленного на рис. 2.11. В левом сосуде с ртутью находился стержневой постоянный магнит, закрепленный шарнирно в нижней части. При включении тока его верхняя часть вращалась вокруг неподвижного проводника. В правом сосуде стержень магнита был неподвижен, а проводник с током, свободно подвешенный на кронштейне, скользил по ртути, совершая вращение вокруг полюса магнита. Поскольку в этом опыте впервые фигурирует магнитоэлектрическое устройство с непрерывным движением, то вполне правомерно начать именно с этого устройства историю электрических машин вообще и электродвигателя в частности. Обратим также внимание на ртутный контакт, нашедший впоследствии применение в электромеханике.

Именно с этого момента, судя по всему, у М. Фарадея начинают складываться представления о всеобщей «взаимопревращаемости сил». Получив при помощи электромагнетизма непрерывное механическое движение, он ставит перед собой задачу обратить явление или, по терминологии М. Фарадея, превратить магнетизм в электричество.

Только абсолютная убежденность в справедливости гипотезы о «взаимопревращаемости» может объяснить целеустремленность и настойчивость, тысячи опытов и 10 лет напряженного труда, затраченного на решение сформулированной задачи. В августе 1831 г. был сделан решающий опыт, а 24 ноября на заседании в Королевском обществе была изложена сущность явления электромагнитной индукции.

Рис. 2.12. Иллюстрация опыта Араго («магнетизма вращения»)
1 — проводящий немагнитный диск; 2 — стеклянное основание для крепления оси диска 

В качестве примера, характеризующего ход мыслей ученого и формирование его представлений об электромагнитном поле, рассмотрим исследование М. Фарадеем явления, получившего тогда название «магнетизма вращения». За много лет до работ М. Фарадея мореплаватели замечали тормозящее влияние медного корпуса компаса на колебания магнитной стрелки. В 1824 г. Д.Ф. Араго (см. § 2.5) описал явление «магнетизма вращения», удовлетворительно объяснить которое ни он, ни другие физики не могли. Сущность явления состояла в следующем (рис. 2.12). Подковообразный магнит мог вращаться вокруг вертикальной оси, а над его полюсами находился алюминиевый или медный диск, который также мог вращаться на оси, направление вращения которой совпадало с направлением вращения оси магнита. В состоянии покоя никаких взаимодействий между диском и магнитом не наблюдалось. Но стоило начать вращать магнит, как диск устремлялся вслед за ним и наоборот. Чтобы исключить возможность увлечения диска потоками воздуха, магнит и диск были разделены стеклом.

Открытие электромагнитной индукции помогло М. Фарадею объяснить явление Д.Ф. Араго и уже в самом начале исследования записать: «Я надеялся сделать из опыта г-на Араго новый источник электричества».

Практически одновременно с М. Фарадеем электромагнитную индукцию наблюдал выдающийся американский физик Джозеф Генри (1797–1878 гг.). Нетрудно себе представить переживания ученого, будущего президента американской Национальной академии наук, когда он, собираясь опубликовать свои наблюдения, узнал о публикации М. Фарадея. Год спустя Д. Генри открыл явление самоиндукции и экстратоки, а также установил зависимость индуктивности цепи от свойств материала и конфигурации сердечников катушек. В 1838 г. Д. Генри изучал «токи высшего порядка», т.е. токи, индуцированные другими индуцированными токами. В 1842 г. продолжение этих исследований привело Д. Генри к открытию колебательного характера разряда конденсатора (позднее, в 1847 г., это открытие повторил выдающийся немецкий физик Герман Гельмгольц) (1821–1894 гг.).

Обратимся к главным опытам М. Фарадея. Первая серия опытов [2.6] закончилась экспериментом, демонстрировавшим явление «вольта-электрической» (по терминологии М. Фарадея) индукции (рис. 2.13, а — г). Обнаружив возникновение тока во вторичной цепи 2 при замыкании или размыкании первичной 1 или при взаимном перемещении первичной и вторичной цепей (рис. 2.13, в), М. Фарадей поставил эксперимент для выяснения свойств индуцированного тока: внутрь спирали б, включенной во вторичную цепь, помещалась стальная игла 7 (рис. 2.13, б), которая намагничивалась индуцированным током. Результат говорил о том, что индуцированный ток подобен току, получаемому непосредственно от гальванической батареи 3.

Рис. 2.13. Схемы основных опытов, приведших к открытию электромагнитной индукции 

Заменив деревянный или картонный барабан 4, на который наматывались первичная и вторичная обмотки, стальным кольцом (рис. 2.13, г), М. Фарадей обнаружил более интенсивное отклонение стрелки гальванометра 5. Данный опыт указывал на существенную роль среды в электромагнитных процессах. Здесь М. Фарадей впервые применяет устройство, которое можно назвать прототипом трансформатора.

Вторая серия опытов иллюстрировала явление электромагнитной индукции, возникавшее при отсутствии источника напряжения в первичной цепи. Исходя из того, что катушка, обтекаемая током, идентична магниту, М. Фарадей заменил источник напряжения двумя постоянными магнитами (рис. 2.13, д) и наблюдал ток во вторичной обмотке при замыкании и размыкании магнитной цепи. Это явление он назвал «магнитоэлектрической индукцией»; позднее им было отмечено, что никакой принципиальной разницы между «вольта-электрической» и «магнитоэлектрической» индукцией нет. Впоследствии оба эти явления были объединены термином «электромагнитная индукция». В заключительных экспериментах (рис. 2.13, е, ж) демонстрировалось появление индуцированного тока при движении постоянного магнита или катушки с током внутри соленоида. Именно этот опыт нагляднее других продемонстрировал возможность превращения «магнетизма в электричество» или, точнее выражаясь, механической энергии в электрическую.

На основе новых представлений М. Фарадей и дал объяснение физической стороны опыта с диском Д.Ф. Араго. Кратко ход его рассуждений можно изложить следующим образом. Алюминиевый (или любой другой проводящий, но немагнитный) диск можно представить себе в виде колеса с бесконечно большим числом спиц — радиальных проводников. При относительном движении магнита и диска эти спицы-проводники «перерезают магнитные кривые» (терминология Фарадея), и в проводниках возникает индуцированный ток. Взаимодействие же тока с магнитом было уже известно. В истолковании М. Фарадея обращает на себя внимание терминология и способ объяснения явления. Для определения направления индуктированного тока он вводит правило ножа, перерезающего силовые линии. Это еще не закон Э.Х. Ленца, для которого свойственна универсальность характеристики явления, а только попытки каждый раз путем подробных описаний установить, будет ли ток протекать от рукоятки к кончику лезвия или наоборот. Но здесь важна принципиальная картина: М. Фарадей в противовес сторонникам теории дальнодействия, заполняет пространство, в котором действуют различные силы, материальной средой, эфиром, развивая эфирную теорию Л. Эйлера, находящегося, в свою очередь, под влиянием идей М.В. Ломоносова.

М. Фарадей придавал магнитным, а затем при исследовании диэлектриков и электрическим силовым линиям физическую реальность, наделял их свойством упругости и находил очень правдоподобные объяснения самым различным электромагнитным явлениям, пользуясь представлением об этих упругих линиях, похожих на резиновые нити.

Прошло более полутора столетий, а мы до сих пор не нашли более наглядного способа и схемы объяснения явлений, связанных с индукцией и электромеханическими действиями, чем знаменитая концепция фарадеевских линий, которые и поныне нам представляются вещественно ощутимыми.

Из диска Д.Ф. Араго М. Фарадей действительно сделал новый источник электричества. Заставив вращаться алюминиевый или медный диск между полюсами магнита, М. Фарадей наложил на ось диска и на его периферию щетки.

Таким образом была сконструирована электрическая машина, получившая позднее наименование униполярного генератора.

При анализе работ М. Фарадея отчетливо проявляется генеральная идея, которая разрабатывалась великим ученым всю его творческую жизнь. Читая М. Фарадея, трудно отделаться от впечатления, что он занимался только одной проблемой взаимопревращений различных форм энергии, а все его открытия совершались между делом и служили лишь целям иллюстрации главной идеи. Он исследует различные виды электричества (животное, гальваническое, магнитное, термоэлектричество) и, доказывая их качественную тождественность, открывает закон электролиза. При этом электролиз, как и вздрагивание мышц препарированной лягушки, служил первоначально лишь доказательством того, что все виды электричеств проявляются в одинаковых действиях.

Исследования статического электричества и явления электростатической индукции привели М. Фарадея к формированию представлений о диэлектриках, к окончательному разрыву с теорией дальнодействия, к замечательным исследованиям разряда в газах (открытие фарадеева темного пространства). Дальнейшее исследование взаимодействия и взаимопревращения сил привели его к открытию магнитного вращения плоскости поляризации света, к открытию диамагнетизма и парамагнетизма. Убежденность во всеобщности взаимопревращений заставила М. Фарадея даже обратиться к исследованию связи между магнетизмом и электричеством, с одной стороны, и силой тяжести, с другой. Правда, остроумные опыты Фарадея не дали положительного результата, но это не поколебало его уверенности в наличии связи между этими явлениями.

Биографы М. Фарадея любят подчеркивать тот факт, что М. Фарадей избегал пользоваться математикой, что на многих сотнях страниц его «Экспериментальных исследований по электричеству» нет ни одной математической формулы. В связи с этим уместно привести высказывание соотечественника М. Фарадея великого физика Джеймса Кларка Максвелла (1831–1879 гг.): «Приступив к изучению труда Фарадея, я установил, что его метод понимания явлений был также математическим, хотя и не представленным в форме обычных математических символов. Я также нашел, что этот метод можно выразить в обычной математической форме и, таким образом, сравнить с методами профессиональных математиков».

«Математичность» мышления Фарадея можно иллюстрировать его законами электролиза или, например, формулировкой закона электромагнитной индукции: количество приведенного в движение электричества прямо пропорционально числу пересеченных силовых линий. Достаточно представить себе последнюю формулировку в виде математических символов, и мы немедленно получаем формулу, из которой очень быстро следует знаменитое d?/dt, где ? — магнитное потокосцепление.

Д.К. Максвелл, родившийся в год открытия явления электромагнитной индукции, очень скромно оценивал свои заслуги перед наукой, подчеркивая, что он лишь развил и облек в математическую форму идеи М. Фарадея. Максвеллову теорию электромагнитного поля [2.8] по достоинству оценили ученые конца XIX и начала XX в., когда на почве идей Фарадея — Максвелла начала развиваться радиотехника.

Для характеристики прозорливости М. Фарадея, его умения проникать в глубь сложнейших физических явлений важно напомнить здесь, что еще в 1832 г. гениальный ученый рискнул предположить, что электромагнитные процессы носят волновой характер, причем магнитные колебания и электрическая индукция распространяются с конечной скоростью.

В конце 1938 г. в архивах Лондонского Королевского общества было обнаружено запечатанное письмо М. Фарадея, датированное 12 марта 1832 г. Оно пролежало в безвестности более 100 лет, а в нем были такие строки:

«Некоторые результаты исследований… привели меня к заключению, что на распространение магнитного воздействия требуется время, т.е. при воздействии одного магнита на другой отдаленный магнит или кусок железа влияющая причина (которую я позволю себе назвать магнетизмом) распространяется от магнитных тел постепенно и для своего распространения требует определенного времени, которое, очевидно, окажется весьма незначительным.

Я полагаю также, что электрическая индукция распространяется точно таким же образом. Я полагаю, что распространение магнитных сил от магнитного полюса похоже на колебания взволнованной водной поверхности или же на звуковые колебания частиц воздуха, т.е. я намерен приложить теорию колебаний к магнитным явлениям, как это сделано по отношению к звуку, и является наиболее вероятным объяснением световых явлений.

По аналогии я считаю возможным применить теорию колебаний к распространению электрической индукции. Эти воззрения я хочу проверить экспериментально, но так как мое время занято исполнением служебных обязанностей, что может вызвать продление опытов … я хочу, передавая это письмо на хранение Королевскому обществу, закрепить открытие за собой определенной датой…» [1.1].

Поскольку эти идеи М. Фарадея оставались неизвестными, нет никаких оснований отказывать великому его соотечественнику Д.К. Максвеллу в открытии этих же идей, которым он придал строгую физико-математическую форму и фундаментальное значение.


2.8. ЗАРОЖДЕНИЕ ТЕОРЕТИЧЕСКИХ ОСНОВ ЭЛЕКТРОТЕХНИКИ

Как известно, процессы в электрической цепи определяются скалярными величинами — электродвижущей силой (или напряжением) и током. Напомним, что понятие об электродвижущей силе ввел в обращение А. Вольта. После первых качественных и количественных исследований в 20-е годы XIX в. стали формироваться физические основы теории электрических токов и основы расчетов электрических цепей (А. Ампер, Г.С. Ом). Еще до Г.Р. Кирхгофа разными учеными находились токи в разветвлениях цепей (например, Э.Х. Ленцем). Но только Г.Р. Кирхгофу в 1845–1847 гг. удалось сформулировать известные топологические законы, названные его именем, которые легли в основу всех последующих методов расчета цепей.

В 1845 г. немецкий физик-теоретик Франц Эрнст Нейман (1798–1895 гг.) дал математическое выражение закона электромагнитной индукции.

Английский физик Чарльз Уитстон (1802–1875 гг.) в связи с работами по усовершенствованию телеграфа искал способы измерения сопротивлений. В результате он создал знаменитый «мостик Уитстона», достоинством которого являлась независимость состояния равновесия от напряжения источника питания. В 1840 г. он показывал свое устройство Б.С. Якоби, а в 1843 г. дал описание своего «мостика» в статье. Для изменения сопротивления одного из плечей мостика Ч. Уитстон применил регулируемые резисторы, которые он назвал реостатами. Позднее (в 1860 г.) Вернер Сименс сконструировал магазин сопротивлений.

Герман Людвиг Гельмгольц ввел в 1853 г. в теорию цепей известный ранее в физике принцип суперпозиции, на основе которого были построены важные теоремы электрических цепей, включая теорему об эквивалентном источнике (Гельмгольца — Тевенена). Гельмгольц же впервые получил уравнение переходного процесса в цепи при ее подключении к источнику, рассмотрел постоянные времени электрической цепи. Выдающийся английский ученый Уильям Том сон, впоследствии лорд Кельвин (1824–1907 гг.) в 1853 г. дал расчет колебательного процесса и установил связь между частотой собственных колебаний, индуктивностью и емкостью.

Д.К. Максвеллом был разработан метод контурных токов, доказана теорема взаимности. Постепенно формировался практически весь арсенал методов расчета (включая эквивалентные преобразования) цепей постоянного тока.

После открытия электромагнитной индукции внимание ученых в значительной степени переключилось с гальванических токов, когда главными объектами исследований были сами гальванические элементы, процессы электролиза, на индукционные токи, когда наибольший интерес стали вызывать явления электромагнетизма.

Здесь особая роль принадлежит Э.Х. Ленцу [2.9; 2.10].

В своем докладе Петербургской Академии наук 29 ноября 1833 г. Э.Х. Ленц, находясь под большим впечатлением от работ по электромагнитной индукции М. Фарадея, дал свою знаменитую формулировку закона, названного его именем: «Если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что он мог бы обусловить, в случае неподвижности данного проводника, его перемещение в противоположную сторону, причем предполагается, что такое перемещение может происходить только в направлении движения или в направлении, прямо противоположном».

Очевидно, что в этой формулировке заключена и идея обратимости электрических машин, развитая позднее Б.С. Якоби.

Э.Х. Ленц был одним из основоположников теории магнитоэлектрических машин. Ему принадлежит открытие и объяснение явления реакции якоря (1847 г.) и установление необходимости сдвигать щетки с геометрической нейтрали; он впервые изучал смещение фазы тока относительно фазы напряжения (1853 г.), придумал коммутатор для изучения формы кривой индуцированного тока (1857 г.). Им было установлено условие режима максимальной полезной мощности источника энергии, когда внутреннее сопротивление источника равно сопротивлению внешней цепи. Широко известна работа Э.Х. Ленца по тепловому действию тока (1842—1843 гг.), которая была выполнена независимо от Джеймса Джоуля (1841 г.) и представляла собой настолько обстоятельное исследование, что известному закону было справедливо присвоено имя обоих ученых.

В 1867 г. Д.К. Максвелл сделал доклад Лондонскому Королевскому обществу «О теории поддержания электрических токов механическим путем без применения постоянных магнитов». Это был чисто теоретический труд, охвативший все известные к тому времени сведения об электрических машинах постоянного тока. Вероятно, затруднения в понимании максвелловского стиля изложения помешали современникам по достоинству оценить эту работу.

Серьезно продвинули теорию электрических машин введенные в 1879 г. английским электротехником Джоном Гопкинсоном (1849–1898 гг.) графические представления о зависимостях в электрических машинах, так называемые характеристики машин (характеристика холостого хода, внешняя и др.). Им же введено понятие о коэффициенте магнитного рассеяния.

В мае 1886 г. Дж. и Эдвард Гопкинсоны сделали доклад в Лондонском Королевском обществе «Динамоэлектрические машины», в котором содержалась уже вполне законченная, не потерявшая своего значения до нашего времени теория электрических машин постоянного тока.

Открытия в области электричества и магнетизма, сделанные в первой половине XIX в., а также практическое применение этих явлений стали предпосылками важных научных обобщений, в частности создания электромагнитной теории Д.К. Максвелла. Первые дифференциальные уравнения поля были записаны Д.К. Максвеллом в 1855–1856 гг. В 1864 г. он дал определение электромагнитного поля и заложил основы его теории.

Заслуга Д.К. Максвелла состоит в том, что, использовав накопленный до него громадный экспериментальный материал, он обобщил и развил прогрессивные идеи М. Фарадея, придав им стройную математическую форму. В своем труде «Трактат об электричестве и магнетизме» (1873 г.) Д.К. Максвелл изложил основы разработанной им теории поля, являющейся краеугольным камнем современного учения об электромагнетизме. Важнейшие результаты своих исследований Д.К. Максвелл сформулировал в виде знаменитых уравнений, получивших его имя. Д.К. Максвелл обобщил закон электромагнитной индукции, распространив его на произвольный контур в любой среде. Он ввел понятие об электрическом смещении и токах смещения,

установил принцип замкнутости тока. Одним из важнейших выводов Д.К. Максвелла является утверждение о том, что магнитное и электрическое поля тесно связаны и изменение одного из них вызывает появление другого. Исследования показали, что скорость распространения подобных электромагнитных возмущений совпадает со скоростью света. Этот вывод был положен в основу электромагнитной теории света, разработанной Д.К. Максвеллом и являющейся одним из выдающихся теоретических обобщений естествознания.

Д.К. Максвелл не дожил до торжества своих глубоких научных идей и обобщений. Он сам еще не мог во всем объеме представить значение всего того, что содержалось в его «Трактате об электричестве и магнетизме», и того, что из него вытекало. Позднее немецкий физик Генрих Герц (1857–1894 гг.) экспериментально доказал существование электромагнитных волн.

Важное значение в развитии представлений о движении энергии имели работы проф. Николая Алексеевича Умова (1846–1915 гг.), среди которых особого внимания заслуживает его докторская диссертация «Уравнения движения энергии в телах» (1874 г.). Идеи Н.А. Умова получили дальнейшее развитие, в частности, в трудах английского физика Джона Генри, Пойнтинга (1852–1914 гг.) применительно к электромагнитному полю (1884 г.).


2.9. ИСТОРИЯ ОТКРЫТИЯ ЗАКОНА СОХРАНЕНИЯ И ПРЕВРАЩЕНИЯ ЭНЕРГИИ

В связи с открытием фундаментального физического явления — электромагнитной индукции, на основе которого получили развитие многие ветви современной электротехники, уместно рассмотреть здесь историю другого, еще более значительного открытия — закона сохранения и превращения энергии [1.1; 1.6].

Ученые и практики всех времен обращались к исследованиям различных энергетических процессов и предпринимали попытки обобщений, в которых содержались элементы формулировки закона сохранения и превращения энергии. Если обратиться к истории открытия закона, то термин «энергия» появился лишь на последнем этапе истории великого закона. Кроме того, необходимо учесть, что основные достижения физики, химии и биологии, позволившие сделать действительное обобщение, стали известны только с начала XIX в.

Еще мыслители древности (Демокрит, Эпикур) утверждали вечность и неуничтожимость материи и движения. Повседневная практическая деятельность требовала познаний законов движения, прежде всего единственно известного — механического. И поэтому не случайно, что закон сохранения энергии начинал выкристаллизовываться в рамках механики. В 1633 г. в «Трактате о свете» идея сохранения движения была сформулирована известным французским ученым Рене Декартом (1596–1650 гг.): «Когда одно тело сталкивается с другим, оно может сообщить ему лишь столько движения, сколько само одновременно теряет, а отнять от него лишь столько, на сколько увеличит собственное движение». Эта идея получила дальнейшее развитие у немецкого ученого Готфрида Вильгельма Лейбница (1646–1716 гг.) в его законе сохранения живых сил.

После классических работ Исаака Ньютона (1643–1727 гг.) и Готфрида Лейбница принцип сохранения движения получил четкую формулировку в трудах М.В. Ломоносова, который решился объединить два принципа сохранения: движения и материи. Именно М.В. Ломоносову принадлежит открытие закона сохранения вещества, которое затем совершенно независимо от него повторил французский ученый Антуан Лоран Лавуазье (1743–1794 гг.). В 1744 г. М.В. Ломоносов написал ставшие знаменитыми слова «Все перемены в натуре случающиеся такого суть состояния, что сколько чего у одного тела отнимается, столько присовокупится к другому, так ежели где убудет несколько материи, то умножится в другом месте… сей всеобщий естественный закон простирается и в самые правила движения, ибо тело, движущее своею силою другое, столько же оной у себя теряет, сколько сообщает другому, которое от него движение получает».

Так в середине XVIII столетия М.В. Ломоносовым был четко сформулирован закон сохранения массы и движения как всеобщий закон природы [1.10]. Более того, первая часть его выражения («все перемены в натуре случающиеся …») сформулирована так широко, что если бы эти слова были написаны 100 лет спустя, когда стали известны другие «перемены в натуре» — многочисленные взаимные преобразования энергии (электрической, тепловой, химической, механической), то другие формулировки закона сохранения и превращения энергии и сохранения материи были бы излишни. Но, к сожалению, и эпоха была еще не та, и научные труды М.В. Ломоносова почти 150 лет оставались неизвестными.

Чтобы можно было осмыслить качественные превращения энергии из одной ее формы в другую, должны были сложиться необходимые и достаточные научно-технические предпосылки. Важнейшими среди этих предпосылок явились развитие учения о теплоте и теплотехническая практика. Известно, какую роль в развитии человека на заре его истории сыграл огонь. В процессе трудовой деятельности человек научился добывать огонь трением. В получении огня трением уже проявлялось качественное преобразование механической энергии в тепловую.

Установлению взаимосвязей между механической и тепловой энергией длительное время объективно препятствовала теория теплорода. Считалось, что теплород выдавливается из вещества при его сжатии, например, при сжатии газа, как сок из апельсина. Гениальные мысли М.В. Ломоносова о молекулярном движении как источнике теплоты, о кинетической природе теплоты в более широком смысле оставались вне поля зрения широкой научной общественности. Наиболее ощутимый удар по теории теплорода уже в эпоху паровых машин (1798 г.) нанесли опыты американца Бенджамина Томпсона (1753–1814 гг.), более известного в Европе под титулом графа Румфорда. При сверлении орудийных стволов в г. Мюнхене Румфорд наблюдал выделение теплоты, что, впрочем, было всем известно. Однако Румфорд сумел показать, что при этом может выделиться практически неограниченное количество теплоты. В своих опытах он принимал меры к изоляции сверла и ствола с тем, чтобы исключить поступление теплорода, этой «субстанции теплоты», откуда-либо извне.

Но еще примерно 30 лет после опытов Румфорда теория теплорода, подправляемая и уточняемая, продолжала занимать господствующее положение в объяснениях причины возникновения теплоты. Существенно важной для понимания факта превращения одного вида движения (например, механического) в другой (например, тепловое) была мысль об эквиваленте, в частности о механическом эквиваленте теплоты.

Драматизм истории открытия закона сохранения и превращения энергии состоял в том, что практически до момента полного признания этого закона почти каждое предшествующее открытие, подтверждающее его справедливость, либо не публиковалось, либо на него не обращали должного внимания, либо оно просто встречалось в штыки официальной наукой.

Соответствующие труды М.В. Ломоносова до 1904 г. находились в забвении, а будучи в свое время опубликованными в России, не проникли в лаборатории Запада. Румфорд, поколебав устои теории теплорода, не смог ее низвергнуть, не найдя доказательств эквивалентности превращения механического движения в теплоту. Двадцативосьмилетний талантливый французский инженер Сади Карно (1796–1832 гг.) [1.1] опубликовал в 1824 г. замечательную работу «Размышление о движущей силы огня и о машинах, способных развивать эту силу», в которой изложил то, что впоследствии стали называть вторым началом термодинамики, или «принципом Карно». Но более поздние исследования, в которых С. Карно отказался от теории теплорода и определил впервые механический эквивалент теплоты, своевременно не были опубликованы, и рукописи его стали известны лишь в 1878 г.

В приложении к своей единственной книге С. Карно писал: «Тепло — это не что иное, как движущая сила, или, вернее, движение, изменившее свой вид. Это движение частиц тел. Повсюду, где происходит уничтожение движущей силы, возникает одновременно теплота в количестве, точно пропорциональном количеству исчезнувшей движущей силы. Обратно, всегда при исчезновении теплоты возникает движущая сила». По измерениям С. Карно механический эквивалент теплоты составил 370 кг?м (напомним, что это значение составляет 427 кг?м, или 4186 Дж).

Теоретические исследования С. Карно отвечали на конкретный вопрос, поставленный развивающейся промышленностью, как сделать тепловой двигатель более экономичным. С. Карно исходил из убеждения о невозможности осуществления вечного двигателя. Но и на его работы современники не обратили того внимания, которого эти работы заслуживали.

Исследования химических, тепловых и механических действий электрического тока, открытие явления электромагнитной индукции в первые 40 лет XIX в. послужили второй важной предпосылкой к открытию закона сохранения и превращения энергии.

В 1836 г. М. Фарадей сформулировал два закона электролиза, которыми установил связи между количеством электричества и химическими свойствами вещества.

Великий английский физик совершенно определенно подчеркивал необходимость установления эквивалентов между различными видами энергии, или, по терминологии того времени, между различными силами. Он писал: «Мы имеем много процессов, при которых внешняя форма силы может претерпевать такие изменения, что происходит явное превращение ее в другую. Так, мы можем превратить химическую силу в электрический ток, а электрический ток в химическую силу. Прекрасные опыты Т. Зеебека и Ж. Пельте показывают взаимную связь теплоты и электричества, а Г. Эрстеда и мои собственные показывают превращаемость электричества и магнетизма. Но ни в одном случае, даже с электрическим угрем и скатом, нет производства силы без соответствующего израсходования чего-либо, что питает ее». В своем дневнике в 1837 г. М. Фарадей записал: «Нужно сравнить количество материальных сил (т.е. сил электричества, тяготения, химического сродства, сцепления и т.д.), где возможно дать выражение для их эквивалентов в той или иной форме».

Важную роль в открытии закона сохранения и превращения энергии сыграли труды Э.Х. Ленца и, в частности, открытие им закона о направлении индуцированного тока и принципа обратимости электрических машин [1.1; 1.6; 2.9; 2.10]. Важной предпосылкой к открытию закона сохранения и превращения энергии явились успехи биологии. Развеивался миф об особой «жизненной силе» в организмах человека и животных. Была установлена прямая связь между количеством потребляемой пищи и способностью производить работу.

40-е годы XIX столетия — время широких обобщений. Решающую роль в установлении закона сохранения и превращения энергии история отводит немецким ученым Роберту Майеру (1814–1878 гг.) и Герману Гельмгольцу, а также английскому физику Джеймсу Джоулю (1818–1889 гг.) [1.1; 1.6].

Р. Майер был судовым врачом на голландском корабле, когда в 1840 г. «внезапно» ему пришла в голову мысль о законе сохранения и превращения энергии. Слово «внезапно» взято в кавычки недаром: о внезапном озарении писал впоследствии Р. Майер, но может ли быть внезапным открытие, предпосылки которого были хорошо известны выпускнику Тюбингенского университета? Внезапным был для Р. Майера исходный толчок: он обратил внимание на то, что было хорошо известно врачам, работающим постоянно в тропических широтах. Во время стоянки корабля на Яве заболел матрос, и Р. Майер, как тогда было принято, «пустил ему кровь», вскрыв вену. Каково же было его удивление, когда он увидел, что венозная кровь была не столь темной, как в умеренных широтах. Р. Майер понял, что при высокой средней температуре воздуха для поддержания жизнедеятельности и необходимой температуры организма требуется меньше питательных веществ и меньшее «сгорание» последних. Сопоставление многочисленных научных фактов из области химии, физики и биологии привело его к тому, что мысли, согласно выражению Р. Майера, пронзившие его, подобно молнии, навели на вывод о существовании всеобщего закона природы [2.11].

В 1841 г. Р. Майер написал статью «О количественном и качественном определении сил», но редактор известного в Европе физического журнала не счел нужным ее напечатать. Рукопись статьи была обнаружена в архивах редакции и опубликована лишь в 1881 г., т.е. 40 лет спустя. Следующая статья «Замечания о силах неживой природы» была опубликована в 1842 г. В этой работе Р. Майер много внимания уделяет взаимопревращениям механической работы и теплоты, не зная о соответствующем исследовании С. Карно, определяет механический эквивалент теплоты (по его данным, он равен 365 кг?м/ккал), говорит о «неразрушимости» сил и формулирует свой принцип. Здесь же Р. Майер впервые в истории науки вкладывает в понятие «сила» смысл «энергия», не произнося еще этого слова (впрочем, слово было произнесено раньше; этим словом английский физик Томас Юнг (1773–1829 гг.) обозначил величину, пропорциональную массе и квадрату скорости движущегося тела).

Идеи Р. Майера носили столь общий и универсальный характер, что они сначала не были восприняты современниками. Его жизнь превратилась в непрерывную борьбу за утверждение своего принципа.

Классические измерения механического эквивалента теплоты провел в 1841–1843 гг. (опубликовано в 1843 г.) Д. Джоуль. По его данным, этот эквивалент составлял 460 кг?м/ккал. Д. Джоуль также установил независимо от Э. Ленца связь между электрическим током и выделяемой теплотой (закон Джоуля — Ленца). Интересно отметить, что работу Д. Джоуля Британское общество (так называется Британская академия наук) отказалось опубликовать в полном объеме, требуя от него все новых экспериментальных уточнений.

Наконец, Г. Гельмгольц в 1847 г. в работе «О сохранении силы» дал в наиболее общем виде закон сохранения, показав, что сумма потенциальной и кинетической энергии остается постоянной. Г. Гельмгольц вывел выражение электродвижущей силы индукции исходя из закона сохранения энергии. Там же впервые дана математическая трактовка закона. Завершением длительного пути, пройденного наукой до точной формулировки закона сохранения энергии, можно считать доклад У. Томсона «О динамической теории тепла» (1851 г.).

У. Томсон в 1860 г. ввел в науку термин «энергия» в современном его смысле. К такому же толкованию термина «энергия» пришел в 1853 г. известный шотландский физик Уильям Джон Макуорн Ренкин (Ранкин) (1820–1872 гг.) — один из создателей технической термодинамики.

Изложение истории открытия закона уместно закончить словами выдающегося английского физика и общественного деятеля Джона Димонда Бернала (1901–1971 гг.), написанными 100 лет спустя: «Закон сохранения энергии … был величайшим физическим открытием середины XIX в. Он объединил много наук и находился в исключительной гармонии с тенденциями времени. Энергия стала универсальной валютой физики — так сказать золотым стандартом изменений, происходивших во вселенной…. Вся человеческая деятельность в целом — промышленность, транспорт, освещение и, в конечном счете, питание и сама жизнь — рассматривалась с точки зрения зависимости от этого одного общего термина — энергия» [2.12].


2.10. ПЕРВЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

2.10.1. ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ

Важнейшими научными предпосылками электромеханики послужили достижения в области электродинамики и открытие электромагнитной индукции. Свою положительную роль при разработке первых конструкций электрических машин и электромагнитных устройств сыграл и опыт конструирования машин и механизмов доэлектрического периода [1.6; 2.13].

В связи с тем что принцип обратимости электрической машины был открыт только в 30-х годах, а его использование в широких масштабах начинается лишь с 70-х годов XIX в., представляется вполне правомерным рассматривать отдельно историю создания электродвигателя и генератора в период до 1870 г. А поскольку единственным надежным и изученным источником электроэнергии до середины XIX в. был только гальванический элемент, то, естественно, первыми стали развиваться электрические машины постоянного тока.

В развитии электродвигателя постоянного тока можно отметить три основных этапа, впрочем достаточно условных, так как конструкции и принципы действия электродвигателей, характерные для одного этапа, в отдельных случаях появлялись вновь спустя много лет. Вместе с тем более поздние и более прогрессивные конструкции в зачаточной форме нередко можно найти в первоначальном периоде развития электродвигателя. Для характеристики каждого этапа совершенствования электродвигателя в дальнейшем изложении рассматриваются только наиболее типичные конструкции.

Начальный период развития электродвигателя (1821–1834 гг.) тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую и начинается с описанного выше опыта М. Фарадея (см. рис. 2.11).

Возможность превращения электрической энергии в механическую показывалась и во многих других экспериментах. В этот период было создано несколько физических моделей электродвигателей (английскими учеными Петером Барлоу (1824 г.), Уильямом Риччи (1833 г.) и Джозефом Генри (1831 г.)). Прибор Дж. Генри интересен тем, что в этом устройстве впервые сделана попытка использовать притяжение разноименных и отталкивание одноименных магнитных полюсов для получения непрерывного движения (в данном случае — качательного). Мощность двигателей подобного типа была очень небольшой (0,044 Вт), и, конечно, они не могли использоваться на практике.

Как на первом этапе, так и позднее было предложено много конструкций двигателей с качательным движением якоря. Однако более прогрессивными оказались попытки построить электродвигатель с вращательным движением якоря.

Второй этап раннего развития электрических двигателей (1834–1860 гг.) характеризуется преобладанием конструкций с вращательным движением явнополюсного якоря. Вращающий момент на валу у таких двигателей обычно был пульсирующим.

Наиболее характерные и существенно важные работы по конструированию электродвигателей этого рода принадлежат Борису Семеновичу Якоби (1801–1874 гг.) [2.14].

В 1834 г. Б.С. Якоби послал в Парижскую академию наук сообщение об изобретенной им «магнитной машине». Более полное описание электродвигателя Б.С. Якоби было опубликовано в 1835 г.

Представляют интерес некоторые высказывания Б.С. Якоби, в которых он определяет свой подход к изобретению электродвигателя: «В мае 1834 г. я построил свой первый магнитный аппарат, дающий постоянное круговое движение … но я не мог сначала отрешиться от идеи получить возвратно-поступательное движение, производимое последовательным притягивающим и отталкивающим действием магнитных стержней, а затем уже превратить это возвратно-поступательное движение в постоянное круговое известным в технике способом. Мне казалось, что такой прибор будет не больше чем забавной игрушкой для обогащения физических кабинетов … Все эти соображения … заставили меня окончательно отказаться от попытки построить аппарат, получающий возвратно-поступательное движение …»

Сомнения Б.С. Якоби легко объяснимы: привычный паровой двигатель давал возвратно-поступательное движение, и, конечно, хотелось построить новый, электрический двигатель, дающий такое же «нормальное» движение. Современные работы в области линейных электродвигателей свидетельствуют о том, что сама идея поступательного движения в электрических машинах не является порочной, но техническую революцию совершили машины вращательного движения.

Внешний вид первого двигателя Б.С. Якоби показан на рис. 2.14. Этот электродвигатель работал по принципу взаимодействия двух комплектов электромагнитов, один из которых располагался на подвижной раме, другой — на неподвижной.

В качестве источника питания электромагнитов применялась батарея гальванических элементов. Для изменения полярности подвижных электромагнитов использовался коммутатор.

Рис. 2.14. Внешний вид двигателя Якоби

Коммутатор представлял собой оригинальную и глубоко продуманную часть устройства электродвигателя Якоби. Конструктивно он состоял из четырех металлических колец 7–4, установленных на валу и изолированных от него (рис. 2.15); каждое кольцо имело четыре выреза по одной восьмой части окружности. Вырезы заполнялись изолирующими вкладками; каждое кольцо было смещено на 45° по отношению к предыдущему. По окружности кольца скользил рычаг 5, представляющий собой своеобразную щетку; второй конец рычага был погружен в соответствующий сосуд с ртутью 6, к которому подводились проводники от батареи. Таким образом, при каждом обороте кольца 4 раза разрывалась электрическая цепь. К электромагнитам вращающегося диска подходили от колец проводники, укрепленные на валу машины. Обмотки всех электромагнитов неподвижной рамы были соединены последовательно, и ток в них имел одно и то же направление. Обмотки электромагнитов вращающегося диска были также соединены последовательно, но направление тока в них с помощью коммутатора изменялось 8 раз за один оборот вала. Следовательно, полярность этих электромагнитов также изменялась 8 раз за один оборот вала и они поочередно притягивались и отталкивались электромагнитами неподвижной рамы. На рис. 2.15 стрелками указаны направления токов для данного положения вала. Мощность двигателя составляла примерно 15 Вт.

Рис. 2.15. Коммутатор (а) и схема коммутации (б) электродвигателя Якоби
I — обмотка неподвижной рамы; II — обмотка подвижной рамы 

Б.С. Якоби пришлось затратить еще несколько лет труда и проявить редкую изобретательность, чтобы осуществить хотя бы в скромных масштабах свое желание «посвятить все свое время и всю свою энергию этому делу именно теперь, когда не остается больше никаких сомнений в успехе задуманного, и не только для того, чтобы не отказываться от своих прежних трудов, но и для того, чтобы мое новое отечество, с которым я уже связан многими узами, не лишилось возможности сказать, что Нева раньше Темзы или Тибра покрылась судами с магнитными двигателями». Эти слова он написал в записке министру просвещения и президенту Академии наук, прося у него материальной помощи для экспериментов. Широкой поддержки у министра Б.С. Якоби не нашел, но тем не менее четыре года спустя, в 1838 г., по р. Неве курсировал бот, вмещавший 12 пассажиров и приводимый в движение электродвигателями Б.С. Якоби.

Это был уже совсем другой двигатель, и конструкция его точно отражала типичные пути изобретательской мысли: поскольку не был еще создан принципиально новый экономичный и малогабаритный электрический двигатель, то Б.С. Якоби пошел по пути объединения многих машин с электромагнитами, имеющими сосредоточенные катушечные обмотки, в один агрегат. Сначала это был так называемый сдвоенный двигатель первого типа. Он имел 24 неподвижных электромагнита (по 12 с каждой стороны), а между ними вращающийся диск с 12 электромагнитами. К 1838 г. Б.С. Якоби создал двигатель нового типа (второго типа), но в создании этой своей конструкции он уже был не первым.

В 1837 г. американский техник Томас Девенпорт (1802–1851 гг.) также построил электродвигатель с непосредственным вращением якоря, в котором взаимодействовали подвижные электромагниты с неподвижными постоянными магнитами [1.6; 2.15].

Сравнивая конструкции электродвигателей Б.С. Якоби и Т. Девенпорта, можно отметить, что принцип их действия одинаков (у Т. Девенпорта появились неподвижные постоянные магниты вместо электромагнитов Б.С. Якоби), но двигатель Т. Девенпорта был более компактным благодаря расположению подвижных и неподвижных частей в одной плоскости. Это обстоятельство не могло не привлечь внимания Б.С. Якоби, стремившегося увеличить мощность своего электродвигателя при сравнительно небольшом увеличении его габаритов.

В 1837 г. в распоряжение Б.С. Якоби был предоставлен бот, рассчитанный на 10 гребцов, на котором предполагалось установить электродвигатель и произвести затем соответствующие испытания и технико-экономические подсчеты. В процессе совершенствования двигателя Б.С. Якоби пошел по пути конструктивного объединения на общем вертикальном валу нескольких электродвигателей в один агрегат, расположив неподвижные и вращающиеся магниты в одной плоскости. При этом увеличивались размеры электродвигателя в вертикальном направлении, что было вполне удобно для опытной судовой установки.

Двигатель Б.С. Якоби конструкции 1838 г. представлял собой комбинацию 40 небольших электродвигателей (рис. 2.16), объединенных по 20 шт. на двух вертикальных валах, установленных в деревянной станине.

Для питания током обмоток электромагнитов на боте были установлены гальванические элементы. Изменение направления тока в обмотках подвижных электромагнитов осуществлялось коммутаторами, аналогичными описанным выше. Вращение от вертикальных валов с помощью конических шестерен передавалось на горизонтальный, на котором укреплялись гребные колеса, расположенные по обоим бортам бота.

Рис. 2.16. Модель одного элемента электродвигателя Якоби второго типа
1, 2 — зажимы обмоток двух неподвижных электромагнитов; 3 — зажим коммутирующего устройства; 4 — вращающаяся часть двигателя 

Испытания показали возможность практического применения электродвигателей, но в то же время обнаружили, что при питании их током от гальванических батарей механическая энергия получается чрезмерно дорогой: 1 л.с. в двигателе Б.С. Якоби обходилась в 12 раз дороже, чем в случае паровой машины. Необходимо отметить, что для преодоления основного недостатка гальванических батарей — малой энергоемкости — требовалось использовать очень много элементов, а это требование для многих транспортных установок было неприемлемым. Так, например, на боте Б.С. Якоби вначале было установлено 320 гальванических элементов. Произведенные опыты, а также теоретическое исследование привели Б.С. Якоби к очень важному для практики выводу: применение электродвигателей находится в прямой зависимости от стоимости электроэнергии, т.е. от создания генератора, более экономичного, чем гальванические батареи.

Однако Б.С. Якоби не мог еще обнаружить принципиального недостатка двигателей со стержневыми элекромагнитами: в этих двигателях происходит постоянное включение и выключение катушек, и магнитное поле то создается, то исчезает. На создание поля в машине непрерывно требуется электрическая энергия, которая при отключении катушек преобразуется в теплоту. Поэтому по логике развития вскоре должны были появиться непрерывные обмотки, которые обеспечивают электромеханическое преобразование энергии в установившемся режиме без изменения энергии магнитного поля.

Рассмотренные электродвигатели действовали по принципу взаимного притяжения и отталкивания магнитов или электромагнитов, вращающий момент на валу отличался непостоянством, и в связи с попеременными притяжениями и отталкиваниями стержневых якорей действие таких электродвигателей было пульсирующим. При столь резких и частых изменениях вращающего момента и при указанных выше низких технико-экономических показателях подобных электродвигателей их применение в системе электропривода представлялось малоперспективным.

Некоторые электродвигатели, построенные в 40–60-х годах XIX в., были основаны на принципе втягивания стального сердечника в соленоид. Получившееся при этом возвратно-поступательное движение преобразовывалось посредством балансира или шатунно-кривошипного механизма во вращательное движение вала, снабженного для равномерности хода маховыми колесами.

Новый этап в развитии электродвигателей постоянного тока связан с разработкой конструкций, содержащих непрерывную обмотку на якоре. Конструктивно якорь выполнялся сначала в виде кольца или полого цилиндра с обмоткой кольцевого типа, когда провод при намотке пропускался через внутреннюю полость, затем стали выполнять цилиндрические сердечники с обмоткой барабанного типа, когда провод размещался только на наружных поверхностях сердечника. В обоих случаях линии магнитного потока входили в сердечник якоря перпендикулярно поверхности цилиндра, а не в торец, как при стержневом якоре.

Первым конструкцию кольцевого якоря предложил в 1860 г. студент (впоследствии профессор) Пизанского университета Антонио Пачинотти (1841–1912 гг.).

Электродвигатель А. Пачинотти состоял из якоря кольцеобразной формы, вращающегося в магнитном поле электромагнитов (рис. 2.17). Якорь, имеющий форму стального кольца с зубцами (наличие зубцов уменьшало магнитное сопротивление и облегчало крепление обмотки) и латунными спицами, укреплялся на вертикальном валу. На кольце между зубцами якоря наматывались катушки, концы которых подводились к пластинам коллектора, расположенного на нижней части вала. Подвод тока к пластинам коллектора осуществлялся роликами. Обмотка электромагнитов, снабженных полюсными наконечниками, включалась последовательно с обмоткой якоря, т.е. согласно современной терминологии машина имела последовательное возбуждение.

Рис. 2.17. Электродвигатель Пачинотти

Вращающий момент в электродвигателе А. Пачинотти был практически постоянным. Габариты двигателя были невелики по сравнению с размерами других электродвигателей равной мощности. Основное значение работы А. Пачинотти состоит в том, что им был сделан следующий важный шаг на пути создания современной машины постоянного тока: явнополюсный якорь заменен неявнополюсным. К этому следует еще добавить удобную схему возбуждения и коллектор, по существу, современного типа.

Важно отметить, что А. Пачинотти указывал, что его машина может быть превращена в генератор, если заменить электромагниты, возбуждающие поле на постоянные магниты.

Из приведенных рассуждений следует, что А. Пачинотти достаточно отчетливо понимал физические процессы в электродвигателе и пришел к мысли об обратимости электрической машины, не зная еще принципа самовозбуждения, поэтому и считал нужным при превращении двигателя в генератор заменить электромагниты постоянными магнитами.

В 1863 г. А. Пачинотти опубликовал сведения о конструкции своего электродвигателя, но на эту публикацию не было обращено достаточного внимания, и изобретение было на время забыто. Несмотря на большой интерес с принципиальной точки зрения, двигатель не получил распространения, так как по-прежнему отсутствовал экономичный генератор электрической энергии. Идею кольцевого якоря возродил примерно через 10 лет французский конструктор Зеноб Теофил Грамм (1826–1901 гг.) в конструкции электромашинного генератора. В 1873 г. немецкий изобретатель Фридрих Хефнер-Альтенек (1845–1904 гг.) изобрел барабанный якорь, применяющийся в электрических машинах до настоящего времени.

Особо следует остановиться на открытии принципа обратимости электрических машин. Сама логика исследований Б.С. Якоби, относящихся к его электродвигателю, должна была подтолкнуть его в начале 30-х годов XIX в. к этому открытию. И еще не зная, вероятно, о работах своего выдающегося современника и будущего друга академика Э.Х. Ленца, в мемуарах 1835 г. Б.С. Якоби писал: «Будучи приведенной во вращение магнетизирующей силой гальванического тока, машина эта является одновременно аппаратом, состоящим из перемещающихся магнитов, способных производить магнитоэлектрический ток в направлении, противоположном гальваническому току». Однако право первооткрывателя важнейшего принципа электрической машины — принципа обратимости, бесспорно принадлежит Э.Х. Ленцу. В докладе Петербургской академии наук, сделанном 29 ноября 1833 г. и опубликованном в известнейшем в то время журнале «Poggendorfes Annalen» в 1834 г., этот принцип представляется в виде следствия из сформулированного здесь же закона, обессмертившего имя великого физика, — закона Ленца. Более четко принцип обратимости был еще раз сформулирован Э.Х. Ленцем в статье «О некоторых опытах из области гальванизма», где было записано:

«Каждый электромагнитный опыт может быть обращен таким образом, что он приведет к соответствующему магнитоэлектрическому опыту. Для этого нужно только сообщить проводнику гальванического тока каким-либо иным способом то движение, которое он совершает в случае электромагнитного опыта, и тогда в нем возникнет ток направления, противоположного направлению тока в электромагнитном опыте». 

2.10.2. ЭЛЕКТРИЧЕСКИЕ ГЕНЕРАТОРЫ

Как уже отмечалось, гальванические батареи существенно тормозили практическое применение электродвигателей. Развитие электрических машин наглядно иллюстрирует характерную закономерность в развитии техники вообще. Эта закономерность проявляется в следующем: если развитие какой-либо отрасли техники тормозится недостаточным уровнем другой отрасли техники или области науки, то развитие последней ускоряется требованиями первой. Так, если отсутствие экономичного генератора тока сдерживало расширение практических применений электричества, то последние стимулировали, ускоряли работы по созданию более совершенной конструкции генератора.

В развитии электрического генератора постоянного тока можно выделить четыре этапа [1.6; 2.15; 2.16].

Первый этап (1831–1851 гг.) характеризуется созданием электрических генераторов с возбуждением от постоянных магнитов. Такие генераторы получили в то время название магнитоэлектрических машин. Открытие в 1831 г. явления электромагнитной индукции указало новый способ получения электрического тока, который нашел свое практическое воплощение в первом униполярном генераторе — диске Фарадея. Один из первых шагов в истории генератора несет в себе тайну, оставшуюся неразгаданной. Дело в том, что имя изобретателя, сделавшего этот шаг, осталось неизвестным. Дадим слово М. Фарадею: «Вчера, по возвращении в город, — писал ученый в редакцию известного лондонского научного журнала 27 июля 1832 г., — я нашел закрытое письмо, оно анонимное, и я не имею возможности назвать его автора. Но ввиду того, что он описывает опыт, при котором впервые удалось получить химическое разложение магнитоэлектрическим током, я посылаю Вам это письмо для опубликования…»

Письмо было подписано двумя латинскими буквами P.M. Так и вошел в историю техники «генератор P.M.». Эта машина представляла собой синхронный многополюсный генератор, т.е. была генератором переменного тока. Письмо P.M. привлекло к проблеме генератора внимание многих ученых. Прочел публикацию и сам P.M.; в марте 1833 г. он обратился в редакцию журнала с благодарностью М. Фарадею за публикацию письма и описанием усовершенствований в машине. Главное из них — добавочное стальное кольцо (ярмо), замыкавшее магнитную цепь сердечников электромагнитов. И снова та же подпись P.M.

На рис. 2.18 представлен усовершенствованный вариант генератора.

Однако переменный ток в то время не мог еще найти себе потребителя, так как для всех практических применений электричества (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.

Впервые приспособление для выпрямления тока в попеременно-полюсной машине (в отличие от униполярной машины М. Фарадея, которая не нуждалась в устройстве для выпрямления тока, так как давала непосредственно постоянный ток) было применено в 1832 г. в генераторе французских изобретателей братьев Пиксии. Изобретение представлялось тогда настолько важным, что сообщения о нем были дважды сделаны в Парижской академии наук. В первых конструкциях генераторов для получения тока неизменного направления (но резко пульсирующего) применялось так называемое коромысло Ампера. A.M. Ампер отмечал пластинчатый барабанный коммутатор в машине Пиксии с прижимающимися к амальгамированным поверхностям пластин подпружиненными медными или бронзовыми пластинами — щетками. Позднее он стал основой коммутирующих устройств для всех последующих конструкций генераторов постоянного тока. С машиной Пиксии работал Э.Х. Ленц, и именно на этой машине в 1838 г. он демонстрировал принцип обратимости.

Рис. 2.18. Генератор P.M.
1 — деревянный диск, укрепленный на оси 2, приводимый в движение рукояткой 3; 4 — подвижные постоянные магниты; 5 — железные сердечники катушек 7; б — стальное кольцо с добавочными обмотками, замыкающее магнитную цепь сердечников; 8 — подставка 

Недостатком машин P.M. и братьев Пиксии явилось то, что в них приходилось вращать более или менее тяжелые постоянные магниты. Целесообразнее оказалось сделать магниты неподвижными, а заставить вращаться более легкие катушки. При этом проще было выполнить и коммутирующее устройство, вращающаяся часть которого была закреплена на валу вместе с якорем. Магнитоэлектрические генераторы такого типа оказались значительно удобнее и именно в такой конструктивной форме впервые вошли в практику.

Первым генератором, как уже отмечалось, получившим практическое применение, был магнитоэлектрический генератор Б.С. Якоби. Занимаясь усовершенствованием методов электрического взрывания мин, Б.С. Якоби построил в 1842 г. генератор, названный им «магнитоэлектрической батареей» (рис. 2.19). При вращении катушек 3 зубчатой передачей 5 в поле постоянных магнитов 1 в них наводилась ЭДС; на валу 2 имелось коммутирующее устройство 4 в виде двух полуцилиндров, представляющее собой простейший двухпластинчатый коллектор. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов.

Стремление повысить мощность магнитоэлектрических генераторов привело к увеличению количества постоянных магнитов. Этот путь отражал уже знакомую из истории развития электродвигателей тенденцию: для увеличения мощности соединять несколько элементарных машин в одну. Наибольшее распространение в лабораторной практике 40–50-х годов XIX в. получил магнитоэлектрический генератор немецкого электротехника Э. Штерера (1813–1890 гг.) с тремя вращающимися постоянными магнитами (1843 г.). Этот генератор использовался учеными (в том числе Э.Х. Ленцем и Б.С. Якоби) для исследования процессов в магнитоэлектрических машинах.

Известный толчок к построению более мощных магнитоэлектрических генераторов дали дуговые лампы с регуляторами, получившие применение на маяках в связи с развитием морского транспорта. Еще в 1849 г. профессор физики Брюссельской военной школы Нолле принялся за построение мощного магнитоэлектрического генератора для установки на маяках, избрав уже проторенный путь комбинирования в одном агрегате большого числа машин. Работы Нолле были продолжены другими учеными, и к 1856 г. машина получила свое конструктивное завершение. Для производства таких генераторов в Париже была организована электропромышленная компания «Альянс» (отсюда произошло и название новой машины). Первая такая машина была установлена на маяке близ г. Гавра.

Рис. 2.19. Магнитоэлектрический генератор Якоби 

В генераторе «Альянс» на чугунной станине были укреплены в несколько рядов подковообразные постоянные магниты, расположенные по окружности и радиально по отношению к валу. В промежутках между рядами магнитов на валу устанавливались диски с большим числом катушек-якорей (рис. 2.20). В изображенной на рис. 2.20 машине было 40 магнитов и 64 стержня (явнополюсных якоря). Различные варианты машины «Альянс» имели разное количество рядов магнитов (три, пять, семь). На валу генератора укреплен коллектор с 16 металлическими пластинами, изолированными друг от друга и от вала машины. В качестве коллекторных щеток служили специальные ролики. В машине впервые было предусмотрено устройство для смещения роликов в зависимости от нагрузки. Перемещение роликов происходило под действием тяг, идущих от центробежного регулятора, который был связан с валом машины.

Рис. 2.20. Общий вид генератора «Альянс»
1 — ряды неподвижных магнитов; 2 — несущие диски с катушками-якорями; 3, 4 — коллектор; 5–7 — устройство для смещения роликовых токоприемников 8, 9 — центробежный регулятор 

В течение 1857–1865 гг. в эксплуатации было около 100 машин «Альянс». Для привода одной такой машины требовался паровой двигатель мощностью 6–10 л.с. Масса шестидисковой машины «Альянс» доходила до 4 т. Есть сведения, что машина «Альянс» получила одобрение М. Фарадея.

Генератор «Альянс» нагляднее, чем другие, меньшие по размерам машины, показал недостатки, присущие вообще магнитоэлектрическим машинам. Материалы и технология производства постоянных магнитов были еще несовершенными. Под действием реакции якоря, в результате естественного старения и возможных вибраций магниты быстро размагничивались, в связи с чем ЭДС генератора уменьшалась и его мощность снижалась. Во всех этих машинах применялись стержневые якоря, имевшие многослойную обмотку. При работе они быстро нагревались вследствие плохого отвода теплоты, что приводило к разрушению изоляции. Масса и габариты магнитоэлектрических генераторов, несмотря на их небольшую мощность, были весьма значительными, и крупные машины были сравнительно дорогими. Принципиальным недостатком машин с явнополюсными якорями явилось то, что они давали резко пульсирующий ток.

Рис. 2.21. Генератор Уайльда 

Второй этап в развитии электрического генератора постоянного тока условно можно обозначить промежутком времени между 1851 и 1867 гг. Этот этап характеризуется преимущественным конструированием генераторов с независимым возбуждением, т.е. с возбуждением электромагнитов от постороннего, независимого источника. Это способствовало значительному улучшению работы генераторов и уменьшению их относительной массы.

Впервые обоснованное указание на целесообразность замены постоянных магнитов электромагнитами дали в начале 50-х годов XIX в. немецкий ученый Вильгельм Зинстеден (1803–1891 гг.) и датский изобретатель Серено Хиорт (1801–1870 гг.), но их идеи и конструкции были настолько необычны и неожиданны, что вначале не привлекли к себе должного внимания.

В качестве характерного примера генератора с электромагнитами, обмотки которых питались токами от независимого источника, может быть указан генератор англичанина Генри Уайльда (1863 г.). Этот генератор (рис. 2.21) имел П-образный электромагнит 7, для питания которого был приспособлен отдельный возбудитель — небольшой магнитоэлектрический генератор 2. Вместо обычно применявшегося стержневого якоря Г. Уайльд использовал предложенный в 1856 г. крупным немецким электротехником и предпринимателем Вернером Сименсом (1816–1892 гг.) якорь с сердечником двутаврового сечения (так называемый двухТ-образный якорь), который является разновидностью явно-полюсного якоря. Этот якорь имел форму вала с продольными выточками, в которые укладывалась обмотка. Машина с двухТ-образным якорем обладала меньшим магнитным рассеянием, чем со стержневым, но в то же время этот якорь, как и стержневой, имея многослойную обмотку с плохим теплоотводом, сильно нагревался и тем самым ограничивал мощность установки.

Машина Г. Уайльда подготовила конструкторскую мысль к созданию генераторов с самовозбуждением.

Началом третьего этапа в развитии генераторов постоянного тока условно можно считать 1867 г., когда почти одновременно в разных странах был установлен принцип самовозбуждения. Мы пишем «условно» потому, что одну какую-то дату назвать невозможно; вокруг этого важнейшего в истории электрических машин изобретения разгорелся большой спор о приоритете. На первенство претендовали очень известные ученые и изобретатели. Дело обстояло так.

В январе 1867 г. В. Сименс представил в Берлинскую академию наук доклад, в котором изложил сущность принципа самовозбуждения. В докладе были такие слова: «Однако того небольшого количества магнетизма, которое остается даже в самом мягком железе, достаточно, чтобы при возобновлении вращения снова получить в замкнутой цепи непрерывное возрастание тока. Следовательно, достаточно один раз пропустить ток в цепь обмотки неподвижного магнита, чтобы сделать прибор способным давать ток при каждом возобновлении вращения».

В. Сименс назвал принцип самовозбуждения динамоэлектрическим, а самовозбуждающийся генератор стал с тех пор называться динамомашиной. Впрочем, динамомашиной постепенно стали называть любой машинный генератор постоянного тока. Почти одновременно с В. Сименсом с идеей самовозбуждения выступили и даже получили патенты английские изобретатели Чарльз Уитстон, а также братья Кромвель и Семьюэль Варлей. Но еще задолго до В. Сименса в 1856 г. венгерский физик, профессор Будапештского университета Аньош Йедлик (1800–1895. гг.) [2.17] пришел к выводу о том, что если обмотки возбуждения присоединить к зажимам якоря того же генератора, то при пуске машины развивается процесс самоусиления магнитного поля. Вместе с тем А. Йедлик заметил, что для возникновения этого процесса нет необходимости в установке постоянных магнитов, а вполне достаточно остаточного магнетизма. Так А. Йедлик совершенно сознательно сформулировал не только принцип самоусиления магнитного поля, но и принцип самовозбуждения генератора. В 1861 г. он уже построил самовозбуждающийся генератор.

Работы А. Йедлика были, по-видимому, несколько преждевременными, и, кроме того, он не располагал необходимыми средствами для промышленного изготовления машин в больших масштабах. Иное положение было у В. Сименса: являясь главой фирмы, со временем завоевавшей позиции ведущего мирового электротехнического концерна, он открыл широкую дорогу для производства динамомашин.

Существенным недостатком первых генераторов с самовозбуждением являлась весьма несовершенная конструкция якоря. Так, двухТ-образный якорь В. Сименса не только ограничивал мощность машин из-за быстрого нагрева, вызывал сильное искрение на коллекторе, но и давал резко пульсирующий ток. Этот ток, в свою очередь, вызывал резкую пульсацию магнитного потока и, следовательно, большие потери в стальных сердечниках. В этом отношении двухТ-образный якорь ничем не отличался от стрежневого, поскольку и тот и другой были только разновидностями неудачного явнополюсного исполнения якорей машин постоянного тока. Этот недостаток позднее сумел устранить Фридрих Гефнер-Альтенек.

Событием, революционизировавшим развитие электрической машины и положившим начало промышленной электротехнике, явилось объединение принципа самовозбуждения с конструкцией кольцевого якоря.

Разработка самовозбуждающихся генераторов с кольцевыми и барабанными якорями и развитыми магнитными системами составила основное содержание четвертого этапа в развитии электрических генераторов.

З.Т. Грамм, занимаясь изготовлением электрических машин, стал одним из самых известных французских специалистов в области электромашиностроения и электрического освещения. В июне 1870 г. он получил патент, в котором содержалось описание самовозбуждающегося (в общем случае многополюсного) генератора с кольцевым якорем. На гладкий железный кольцеобразный сердечник наматывалась замкнутая сама на себя обмотка (позднее такую обмотку стали называть граммовской). От равноудаленных точек этой обмотки шли отпайки к коллекторным пластинам. Общий вид одной из конструкций генератора Грамма изображен на рис. 2.22, а.

На станине 1 укреплены электромагниты 2 с полюсными наконечниками 3, между которыми вращается якорь 4; в специальных держателях укреплены щетки, соприкасающиеся с почти современного типа коллектором 5. Якорь приводится во вращение через приводной шкив. Обмотка возбуждения включена последовательно с обмоткой якоря.

Рис. 2.22. Самовозбуждающийся генератор Грамма для питания осветительных установок 

На рис. 2.22, б показана принципиальная схема генератора, а на рис. 2.22, в — конструкция кольцевого якоря. З.Т. Грамм указывал, что сердечник якоря может быть сплошным, а может быть изготовлен из пучка стальных проволок 7, как показано на рисунке; здесь же 2 — катушки обмотки, 3 — коллекторные пластины.

Позднее З.Т. Грамм предложил еще несколько конструкций самовозбуждающихся машин, различных по внешнему виду и мощности, но принципиальных изменений в свою машину он больше не вносил.

Генератор Грамма оказался весьма экономичным источником электрической энергии, позволявшим получать значительные мощности при высоком КПД и сравнительно малых габаритах и массе. Сравнение машины Грамма, например, с машиной «Альянс» показывает, что самовозбуждающийся генератор с кольцевым якорем имел массу на 1 кВт примерно в 6 раз меньшую, чем генератор с постоянными магнитами.

Очевидные преимущества генератора Грамма способствовали тому, что этот генератор быстро вытеснил другие типы и получил очень широкое распространение. В начале 70-х годов принцип обратимости электрических машин был уже хорошо известен, а машина Грамма использовалась как в режиме генератора, так и в режиме двигателя. Таким образом, в начале 70-х годов обе линии развития электрических машин (генератора и двигателя) объединились.

Машина Грамма представляла собой машину постоянного тока современного типа. Однако она нуждалась в определенных усовершенствованиях, которые последовали в 70–80-х годах XIX в.

В 80-х годах XIX в. продолжались исследования процессов в электрических машинах и совершенствование их конструкций. В 1880 г. американский изобретатель Хайрем Максим (1840–1916 гг.) вновь (после А. Пачинотти) предложил зубчатый якорь, а также внутренние каналы для вентиляции. Знаменитый американский электротехник Томас Альва Эдисон (1847–1931 гг.) в 1880 г. получил патент на шихтованный якорь, в котором пластины изолировались листами тонкой бумаги, позднее она была заменена лаком.

С 1885 г. стали применяться шаблонная и компенсационная обмотки, устанавливаться дополнительные полюса.

Огромное значение в совершенствовании проектирования электрических машин сыграли работы Александра Григорьевича Столетова (1839–1896 гг.) по исследованию магнитных свойств «мягкого железа», доказавшего связь магнитной восприимчивости железа с напряженностью магнитного поля.

В 1880 г. немецким физиком Эмилем Варбургом (1846–1931 гг.) было открыто явление гистерезиса и начались исследования магнитных потерь в стали. Английский ученый Джеймс Э. Юинг (1855–1935 гг.) пришел к выводу о «гистерезисном цикле» и предложил прибор для вычерчивания кривых намагничивания. Выдающийся американский электротехник Чарльз Протеус Штейнмец (1865–1923 гг.) предложил эмпирическую формулу для определения потерь на гистерезис. В 1885 г. английский электротехник Джон Гопкинсон сформулировал закон магнитной цепи. Таким образом, к концу 80-х годов электрическая машина постоянного тока приобрела современные конструктивные черты.


2.11. ЗАРОЖДЕНИЕ ЭЛЕКТРОАВТОМАТИКИ, ЭЛЕКТРОПРИБОРОСТРОЕНИЯ И ИНФОРМАЦИОННОЙ ЭЛЕКТРОТЕХНИКИ

Длительное время электрическая энергия не могла получить широкого практического применения вследствие отсутствия экономичных генераторов. Но это относится к так называемым энергетическим применениям электричества, при которых затрата энергии пропорциональна количеству получаемого продукта, интенсивности производственного процесса.

Что же касается неэнергетических применений, не требующих значительных затрат электроэнергии, когда она используется лишь в качестве вспомогательного средства для передачи сигналов (телеграфия, телефония, электрическое взрывание мин, дистанционное управление и др.), то именно такие неэнергетические применения положили начало практическому использованию электричества [1.6].

Расширение неэнергетических применений электричества сыграло значительную роль в развитии электротехники вообще, так как в процессе создания разнообразных устройств такого рода неизбежно приходилось разрешать ряд практических и теоретических проблем в области электротехники: совершенствовать источники питания, создавать разнообразные приборы и приспособления, в том числе и автоматические, изготовлять изолированные проводники, исследовать свойства различных материалов, разрабатывать методы измерений, устанавливать единицы измерения величин. Все это привело к разработке схем и методов, получивших применение в современном телеуправлении, например, кодоимпульсного метода, принципа синхронно-синфазной связи, распределителей, исполнительных устройств.

Первым электротехническим устройством, предназначенным для широкого практического использования, был электрический телеграф. Наиболее совершенным оказался электромагнитный телеграф, выгодно отличавшийся от предшествовавших ему электростатического и электролитического телеграфов.

Первый практически пригодный электромагнитный телеграф был разработан русским ученым Павлом Львовичем Шиллингом (1786–1837 гг.) в 1828–1832 гг. Этот телеграф был основан на визуальном приеме кодовых знаков (рис. 2.23) и явился исходной конструкцией последующих телеграфов. П.Л. Шиллингом впервые был внедрен в область электрической передачи кодированный сигнал, чем было положено начало кодоимпульсному методу, который получил применение в современном телеуправлении [1.6; 2.18].

В процессе разработки проекта подводной телеграфной линии Петергоф — Кронштадт (1837 г.) П.Л. Шиллингом был впервые применен каучук для изолирования подводного кабеля, а также указана возможность использования воды или земли в качестве обратного провода. Кроме того, он впервые предложил подвешивать провода на столбах, что вначале было воспринято с недоверием.

Из всех предложенных после П.Л. Шиллинга конструкций электромагнитных телеграфов наиболее широкое применение получил телеграф (1844 г.) американца Сэмюэля Морзе (1791–1872 гг.). Заслуживает внимания разработанный Б.С. Якоби принцип электрической синхронно-синфазной связи, лежащей в основе современной техники дистанционной передачи и следящего электропривода. В таком телеграфе Б.С. Якоби стрелки передающего и приемного аппаратов совершали равномерно-прерывистое шаговое движение, перемещаясь с одинаковой скоростью (синхронно) и занимая одинаковое пространственное положение (синфазно). В середине XIX в. были разработаны конструкции буквопечатающих телеграфов [1850 г. — Б.С. Якоби, 1855 г. — английским физиком Дэвидом Юзом (1831–1900 гг.)].

Рис. 2.23. Схема телеграфа Шиллинга
1 — вольтов столб; 2 — клавиатура (передатчик); 3 — приемник; 4 — обратный провод; 5 — шесть рабочих мультипликаторов и один вызывной 

Среди первых применений электричества отметим использование его в военном деле, прежде всего для воспламенения пороховых зарядов. Эта проблема впервые была успешно разрешена в 1812 г. П.Л. Шиллингом, осуществившим на Неве опыт по электрическому взрыванию подводных мин.

Дальнейшие работы в области минной электротехники развивались в направлении совершенствования электрических запалов, создания специальных электрических машин и приборов для их питания («взрывные» машинки, индукционные катушки) и автоматизации самого процесса взрывания мины.

Так, например, Б.С. Якоби в начале 40-х годов XIX в. были разработаны специальный магнитоэлектрический генератор и индукционный прибор, которые были приняты на вооружение русской армией. Созданием этих приборов было положено начало внедрению батарейной и генераторной систем зажигания с применением индукционной катушки. Именно в минном деле впервые получил применение такой широко распространенный электротехнический прибор, как индукционная катушка Б.С. Якоби. Отечественными и зарубежными военными электротехниками были разработаны также разнообразные электроавтоматические приборы, обеспечивающие взрыв мины при ее соприкосновении с кораблем [2.14].

Характерной особенностью рассматриваемого периода являются первые попытки использования электрической энергии для целей автоматического контроля, управления и регулирования. Если ранее для этого применялись различные механические устройства, то начиная с 30-х годов XIX в. в автоматических приборах и установках получают все большее применение разнообразные электромеханические элементы. Происходит качественный сдвиг в развитии автоматики и телемеханики: зарождается новая область техники — электроавтоматика. Эффективность использования электричества в автоматических и телемеханических устройствах определялась прежде всего свойством электрического тока быстро распространяться по проводу. Основными элементами простейших электроавтоматических и телемеханических устройств были электромагниты и электромагнитные реле. К их числу могут быть отнесены электромагнитные реле в телеграфах П.Л. Шиллинга и Б.С. Якоби, электромеханический регистратор импульсов в пишущих телеграфах, устройства синхронизированного вращения в стрелочном и буквопечатающем телеграфах, релейные устройства для автоматического замыкания электрической цепи в телеграфах и минных установках.

Рис. 2.24. Схема автоматического переключателя 

В середине прошлого века разрабатываются электроавтоматические устройства для регистрации малых промежутков времени, контроля некоторых производственных процессов, создается ряд схем дистанционного управления.

Одним из первых наиболее совершенных регистрирующих устройств была разработанная в 1842–1845 гг. электробаллистическая установка русского военного электротехника Константина Ивановича Константинова (1817–1871 гг.) с электромагнитным хроноскопом и автоматическим переключателем цепей — прототипом распределителя — элемента современных автоматических и телемеханических установок. Автоматический переключатель (рис. 2.24) действовал следующим образом: двухступенчатый деревянный цилиндр 1 приводился во вращение грузом 2. При прохождении тока через электромагнит 5 тормозящий рычаг 3, посаженный на ось 4, удерживал цилиндр от вращения. После выстрела снаряд разрывал проволоку щита I и цепь электромагнит — источник тока (зажим 7) размыкалась. Спиральная пружина 8 отводила тормозящий рычаг до упора 9. Цилиндр вращался до тех пор, пока контактная пластина б не соединялась с пружиной следующего щита III, и цепь электромагнита снова замыкалась. С помощью такого устройства К.И. Константинову удалось осуществить измерение малых промежутков времени с точностью до 0,00006 с. Приборы, созданные К.И. Константиновым, автоматически регистрировали момент прохождения снаряда сквозь щит [1.6; 2.19].

В 60–70-х годах XIX в. в связи с развитием телефонии создаются специальные автоматические устройства — искатели, коммутаторы и др. Ведется разработка электротермических, электрохимических, электромагнитных и электромашинных устройств.

В рассматриваемый период было положено начало и энергетическим применениям электричества, в частности начинает развиваться промышленная электрохимия. Развитие промышленной электрохимии в огромной мере обязано открытию Б.С. Якоби в 1838 г. явления гальванопластики, которая позволила с помощью электролиза получать точные копии с поверхности предметов и сразу же нашла практическое применение в полиграфии, медальерном деле и других отраслях промышленности. Она явилась истоком созданного Б.С. Якоби метода нанесения на поверхность предмета металлических покрытий — гальваностегии. В середине прошлого века в России и за границей возникли крупные гальванотехнические промышленные предприятия, на многих заводах были созданы гальванические мастерские.

Развитие промышленной электрохимии также сыграло важную роль в развитии электротехники, вызвав необходимость совершенствования источников постоянного тока (в частности, создания экономичного генератора) и углубления электрохимических исследований.

Развитие исследований в области электрических и магнитных явлений и расширение их практического применения вызвали необходимость разработки методов измерений основных электрических величин и создания электроизмерительных приборов. Принцип действия первых электроизмерительных приборов был основан на отклонении магнитной стрелки электрическим током; такие приборы являлись лишь индикаторами тока. Первым из них, как уже указывалось ранее, был мультипликатор И.Х. Швейггера.

В первых стрелочных приборах, служивших для измерения тока, синус или тангенс угла отклонения стрелки был пропорционален значению тока, поэтому такие приборы назывались соответственно синус-гальванометрами и тангенс-гальванометрами. Первая попытка отградуировать гальванометр была сделана в 1839 г. Б.С. Якоби.

Уже в первой половине XIX в. создаются более чувствительные и точные гальванометры, электрогальванометры, астатический гальванометр и т.п. Были разработаны баллистический (Э.Х. Ленц, 1832 г.) и компенсационный [немецкий физик Иоганн Христиан Поггендорф (1796–1877 гг.), 1841 г.] методы измерений, мостовая измерительная схема (Ч. Уитстон 1843 г.) и др.

В 40–60-х годах XIX в. разрабатываются первые конструкции реостатов (вольтагометр Якоби), реохордов (И.Х. Поггендорф), магазинов сопротивлений и других подобных устройств.

В рассматриваемый период стабилизируются наименования основных электрических величин, постепенно устанавливаются термины: электродвижущая сила (ЭДС), сила тока, электрическое сопротивление, количество электричества и др. Электрические единицы и эталоны были утверждены на Чикагском электротехническом конгрессе в 1893 г. [1.6].


2.12. ПЕРВЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ОСВЕЩЕНИЯ

В 40–70 гг. XIX в. стали создаваться первые источники электрического освещения. Освещение является естественной и постоянной потребностью человека. Самым долгим был путь от лучины к свече и затем к масляной лампе. В первой половине XIX в. господствующее положение занимало газовое освещение, имевшее существенные преимущества перед лампами с жидким горючим: централизация снабжения установок светильным газом, сравнительная дешевизна горючего, простота газовых горелок и простота обслуживания. Но по мере развития капиталистического производства, роста городов, строительства крупных производственных зданий, гостиниц, магазинов, зрелищных помещений оно все менее удовлетворяло требованиям практики, так как было опасно в пожарном отношении, вредно для здоровья, а сила света отдельной горелки была мала. Для текстильных и швейных фабрик, типографий, деревообделочных цехов, театров и т.д. газовое освещение создавало угрозу пожаров. Особенно недостатки газового освещения стали сказываться на крупных предприятиях с большим числом рабочих, занятых на производстве по 12–14 ч в сутки, вызывая резкое снижение производительности труда.

Поэтому вполне своевременными, отвечавшими социальному заказу общества были попытки создать электрические источники света, которые вытеснили бы все иные источники.

Электрическое освещение развивалось по двум направлениям: дуговые лампы и лампы накаливания [1.6].

Вполне естественно начать историю электрического освещения с упоминания об опытах В.В. Петрова в 1802 г., которым было установлено, что при помощи электрической дуги «темный покой довольно ясно освещен быть может». Тогда же, в 1802 г., X. Дэви в Англии демонстрировал накал проводника током.

Электрическая, или «вольтова», дуга представляла собой в буквальном смысле яркое проявление электрического освещения. Принципиальными недостатками дугового источника являются, во-первых, открытое пламя (и отсюда пожарная опасность), огромная сила света и необходимость регулирования дугового промежутка по мере сгорания углей.

В 1844 г. французский физик Жан Бернар Фуко (1819–1868 гг.), именем которого названы исследованные им вихревые токи (напомним, что открыты они были Д.Ф. Араго), заменил электроды из древесного угля электродами из ретортного угля, что способствовало увеличению продолжительности горения лампы. Регулирование оставалось еще ручным. Такие лампы могли получить применение лишь в тех случаях, когда требовалось непродолжительное по времени, но интенсивное освещение, например при подсветке предметного стекла микроскопа, сигнализации в маяках или для театральных эффектов. Легко себе представить восторг (а может быть, и испуг) зрительного зала, когда в Парижском оперном театре в 1847 г. по ходу спектакля (давали оперу Мейербера «Пророк») восход солнца имитировался с помощью дуговой лампы!

Дальнейшая история дугового электрического освещения связана с изобретением различных механических и электромагнитных регуляторов, так как по мере сгорания электродов расстояние между ними возрастало и электрическая дуга гасла. Регулятор был самой сложной и дорогостоящей частью дуговой лампы.

Рис. 2.25. Дуговая лампа Аршро с электромагнитным регулятором 

Одной из первых по времени (1848 г.) конструкций дуговой лампы с электромагнитным регулятором была лампа французского механика Аршро (рис. 2.25). Эта лампа, в частности, применялась для освещения площади перед зданием Адмиралтейства в Петербурге. Большую известность получило применение десяти дуговых ламп с регуляторами талантливого русского изобретателя Александра Ильича Шпаковского (1823–1881 гг.) в 1856 г. при иллюминации на Лефортовском плацу в Москве во время торжеств по случаю коронации Александра II. Их по праву называли «электрическими солнцами Шпаковского». В них применялось комбинированное (электрическое и механическое) регулирование. Эти лампы были наиболее современными, в том числе и по сравнению с зарубежными.

Рис. 2.26. Схема автоматических регуляторов с последовательным (а), параллельным (б) и смешанным (в) включением (дифференциальная)
Р1 — масса угледержателя; Р2 — масса сердечника электромагнита; 1 — угли; 2 — последовательная обмотка; 3 — параллельная обмотка 

По характеру электрической схемы питания регуляторы разделяли на три группы: с последовательным и параллельным питанием, дифференциальные (рис. 2.26). В регуляторах с последовательным питанием обмотка электромагнита включалась последовательно с дугой, а с параллельным — параллельно. В дифференциальном регуляторе горение дуги регулировалось как последовательной, так и параллельной обмотками. После включения лампы регулятор работал при любом положении углей. Электромагнитные регуляторы в дуговых электрических лампах, обеспечивающие автоматическое регулирование расстояния между электродами дуги, были самыми распространенными электрическими устройствами в 50–70-х годах XIX в. До появления свечи Яблочкова в 1876 г. электромагнитный регулятор являлся наиболее важным конструктивным узлом дуговых ламп, без которого последние не могли работать. Большинство дуговых ламп различалось только устройством регулятора.

Рис. 2.27. Дуговая лампа Чиколева с электромашинным регулятором

Наиболее совершенные дифференциальные регуляторы были разработаны в 1869–1870 гг. известным русским электротехником, одним из основателей журнала «Электричество» Владимиром Николаевичем Чиколевым (1845–1898 гг.). Им впервые в мировой электротехнической практике был применен метод электромашинного регулирования. На рис. 2.27 показана дуговая лампас электромашинным регулятором. Последовательная и параллельная обмотки регулятора служили обмотками возбуждения двигателя 3, 4. Действие электромагнитов было встречным: при сгорании углей 1 усиливалось действие параллельной обмотки, якорь 5 вращал

вал 2 в одну сторону и угли сближались. При чрезмерном сближении углей усиливалось действие последовательной обмотки, угли раздвигались.

Идея дифференциального регулятора, получившего широкое применение в прожекторостроении, была использована другими конструкторами, в частности немецким фабрикантом З. Шуккертом. Крупносерийный выпуск дуговых ламп с дифференциальным регулятором был налажен в конце 70-х годов на заводах В. Сименса (с которыми объединялись заводы 3. Шуккерта), и такая лампа стала продаваться под именем «дуговая лампа Сименса».

С 80-х годов дуговые лампы с дифференциальным регулятором стали единственным типом дуговых источников света, которые применялись для освещения улиц, площадей, гаваней, а также для освещения больших помещений производственного и общественного назначения; они стали традиционными источниками света в прожекторной и светопроекционной технике.

Самая первая лампа накаливания была построена английским физиком У. Деларю (1819–1889 гг.). В этой лампе накаливалась платиновая спираль, находящаяся в стеклянной трубке.

Следующий шаг был сделан в 1838 г., когда бельгиец Жобар стал накаливать угольные стержни в разреженном пространстве. Эта лампа была, конечно, дешевле, но срок ее службы был незначительным.

После 1840 г. были предложены многочисленные конструкции ламп накаливания: с телом накала из платины, иридия, угля или графита и т.д.

В 1854 г. по улицам Нью-Йорка разъезжал немецкий эмигрант Генрих Гебель (1818–1893 гг.), на повозке которого находилась подзорная труба и лампа накаливания. Последняя служила для привлечения публики, которая приглашалась взглянуть через подзорную трубу на кольца Сатурна. Замечательным было то, что телом накала в лампе Гебеля служило обугленное бамбуковое волокно; нить была помещена в верхнюю часть закрытой барометрической трубки, т.е. в разреженное пространство. Медные проводники подходили к нити накала сквозь стекло. Лампа Гебеля могла гореть в течение нескольких часов.

В 1860 г. Джон В. Сван (1828–1914 гг.) в Англии впервые применил для лампы накаливания обугленные полоски толстой бумаги или бристольского картона, накаливавшиеся в вакууме.

Дальнейшее развитие электрического освещения будет рассмотрено в следующей, третьей главе.

СПИСОК ЛИТЕРАТУРЫ

2.1. Петров В.В. Известие о гальвани-вольтовских опытах. СПб., 1803.

2.2. Шнейберг Я.А. Василий Владимирович Петров. М.: Наука, 1985.

2.3. Ампер А. Электродинамика. М.: Изд-во АН СССР, 1954.

2.4. Кошманов В.В. Георг Ом. М.: Просвещение, 1980.

2.5. Кирхгоф Г.Р. Избранные труды. М.: Наука, 1958.

2.6. Фарадей М. Экспериментальные исследования по электричеству. М.: Изд-во АН СССР, 1947.

2.7. Цверава Г.К. Джозеф Генри. Л.: Наука, 1983.

2.8. Максвелл Д.К. Избранные сочинения по теории электромагнитного поля. М.: Гостехиздат, 1934.

2.9. Ленц Э.Х. Избранные труды. М.: Изд-во АН СССР, 1950.

2.10. Лежнева О.А., Ржонсницкий Б.Н. Эмилий Христианович Ленц. М. — Л.: Госэнергоиздат, 1952. 

2.11. Майер Р. Закон сохранения и превращения энергии. М.: Гостехиздат, 1933.

2.12. Бернал Дж. Наука в истории общества. М.: Изд. иностр. лит., 1956.

2.13. Электродвигатель в его историческом развитии. Документы и материалы / Под ред. В.Ф. Миткевича. М.: Изд-во АН СССР, 1936.

2.14. Яроцкий А.В. Борис Семенович Якоби. М.: Наука, 1988.

2.15. Гусев С.А. Очерки по истории электрических машин. М.: Госэнергоиздат, 1955.

2.16. Динамомашина в ее историческом развитии. Документы и материалы / Под ред. В.Ф. Миткевича. М.: Изд-во АН СССР, 1934.

2.17. Цверава Г.К. Аньош Йедлик. Л.: Наука, 1972.

2.18. Яроцкий А.В. Павел Львович Шиллинг. М.: Изд-во АН СССР, 1963.

2.19. Храмой А.В. Константин Иванович Константинов. М.: Госэнергоиздат, 1951.

2.20. Шателен М.А. Русские электротехники XIX в. М.: Госэнергоиздат, 1955.


Глава 3.
СТАНОВЛЕНИЕ ЭЛЕКТРОТЕХНИКИ КАК САМОСТОЯТЕЛЬНОЙ ОТРАСЛИ ТЕХНИКИ (1870–1890 гг.)

Электротехнические устройства не выходили за пределы лабораторий, пока не было у массового потребителя достаточно мощного и экономичного источника электрической энергии. В 1870 г. такой источник был создан. Следующие за этой датой 15–20 лет прошли как годы зарождения основных электротехнических устройств массового промышленного и бытового назначения, как годы становления новой отрасли техники. Это был поистине героический период истории электротехники.


3.1. ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ

Первым по-настоящему массовым потребителем электрической энергии явилась электрическая лампочка. Она и по нынешний день осталась самым распространенным электротехническим устройством. Начало широкому практическому применению электрической энергии положила электрическая свеча П.Н. Яблочкова (1876 г.) [1.6; 2.20; 3.1].

Электрическая свеча выдающегося русского изобретателя электротехника Павла Николаевича Яблочкова (1847–1894 гг.) занимает особое место среди дуговых источников света [3.1]. Изобретение, о котором идет речь, не привело к массовому и устойчивому применению именно этого источника света, но оно заслуживает особой оценки и отдельного рассказа, поскольку именно электрическая свеча явилась тем детонатором, который вызвал бурный рост электротехнической промышленности.

На рис. 3.1 показан внешний вид электрической свечи, где видно, что в держателе с токопроводами укреплялись два параллельных угольных стержня, отделенных один от другого слоем каолина. В верхней части лампы была тонкая проводящая перемычка — запал: когда включали лампу, перемычка сгорала, на ее месте возникала дуга и угли выгорали, уменьшаясь в размерах, как стеариновая свеча.

Одна электрическая свеча могла гореть около 2 ч; при установке нескольких свечей в специальном фонаре, оборудованном переключателем для включения очередной свечи вместо перегоревшей, можно было обеспечить бесперебойное освещение в течение более длительного времени.

Чрезвычайно важно отметить, что изобретение электрической свечи способствовало внедрению в практику переменного тока. В течение всего предшествующего периода электрическая техника базировалась на постоянном токе (телеграфия, гальванотехника, минное дело). Дуговые электрические лампы с регуляторами также питались постоянным током. При этом положительный электрод сгорал быстрее отрицательного, поэтому его приходилось брать большего диаметра.

П.Н. Яблочков установил, что для питания свечи лучше применять переменный ток, в этом случае при электродах одинакового диаметра получалась вполне устойчивая дуга. В связи с тем что осветительные установки по системе П.Н. Яблочкова стали подключать к источникам переменного тока, заметно возрос спрос на генераторы переменного тока, которые раньше не находили практического применения. О значении электрической свечи в расширении производства электрических генераторов переменного тока можно судить по следующему примеру: если до появления электрической свечи завод З.Т. Грамма выпускал в течение 1870–1875 гг. по нескольку десятков машин в год, то за 1876 г. выпуск генераторов возрос почти до 1000 шт. Заводы изготовляли электрические генераторы, специально предназначенные для установок электрического освещения, и даже мощность машин обозначалась по числу питаемых электрических свечей (например, «шестисвечная машина»).

Рис. 3.1. Электрическая свеча Яблочкова
1 — угольные электроды; 2 — изолирующий слой; 3 — зажимы для подключения к источнику электроэнергии 

Значительному развитию электротехники способствовала также разработка П.Н. Яблочковым весьма эффективных систем «дробления электрической энергии», обеспечивавших возможность включения в цепь, питаемую одним генератором, нескольких дуговых ламп.

Среди способов «дробления», предложенных П.Н. Яблочковым, два получили практическое применение: секционирование обмотки якоря генератора (в результате получалось несколько независимых цепей, в которые включались свечи) и использование индукционных катушек (рис. 3.2). Первичные обмотки катушек включались последовательно в цепь, а ко вторичной обмотке в зависимости от ее параметров могли подключаться одна, две свечи и более. Если первичная цепь питалась постоянным током, то предусматривалось включение в нее специального прерывателя для наведения ЭДС во вторичных обмотках катушек.

На рис. 3.2 видно, что П.Н. Яблочков впервые использует индукционную катушку в качестве трансформатора. Схема интересна и тем, что в ней впервые получила свое оформление электрическая сеть с ее основными элементами: первичный двигатель — генератор — линия передачи — трансформатор — приемник.

Но значение электрической свечи этим не исчерпывается. Изобретение дешевого приемника электрической энергии, доступного для широкого потребителя, потребовало решения еще одной важнейшей электротехнической проблемы — централизации производства электрической энергии и ее распределения. П.Н. Яблочков первым указал на то, что электрическая энергия должна вырабатываться на «электрических заводах» и распределяться подобно тому, как доставляются к потребителям газ и вода.

Дальнейший прогресс электрического освещения был связан с изобретением лампы накаливания, которая оказалась более удобным источником света, имеющим лучшие экономические и световые показатели.

В 1870–1875 гг. над созданием лампы накаливания работал русский отставной офицер Александр Николаевич Лодыгин (1847–1923 гг.) [3.2]. Он решил построить летательный аппарат тяжелее воздуха, приводящийся в движение электричеством («электролет») [1.6; 2.19; 3.2]. Вполне естественно, что освещаться этот аппарат должен был электричеством. Дуговая лампа по разным соображениям не подошла, и А.Н. Лодыгин стал конструировать лампу накаливания с тонким угольным стерженьком, заключенным в стеклянном баллоне (рис. 3.3). Стремясь увеличить время горения, А.Н. Лодыгин предложил устанавливать несколько угольных стерженьков, расположенных так, чтобы при сгорании одного автоматически загорался следующий.

Первая публичная демонстрация ламп А.Н. Лодыгина состоялась в 1870 г., а в 1874 г. он получил «русскую привилегию» (авторское свидетельство) на свою лампу. Затем он запатентовал свое изобретение в нескольких странах Западной Европы. Постепенно он усовершенствовал лампы. Первые лампы работали 30–40 мин, но когда он применил вакуумные колбы, срок службы ламп увеличился до нескольких сотен часов.

Рис. 3.2. Схема распределения электрической энергии с помощью индукционных катушек
1 — прерыватель; 2 — индукционные катушки; 3 — электросвечи
Рис. 3.3. Электрические лампы накаливания Лодыгина
а — с одним угольным стержнем; б — с несколькими угольными стержнями разной длины

Больше всего известности, почестей и славы за электрическую лампу выпало на долю Т.А. Эдисона. Но Т.А. Эдисон не изобрел лампу. Он сделал другое: разработал во всех деталях систему электрического освещения и систему централизованного электроснабжения [1.6; 3.3].

В 1879 г. Т.А. Эдисон заинтересовался проблемой электрического освещения. К этому времени он был уже известен как талантливый телеграфист и изобретатель автоматического счетчика голосов, автор усовершенствований в области многократной телеграфии и телефонного аппарата Белла, изобретатель фонографа.

Есть достаточно убедительные сведения о том, что Т.А. Эдисон хорошо знал изобретения своих предшественников в области электрического освещения посредством ламп накаливания, в том числе и работы А.Н. Лодыгина. Он находился также под впечатлением работ П.Н. Яблочкова. Впрочем, сам Т.А. Эдисон любил повторять, что всегда, когда он хотел сделать что-то новое, он тщательно изучал все, что было сделано по данному предмету до него.

Рис. 3.4. Лампа накаливания Эдисона с цоколем, патроном и выключателем 

Эдисон сразу поставил перед собой две задачи: 1) лампа должна создавать умеренную освещенность и 2) каждая лампа должна гореть совершенно независимо от других. Так он пришел к выводу о необходимости иметь нить высокого сопротивления, что позволит включать лампы параллельно (а не последовательно, как до этого поступали с любыми электрическими лампами).

12 апреля 1879 г. Т.А. Эдисон получил первый патент на лампу с платиновой спиралью высокого сопротивления, а затем в январе 1880 г. на лампу с угольными нитями. Он разработал систему откачки баллонов, технологию крепления вводов и угольной нити, и в январе 1880 г. устроил публичную демонстрацию ламп в Менло-Парке — его научном центре близ Нью-Йорка.

Для того чтобы система освещения стала коммерческой, Т.А. Эдисон должен был придумать множество устройств и элементов: цоколь и патрон (рис. 3.4), поворотный выключатель, плавкие предохранители, изолированные провода, крепящиеся на роликах, счетчик электрической энергии. В 1881 г. на Первой Всемирной выставке в Париже лампы Т.А. Эдисона вызвали всеобщий восторг, а сам изобретатель был удостоен высшей награды. В 1882 г. Т.А. Эдисон построил в Нью-Йорке на Пирльстрит первую центральную электростанцию. Т.А. Эдисон превратил электрическую энергию в товар, продаваемый всем желающим, а электрическую установку — в систему централизованного электроснабжения. Это был первый в истории электротехники пример комплексного решения крупной проблемы, оказавший огромное влияние на развитие материальной и общей культуры человечества.

Уже в 80-е годы XIX в. начинается быстрое развитие электрического освещения, все более расширяющееся массовое производство ламп накаливания, вызвавшее дальнейшее развитие электромашиностроительной промышленности, электроприборостроения, электроизоляционной техники и совершенствование способов производства и распределения электрической энергии.


3.2. ИЗОБРЕТЕНИЕ ТРАНСФОРМАТОРА

Восьмидесятые годы XIX в. вошли в историю электротехники под названием периода «трансформаторных битв». Такое необычное название они получили потому, что изобретение трансформатора явилось одним из сильнейших аргументов в пользу переменного тока. А настоящая битва шла между сторонниками систем постоянного и переменного токов и отражала поиски путей выхода из назревшего энергетического кризиса, связанного с проблемой централизованного производства электроэнергии и передачи ее на большие расстояния.

Первым простейшим трансформатором с разомкнутым магнитопроводом была индукционная катушка. Ее изобретение в 30–40-х годах XIX в. связано с именами ряда ученых и изобретателей, но наибольшую известность получил немецкий механик Генрих Румкорф (1803–1877 гг.), создавший в 1848 г. более совершенную конструкцию, и его именем впоследствии стали называть индукционную катушку. Такие катушки предназначались для получения искрового разряда во вторичной цепи при прерывании постоянного тока в первичной цепи. Впервые катушку Г. Румкорфа применил для дистанционного взрывания мин Б.С. Якоби. В последней трети XIX в. индукционные катушки получили широкое применение в системах зажигания двигателей внутреннего сгорания.

Роль индукционной катушки, превратившейся в аппарат, названный позднее трансформатором, как средства электрического разделения цепей переменного тока, отчетливо осознал П.Н. Яблочков [1.6; 2.15; 3.1].

Даже самим фактом патентования системы «дробления света» во многих странах он как бы подчеркивал важность нового предложения. Во французском патенте № 115793 от 30 ноября 1876 г. он писал: «Предметом этого изобретения является распределение токов в целях производства электрического света, позволяющее получить, пользуясь цепью, питаемой одним единственным источником электричества, неопределенное число источников света…». И как бы отмежевываясь от привычных схем индукционных катушек, он указывает: «Если я применяю … электрический источник переменного тока, общее расположение остается неизменным, но прерыватель становится ненужным …».

Система «дробления света» Яблочкова широко демонстрировалась два раза: на Парижской Международной электротехнической выставке в 1881 г. и на Второй Петербургской электротехнической выставке в 1882 г.[3] (где всю систему смонтировал и экспонировал препаратор Московского университета Иван Филиппович Усагин (1855–1919 гг.). Бобины, как их тогда называли, имели одинаковое число витков в первичной и вторичной обмотках, а стальной сердечник был разомкнутым и представлял собой стержень, на который наматывались обмотки. На этой же выставке И.Ф. Усагин впервые демонстрировал схему включения во вторичные обмотки индукционных катушек кроме свечей и других приемников: электродвигателя, проволочной нагревательной спирали, дуговой лампы с регулятором. Все эти приемники могли работать одновременно, не мешая друг другу. Этим экспериментом И.Ф. Усагин убедительно доказал универсальность применения переменного тока.

В начале 80-х годов становилось все яснее, что система электроснабжения на постоянном токе не имеет перспектив. Из опыта эксплуатации дуговых источников света было установлено оптимальное напряжение 110 В. Радиус электроснабжения не превышал несколько сотен метров. Попытки расширить границы района электроснабжения привели к рождению так называемой трехпроводной системы постоянного тока. Но основным направлением развития электроэнергетики уже в 80-х годах становится система переменного тока.

Новым шагом в использовании трансформаторов с разомкнутым сердечником для распределения электроэнергии явилась система распределения электричества для производства света и так называемой двигательной силы, запатентованная во Франции в 1882 г. английским электротехником Дж.Д. Голяром (1850–1888 гг.) и французским электротехником Люстеном Гиббсом (умер в 1912 г.). Эти трансформаторы предназначались уже не только для «дробления» энергии, но и для преобразования напряжения, т.е. имели коэффициент трансформации, отличный от единицы. Общий вид «вторичного генератора» (как его называли) изображен на рис. 3.5. На деревянной подставке укреплялось несколько индукционных катушек, первичные обмотки которых соединялись последовательно. Вторичные обмотки катушек были секционированы, и каждая секция имела два вывода для подключения приемников. Заслуживают внимания выдвижные сердечники 2 катушек, с помощью которых регулировалось напряжение на вторичных обмотках. Трансформаторы с разомкнутым сердечником в 1883 г. устанавливаются на подстанциях Лондонского метрополитена, а в 1884 г. — на выставке в Турине (Италия).

Рис. 3.5. Трансформатор Голяра и Гиббса

Современные трансформаторы имеют замкнутый магнитный сердечник, их первичные обмотки включаются параллельно. Но для схемы «дробления» энергии, предложенной П.Н. Яблочковым, трансформаторы с разомкнутым сердечником вполне удовлетворяли техническим требованиям. При последовательном соединении первичных обмоток включение и выключение одних потребителей не оказывало существенного влияния на режим работы других. При параллельном включении приемников применение трансформаторов с разомкнутыми сердечниками становилось технически неоправданным. Поэтому понятно стремление сконструировать трансформаторы с замкнутой магнитной системой, которые обладают значительно лучшими характеристиками (меньший намагничивающий ток, а следовательно, меньшие потери и больший КПД).

Первые трансформаторы с замкнутым сердечником были созданы в Англии в 1884 г. братьями Джоном и Эдвардом Гопкинсонами. Сердечник этого трансформатора был набран из стальных полос или проволок, разделенных изоляционным материалом, что снижало потери на вихревые токи. На сердечнике помещались, чередуясь, катушки высшего и низшего напряжений.

Впервые предложение о параллельном включении обмоток трансформаторов высказал Р. Кеннеди в 1883 г., но всесторонне этот способ соединения обосновал венгерский электротехник Миклош Дери (1854–1934 гг.), который в 1885 г. получил патент на параллельное включение первичных и вторичных обмоток трансформаторов и показал преимущество такого включения. Независимо от него аналогичный патент в Англии получил С. Ц. Ферранти.

Передача электрической энергии переменным током высокого напряжения оказалась возможной после создания однофазного трансформатора с замкнутой магнитной системой, имевшего достаточно хорошие эксплуатационные показатели. Такой трансформатор в нескольких модификациях (кольцевой, броневой и стержневой) разработали в 1884–1885 гг. венгерские электротехники Миклош Дери, Отто Блати (1860–1938 гг.) и Карой Циперновский (1853–1942 гг.), впервые предложившие и сам термин «трансформатор». В патентной заявке (февраль 1885 г.) они отмечали важное значение замкнутого шихтованного сердечника, в особенности для мощных силовых трансформаторов. На рис. 3.6 изображены первые образцы кольцевого и броневого трансформаторов, а также общий вид серийного трансформатора системы Блати, Дери и Циперновского, выпускавшегося электромашиностроительным заводом фирмы «Ганц и К?» в Будапеште. Эти трансформаторы содержали все основные элементы современных конструкций однофазных трансформаторов.

Рис. 3.6. Первые трансформаторы будапештского завода фирмы «Ганц и К?»
а — кольцевой; б — броневой; в — серийный стержневой

Венгерские инженеры нашли оптимальные соотношения между расходом меди и стали в трансформаторах и обеспечили своей продукции широкий сбыт на мировом электротехническом рынке. В частности, эта фирма осуществила в 1887 г. одну из первых в России установок переменного тока для освещения оперного театра в г. Одессе.

На территории завода «Ганц и К?», где 100 с небольшим лет назад создавали первый трансформатор, в наши дни разместились корпуса завода «Ганц Моваг», выпускающего электропоезда и сложное электрооборудование для энергетики. На заводе есть музей, в котором главное место отведено истории создания трансформатора.

В 1885 г. Фирмой «Вестингауз» был построен первый автотрансформатор, который предложил американский электрик Уильям Стенли. В конце 80-х годов английский электрик Д. Свинберн предложил масляное охлаждение трансформаторов.


3.3. ПОИСКИ ПУТЕЙ ПЕРЕДАЧИ ЭЛЕКТРОЭНЕРГИИ НА БОЛЬШИЕ РАССТОЯНИЯ

Опыты использования электромагнитного телеграфа привели к мысли о возможности передачи по проводам более значительных количеств энергии. Уже в 40–50-х годах XIX в. в США, Италии и других странах высказываются идеи о создании электрической железной дороги с передачей энергии на расстояние. Однако всеобщую известность получили опыты французского электрика Ипполита Фонтена (1833–1910 гг.).

В 1873 г. в Вене состоялась международная выставка, с которой и начинается история электропередачи. На этой выставке И. Фонтен демонстрировал обратимость электрических машин. Генератор и двигатель соединялись кабелем длиной несколько больше 1 км. Двигатель приводил в действие насос искусственного декоративного водопада. Этим опытом была продемонстрирована реальная возможность передачи электроэнергии на расстояние (пусть вначале это был всего 1 км). Вместе с тем И. Фонтен не был убежден в экономической целесообразности электропередачи, так как при включении соединительного кабеля он получил значительное снижение мощности двигателя, большие потери энергии в кабеле. Вот что писал И. Фонтен два года спустя после опытов в Вене: «Тогда, как и теперь, я не верю в возможность электрической передачи больших мощностей на большие расстояния; электрические железные дороги мне казались и кажутся и теперь решением, применять которое можно посоветовать только в совершенно исключительных случаях».

Как известно, потери в линии зависят от напряжения, удельного сопротивления провода и его сечения. Снижение удельного сопротивления проводов практически неосуществимо, так как медь, ставшая основным материалом для изготовления проводов, имеет предельно малое удельное электрическое сопротивление. Лишь в настоящее время ведутся теоретические и экспериментальные работы по снижению сопротивления линий электропередачи с использованием явления сверхпроводимости (криогенные линии электропередачи). Следовательно, имелись только два пути снижения потерь в линии: увеличение сечения проводов или повышение напряжения.

В 70-х годах XIX в. был исследован первый путь, так как увеличение площади поперечного сечения проводников представлялось мероприятием, по-видимому, более естественным и технически легче осуществимым по сравнению с повышением напряжения. В 1874 г. русский военный инженер Федор Аполлонович Пироцкий (1845–1898 гг.) [3.4] пришел к выводу об экономической целесообразности производства электрической энергии в тех местах, где она может быть получена с малыми затратами благодаря наличию топлива или гидравлической энергии, и передачи ее по линии к более или менее отдаленному месту потребления. В том же году он приступил к опытам передачи энергии на артиллерийском полигоне Волкова поля (около Петербурга), использовав электрическую машину Грамма. Дальность передачи в опытах Ф.А. Пироцкого составляла несколько более 200 м, а затем была увеличена примерно до 1 км.

Для уменьшения потерь в линии Ф.А. Пироцкий предлагал использовать в качестве проводников железнодорожные рельсы, площадь поперечного сечения которых более чем в 600 раз превышала площадь поперечного сечения обыкновенного телеграфного провода. Стремясь проверить свои выводы, он в конце 1875 г. провел опыты передачи электроэнергии по рельсам бездействовавшей ветки Сестрорецкой железной дороги длиной около 3,5 км. Оба рельса изолировались от земли, один из них служил прямым, второй — обратным проводом. Электрическая энергия передавалась от небольшого генератора Грамма к электродвигателю, удаленному на расстояние около 1 км.

Необходимо отметить, что Ф.А. Пироцкий был не единственным электротехником, ставшим на путь увеличения площади поперечного сечения проводов. Так, например, В. Сименс, посетив в 1876 г. Ниагарский водопад, сумел правильно оценить энергетические возможности его использования, но утверждал, что для передачи энергии водопада на расстояние 50 км потребуется проводник диаметром 75 мм. Иными словами, как заявил В. Сименс, для изготовления проводов придется использовать целый медный рудник. Подобные выводы являлись наглядным выражением уровня познаний в области электротехники в 70-х годах XIX в.

Несмотря на нерациональность практического направления, избранного Ф.А. Пироцким, его опыты привлекли внимание к вопросам электропередачи вообще и вызвали ряд новых исследований, приведших к выявлению правильного пути для решения этой проблемы. Предложение же Ф.А. Пироцкого об использовании железнодорожных рельсов для передачи электрической энергии на расстояние нашло свое применение уже при разработке первых проектов городских электрических железных дорог.

Другой путь решения проблем передачи электрической энергии, основанный на повышении напряжения, длительное время осмысливался теоретически. Здесь можно упомянуть исследование классической задачи из теории цепей о передаче энергии от источника к нагрузке, выполненное в 1877 г. французским академиком Э. Маскаром, но не доведенное до ясных практических выводов. Наиболее обстоятельное исследование этого вопроса выполнили в 1880 г. независимо друг от друга французский инженер (впоследствии академик) Марсель Депре (1843–1918 гг.) и профессор физики Петербургского лесного института Дмитрий Александрович Лачинов (1842–1902 гг.). [1.6; 3.5].

В марте 1880 г. в протоколах Парижской академии наук был опубликован доклад М. Депре «О коэффициенте полезного действия электрических двигателей и об измерении количества энергии в электрической цепи». Автор доклада — крупный специалист в области электротехники. Он вошел в историю как изобретатель нескольких систем амперметра, ваттметра, апериодического гальванометра, принципа смешанного (компаундного) возбуждения электрических машин, электромагнитного молота (двигателя возвратно-поступательного движения) и электрической системы синхронной связи движений.

В интересующем нас докладе М. Депре математически доказывал, что КПД установки, состоявшей из электродвигателя и линии передачи, не зависит от сопротивления самой линии. Такой вывод показался Депре парадоксальным, так как ему вначале не удалось установить, что увеличение сопротивления линии не влияет на эффектность электропередачи только при определенном условии, а именно при увеличении напряжения передачи.

Эти условия впервые были указаны Д.А. Лачиновым в статье «Электромеханическая работа», опубликованной в июне 1880 г. в первом номере журнала «Электричество». На основе математических выкладок он показал, что в электропередаче «полезное действие не зависит от расстояния» лишь при условии увеличения скорости вращения генератора (т.е. при повышении напряжения в линии так как ЭДС, развиваемая генератором, пропорциональна частоте его вращения). Д.А. Лачинов также установил количественное соотношение между параметрами линии передачи, доказав, что для сохранения КПД передачи при увеличении сопротивления в п раз необходимо увеличить частоту вращения

генератора в ?n раз: «Если, например, — писал Д.А. Лачинов, — увеличим R в 100 раз, то при передаче того же числа лошадиных сил скорость будет десятерная». К подобным же выводам пришел год спустя М. Депре.

В 1882 г. М. Депре строит первую линию электропередачи Мисбах — Мюнхен протяженностью 57 км. На одном конце опытной линии в г. Мисбахе была установлена паровая машина, приводившая в действие генератор постоянного тока мощностью 3 л.с., дававший ток напряжением 1,5–2 кВ. Энергия передавалась по стальным телеграфным проводам диаметром 4,5 мм на территорию выставки в г. Мюнхене, где была установлена такая же машина, работавшая в режиме электродвигателя и приводившая в действие насос для искусственного водопада. Хотя этот первый опыт и не дал достаточно благоприятных технических результатов (КПД передачи не превысил 25%), его значение нельзя недооценивать: электропередача Мисбах — Мюнхен являлась отправным пунктом для дальнейших работ по развитию методов и средств передачи электроэнергии на расстояние.

Обратим внимание на любопытный факт. Теория телеграфных линий была разработана достаточно хорошо, и было известно, что наибольший эффект в работе приемного устройства достигается тогда, когда его сопротивление равно внутреннему сопротивлению источника энергии вместе с сопротивлением соединительных проводов (согласованный режим). Но при этом теоретический КПД всей установки составляет 50%.

Но то, что целесообразно для «слаботочной» техники, становится нецелесообразным для «сильноточной», энергетической техники. В последнем случае важен экономический эффект, и КПД следует всемерно повышать в ущерб количеству передаваемой энергии. Это обстоятельство длительное время оказывалось труднодоступным для понимания, и многие даже крупные специалисты (в том числе И. Фонтен, позднее Г. Ферарис и др.) теряли перспективу в научно-технических поисках и порой прекращали работу лишь потому, что не могли освободиться от привычных рамок теории слаботочных цепей.

В 1885 г. были проведены новые опыты на расстоянии 56 км между г. Крейлем и Парижем. В качестве генераторов постоянного тока высокого напряжения использовались специально построенные машины, дававшие напряжение до 6 кВ. Масса такой машины была около 70 т, мощность около 50 л.с., КПД передачи около 45%.

В эти же годы были осуществлены единичные передачи электроэнергии на расстояние для промышленного использования с КПД до 75%.

Тем не менее попытки решить проблему электропередачи на постоянном токе, осуществленные в 80-х годах, не принесли желаемых результатов. При этом важно подчеркнуть возникшее противоречие. С одной стороны, практика проектирования и производства электрических машин и аппаратов постоянного тока получила уже значительное развитие, двигатели постоянного тока обладали хорошими рабочими характеристиками, отвечавшими большинству требований промышленности. Поэтому не было серьезных препятствий к тому, чтобы приступить к широкой электрификации станочного парка промышленности. Но, с другой стороны, широкая электрификация промышленности могла быть осуществлена в больших масштабах только при централизованном производстве электроэнергии, а следовательно, только при обеспечении ее передачи на значительные расстояния.

Однако для передачи энергии требовалось получить высокие напряжения, а технические возможности того времени не позволяли строить генераторы постоянного тока высокого напряжения; примером этого могут служить машины М. Депре, которые часто выходили из строя из-за порчи изоляции. Вообще говоря, в любом случае возможности передачи энергии при высоком напряжении генератора ограничены сравнительно низкими пределами. Кроме того, электроэнергию постоянного высокого напряжения нелегко было использовать потребителям: нужно было строить двигатель-генераторную установку для преобразования высокого напряжения в низкое.

Еще один путь использования постоянного тока для электропередачи был намечен в основополагающей работе Д.А. Лачинова. Он предлагал для повышения напряжения соединить последовательно по несколько машин на каждом конце линии. В этом случае каждая в отдельности машина могла быть рассчитана на более низкое напряжение, а следовательно, могла быть более надежной. И. Фонтен первым реализовал практически эту идею, осуществив в 1886 г. передачу, в которой со стороны генератора работали четыре последовательно соединенные машины (по 1500 В), т.е. получил те же 6 кВ, что и у М. Депре, а со стороны приемника — три двигателя суммарной мощностью около 50 л.с. Двигатели могли использоваться непосредственно для привода исполнительных механизмов, могли вращать валы генераторов низкого напряжения, пригодных для целей освещения; КПД этой установки достигал 52%. Позднее эта идея о последовательном включении генераторов была развита в других электропередачах.

Трудности, связанные с электропередачей на постоянном токе, направили мысли ученых на разработку теории и техники переменного тока.

Когда основные элементы техники переменного тока (генераторы, трансформаторы) были разработаны, начались попытки осуществить промышленную передачу энергии на переменном токе. В 1883 г. Л. Голяр осуществил передачу мощности 20 л.с. на расстояние 23 км для питания осветительных установок Лондонского метрополитена. Трансформаторы повышали напряжение до 1500 В. На Туринской выставке в следующем году Л. Голяр осуществил передачу мощности примерно 40 л.с. на 40 км. При напряжении 2000 В.

Однако во второй половине 80-х годов XIX в. уже возникла и очень беспокоила инженеров и ученых задача включения двигательной нагрузки в электрическую сеть. Таким образом, и при передаче электроэнергии в однофазных цепях переменного тока возникло противоречие не менее серьезное, чем при электропередаче постоянным током. Напряжение однофазных цепей переменного тока можно легко повышать и понижать с помощью трансформаторов практически в любых желаемых пределах. Следовательно, для передачи электроэнергии затруднений не было. Но однофазные двигатели переменного тока имели совершенно неприемлемые для практики характеристики. В частности, они либо вообще не имели пускового момента (синхронные двигатели), либо пускались с очень большим трудом из-за тяжелых условий коммутации тока (коллекторные двигатели). Поэтому сфера применения однофазных цепей переменного тока должна была ограничиваться почти исключительно электрическим освещением, что, конечно, не могло удовлетворить требования промышленности.


3.4. РАННИЕ ЭЛЕКТРОСТАНЦИИ

Электростанции, под которыми понимают фабрики по производству электрической энергии, подлежащей распределению между различными производителями, появились не сразу. В 70-х и начале 80-х годов XIX в. место производства электроэнергии не было отделено от места потребления.

Электрические станции, обеспечивавшие электроэнергией ограниченное количество потребителей, назывались блок-станциями (не путать с современным понятием блок-станций, под которым некоторые авторы понимают фабрично-заводские теплоэлектроцентрали). Такие станции иногда называли «домовыми».

Развитие первых электростанций было сопряжено с преодолением трудностей не только научно-технического характера. Так, городские власти запрещали сооружение воздушных линий, не желая портить внешний вид города. Конкурирующие газовые компании всячески подчеркивали действительные и мнимые недостатки нового вида освещения.

На блок-станциях в качестве первичных двигателей применялись в основном поршневые паровые машины и в отдельных случаях двигатели внутреннего сгорания (в то время являвшиеся новинкой), широко использовались локомобили. От первичного двигателя к электрическому генератору делалась ременная передача. Обычно один паровой двигатель приводил в действие один-три генератора; поэтому на крупных блок-станциях устанавливались несколько паровых машин или локомобилей. Для регулировки натяжения ремней электрические генераторы монтировались на салазках. На рис. 3.7 показан вид электростанции для освещения одного дома.

Впервые блок-станции были построены в Париже для освещения улицы Оперы. В России первой установкой такого рода явилась станция для освещения Литейного моста в Петербурге, созданная в 1879 г. при участии П.Н. Яблочкова.

Рис. 3.7. Блок-станция — электростанция с двумя генераторами (внизу справа) и локомобилем (слева) для освещения одного дома 

Однако идея централизованного производства электроэнергии была настолько экономически оправданной и настолько соответствовала тенденции концентрации промышленного производства, что первые центральные электростанции возникли уже в середине 80-х годов XIX в. и быстро вытеснили блок-станции. В связи с тем что в начале 80-х годов массовыми потребителями электроэнергии могли стать только источники света, первые центральные электростанции проектировались, как правило, для питания осветительной нагрузки и вырабатывали постоянный ток.

В 1881 г. несколько предприимчивых американских финансистов под впечатлением успеха, которым сопровождалась демонстрация ламп накаливания, заключили соглашение с Т.А. Эдисоном и приступили к сооружению первой в мире центральной электростанции (на Пирльстрит в Нью-Йорке). В сентябре 1882 г. эта электростанция была сдана в эксплуатацию. В машинном зале станции было установлено шесть генераторов Т.А. Эдисона, мощность каждого составляла около 90 кВт, а общая мощность электростанции превышала 500 кВт. Здание станции и ее оборудование были спроектированы весьма целесообразно, так что в дальнейшем при строительстве новых электростанций развивались многие из тех принципов, которые были предложены Т.А. Эдисоном. Так, генераторы станций имели искусственное охлаждение и соединялись непосредственно с двигателем. Напряжение регулировалось автоматически. На станции осуществлялись механическая подача топлива в котельную и автоматическое удаление золы и шлака. Защита оборудования от токов короткого замыкания осуществлялась плавкими предохранителями, а магистральные линии были кабельными. Станция снабжала электроэнергией обширный по тому времени район площадью 2,5 км.

Вскоре в Нью-Йорке было построено еще несколько станций. В 1887 г. работали уже 57 центральных электростанций системы Т.А. Эдисона.

Исходное напряжение первых электростанций, от которого впоследствии были произведены другие, образующие известную шкалу напряжений, сложилось исторически. Дело в том, что в период исключительного распространения дугового электрического освещения эмпирически было установлено, что наиболее подходящим для горения дуги является напряжение 45 В. Чтобы уменьшить токи короткого замыкания, которые возникали в момент зажигания ламп (при соприкосновении углей), и для более устойчивого горения дуги включали последовательно с дуговой лампой балластный резистор.

Также эмпирически было найдено, что сопротивление балластного резистора должно быть таким, чтобы падение напряжения на нем при нормальной работе составляло примерно 20 В. Таким образом, общее напряжение в установках постоянного тока сначала составляло 65 В, и это напряжение применялось долгое время. Однако часто в одну цепь включали две другие лампы, для работы которых требовалось 2x45 = 90 В, а если к этому напряжению прибавить еще 20 В, приходящиеся на сопротивление балластного резистора, то получится напряжение 110 В. Это напряжение почти повсеместно было принято в качестве стандартного.

Уже при проектировании первых центральных электростанций столкнулись с трудностями, которые в достаточной степени не были преодолены в течение всего периода господства техники постоянного тока. Радиус электроснабжения определяется допустимыми потерями напряжения в электрической сети, которые для данной сети тем меньше, чем выше напряжение. Именно это обстоятельство заставило строить электростанции в центральных районах города, что существенно затрудняло не только обеспечение водой и топливом, но и удорожало стоимость земельных участков для строительства электростанций, так как земля в центре города была чрезвычайно дорога. Этим, в частности, и объясняется необычный вид нью-йоркских электростанций, на которых оборудование располагалось на многих этажах. Положение осложнялось еще тем, что на первых электростанциях приходилось размещать большое количество котлов, паропроизводительность которых не соответствовала новым требованиям, предъявленным электроэнергетикой.

Не менее удивился бы наш современник, увидев первые петербургские электростанции, которые обслуживали район Невского проспекта. В начале 80-х годов XIX в. они размещались на баржах, закрепленных у причалов на реках Мойке и Фонтанке (рис. 3.8). Строители исходили из соображений дешевого водоснабжения, кроме того, при таком решении не нужно было покупать земельные участки, близкие к потребителю.

В 1886 г. в Петербурге было учреждено акционерное «Общество электрического освещения 1886 г.»: (сокращенно называлось «Общество 1886 г.»), которое приобрело электростанции на реках Мойке и Фонтанке и построило еще две: у Казанского собора и на Инженерной площади. Мощность каждой из этих электростанций едва превышала 200 кВт.

Рис. 3.8. Электростанция на р. Фонтанке в Петербурге 

В Москве первая центральная электростанция (Георгиевская) была построена в 1886 г. тоже в центре города, на углу Большой Дмитровки и Георгиевского переулка. Ее энергия использовалась для освещения прилегающего района. Мощность электростанции составляла 400 кВт.

Ограниченные возможности расширения радиуса электроснабжения привели к тому, что удовлетворить спрос на электроэнергию со временем становилось все труднее. Так, в Петербурге и Москве к середине 90-х годов возможности присоединения новой нагрузки к существующим электростанциям были исчерпаны и встал вопрос об изменении схем сети или даже об изменении рода тока.

Рост потребностей в электроэнергии эффективно стимулировал повышение производительности и экономичности тепловой части электрических станций. Прежде всего следует отметить решительный поворот от поршневых паровых машин к паровым турбинам. Первая турбина на электростанциях России была установлена в 1891 г. в Петербурге (станция на р. Фонтанке). За год до этого испытание турбины было проведено на станции, расположенной на р. Мойке. Выше уже отмечался наиболее существенный недостаток электроснабжения постоянным током — слишком малая площадь района, которая может обслуживаться центральной электростанцией. Удаленность нагрузки не превышала нескольких сотен метров. Электростанции стремились расширить круг потребителей своего товара — электроэнергии. Этим объясняются настойчивые поиски путей увеличения площади электроснабжения при условии сохранения уже построенных станций постоянного тока. Было предложено несколько идей, как увеличить радиус распределения энергии.

Первая идея, не получившая заметного распространения, касалась понижения напряжения электрических ламп, подключавшихся в конце линии. Однако расчеты показали, что при протяженности сети более 1,5 км экономически выгоднее было построить новую электростанцию.

Другое решение, которое могло во многих случаях удовлетворить потребность, состояло в изменении схемы сети: переходе от двухпроводных сетей к многопроводным, т.е. фактически к повышению напряжения

Трехпроводная система распределения электроэнергии была предложена в 1882 г. Дж. Гопкинсоном и независимо от него Т. Эдисоном. При этой системе генераторы на электростанции соединялись последовательно и от общей точки шел нейтральный, или компенсационный провод. При этом обычные лампы сохранялись. Они включались, как правило, между рабочими и нейтральным проводами, а двигатели для сохранения симметрии нагрузки можно было включать на повышенное напряжение (220 В).

Практическими результатами введения трехпроводной системы явилось, во-первых, увеличение радиуса электроснабжения примерно до 1200 м, во-вторых, относительная экономия меди (при всех прочих одинаковых условиях расход меди при трехпроводной системе был практически вдвое меньше, чем при двухпроводной).

Для регулирования напряжения в ветвях трехпроводной сети применялись различные устройства: регулировочные дополнительные генераторы, делители напряжения, в частности получившие значительное распространение делители напряжения Михаила Осиповича Доливо-Добровольского, аккумуляторные батареи. Трехпроводная система широко применялась как в России, так и за рубежом. Она сохранилась вплоть до 20-х годов XX в., а в отдельных случаях применялась и позднее.

Максимальный вариант многопроводных систем пятипроводная сеть постоянного тока, в которой применялись четыре последовательно включенных генератора и напряжение, увеличивалось вчетверо. Радиус электроснабжения возрастал всего до 1500 м. Однако эта система не получила широкого применения.

Третий путь увеличения радиуса электроснабжения предполагал сооружение аккумуляторных подстанций. Аккумуляторные батареи были в то время обязательным дополнением каждой электростанции. Они покрывали пики нагрузок. Заряжаясь в дневные и поздние ночные часы, они служили резервом.

Сети с аккумуляторными подстанциями получили некоторое распространение. В Москве, например, в 1892 г. была построена аккумуляторная подстанция в Верхних торговых рядах (ныне ГУМ), находившаяся на расстоянии 1385 м от Георгиевской центральной станции. На этой подстанции были установлены аккумуляторы, питавшие около 2000 ламп накаливания.

В последние два десятилетия XIX в. было построено много электростанций постоянного тока, и они долгое время давали значительную долю общей выработки электроэнергии. Мощность таких электростанций редко превышала 500 кВт, агрегаты обычно имели мощность до 100 кВт.

Все возможности увеличения радиуса электроснабжения при постоянном токе довольно быстро были исчерпаны, особенно в крупных городах.

В 80-х годах XIX в. начинают сооружаться электростанции переменного тока, выгодность которых для увеличения радиуса электроснабжения была бесспорной. Если не считать блок-станций переменного тока, построенных в Англии в 1882–1883 гг., то, по-видимому, первой постоянно действовавшей электростанцией переменного тока можно считать электростанцию Гровнерской галереи (Лондон). На этой станции, пущенной в эксплуатацию в 1884 г., были установлены два генератора переменного тока В. Сименса, которые через последовательно включенные трансформаторы Дж.Д. Голяра и Л. Гиббса работали на освещение галереи. Недостатки последовательного включения трансформаторов и, в частности, трудности поддержания постоянства тока были выявлены довольно быстро, и в 1886 г. эта станция была реконструирована по проекту С.Ц. Ферранти. Генераторы В. Сименса были заменены машинами конструкции С.Ц. Ферранти мощностью 1000 кВт каждая с напряжением на зажимах 2,5 кВ. Трансформаторы, изготовленные по проекту С.Ц. Ферранти, включались в цепь параллельно и служили для снижения напряжения в непосредственной близости от потребителей.

В 1889–1890 гг. С.Ц. Ферранти вновь вернулся к проблеме электроснабжения Лондона с целью обеспечения электроэнергией района лондонского Сити. В связи с высокой стоимостью земельного участка в центре города было решено построить электростанцию в одном из предместий Лондона, в Дептфорде, находящемся в 12 км от Сити. Очевидно, на таком большом расстоянии от места потребления электроэнергии электростанция должна была вырабатывать переменный ток. При сооружении этой установки были применены мощные по тому времени генераторы высокого напряжения (10 кВ) мощностью по 1000 л.с. Общая мощность Дептфордской электростанции составляла около 3000 кВт. На четырех городских подстанциях, питавшихся по четырем магистральным кабельным линиям, напряжение понижалось до 2400 В, а затем уже у потребителей (в домах) — до 100 В.

Примером крупной гидростанции, питавшей осветительную нагрузку в однофазной цепи, может служить станция, построенная в 1889 г. на водопаде вблизи г. Портленда (США). На этой станции гидравлические двигатели приводили в действие восемь однофазных генераторов общей мощностью 720 кВт. Кроме того, на электростанции были установлены 11 генераторов, предназначенных специально для питания дуговых ламп (по 100 ламп на каждый генератор). Энергия этой станции передавалась на расстояние 14 миль в г. Портленд.

Характерная особенность первых электростанций переменного тока — изолированная работа отдельных машин. Синхронизация генераторов еще не производилась, и от каждой машины шла отдельная цепь к потребителям. Легко понять, насколько неэкономичными при таких условиях оказались электрические сети, на сооружение которых расходовались колоссальные количества меди и изоляторов.

В России крупнейшие станции переменного тока были сооружены в конце 80-х и начале 90-х годов XIX в. Первая центральная электростанция построена венгерской фирмой «Ганц и К?» в г. Одессе в 1887 г. Основным потребителем энергии была однофазная система электрического освещения нового театра. Эта электростанция представляла собой для своего времени прогрессивное сооружение. Она имела четыре водотрубных котла общей производительностью 5 т пара в час, а также два синхронных генератора общей мощностью 160 кВт при напряжении на зажимах 2 кВ и частоте 50 Гц. От распределительного щита энергия поступала в линию длиной 2,5 км, ведущую к трансформаторной подстанции театра, где напряжение понижалось до 65 В (на которое были рассчитаны лампы накаливания). Оборудование электростанции было столь совершенным для своего времени, что, несмотря на то что топливом служил привозной английский уголь, стоимость электроэнергии была ниже, чем на более поздних петербургских и московских электростанциях. Расход топлива составлял 3,4 кг/(кВт?ч) [на петербургских электростанциях 3,9–5,4 кг/(кВт?ч)].

В том же году началась эксплуатация электростанции постоянного тока в Царском Селе (ныне г. Пушкин). Протяженность воздушной сети в Царском Селе уже в 1887 г. была около 64 км, тогда как два года спустя суммарная кабельная сеть «Общества 1886 г.» в Москве и Петербурге, составляла только 115 км. В 1890 г. Царскосельская электростанция и сеть были реконструированы и переведены на однофазную систему переменного тока напряжением 2 кВ. По свидетельству современников, Царское Село было первым городом в Европе, который был освещен исключительно электричеством.

Крупнейшей в России электростанцией для снабжения однофазной системы переменного тока была станция на Васильевском острове в Петербурге, построенная в 1894 г. инженером Н.В. Смирновым. Мощность ее составляла 800 кВт и превосходила мощность любой существовавшей в то время станции постоянного тока. В качестве первичных двигателей использовались четыре вертикальные паровые машины мощностью 250 л.с. каждая. Применение переменного напряжения 2000 В позволило упростить и удешевить электрическую сеть и увеличить радиус электроснабжения (более 2 км при потере до 3% напряжения в магистральных проводах вместо 17–20% в сетях постоянного тока). Таким образом, опыт эксплуатации центральных станций и однофазных сетей показал преимущества переменного тока, но вместе с тем, как уже отмечалось, выявил ограниченность его применения. Однофазная система тормозила развитие электропривода, усложняла его. Так, например, при подключении силовой нагрузки к сети Дептфордской станции приходилось дополнительно помещать на валу каждого синхронного однофазного двигателя еще разгонный коллекторный двигатель переменного тока. Легко понять, что такое усложнение электропривода делало весьма сомнительной возможность его широкого применения.


3.5. ОТКРЫТИЕ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ И СОЗДАНИЕ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ

Начало современного этапа в развитии электротехники относится к 90-м годам XIX столетия, когда решение комплексной энергетической проблемы вызвало к жизни электропередачу и электропривод. Электрификация началась тогда, когда оказалось возможным строить крупные электрические станции в местах, богатых первичными ресурсами, объединять их работу на общую сеть и снабжать электроэнергией любые центры и объекты электропотребления.

Техническая сторона электрификации заключалась в разработке многофазных систем, из которых практика сделала выбор в пользу системы трехфазной. Наиболее важными и во всяком случае новыми элементами трехфазной системы были электродвигатели, действие которых основано на использовании явления вращающегося магнитного поля.

Ранее упоминался опыт Д.Ф. Араго, в котором диск и вращающийся магнит отражали только возможность осуществления асинхронного электродвигателя с вращающимся магнитным полем. Однако это поле создавалось не неподвижным устройством, каким в современных машинах является статор, а вращающимся магнитом.

Рис. 3.9. Прибор Бейли 

Долгое время явление, открытое Д.Ф. Араго, не находило практического применения. Только в 1879 г. английский ученый Уолтер Бейли сконструировал прибор (рис. 3.9), в котором пространственное перемещение магнитного поля осуществлялось с помощью неподвижного устройства —: путем поочередного намагничивания четырех расположенных по периферии круга электромагнитов. Намагничивание производилось импульсами постоянного тока, посылаемыми в обмотки электромагнитов специально приспособленным для этого коммутатором. Полярность верхних концов стержней изменялась в определенной последовательности так, что через восемь переключений коммутатора магнитный поток изменял свое направление в пространстве на 360°. Над полюсами электромагнитов, как и в опытах Д.Ф. Араго, был подвешен медный диск. У. Бейли указывал, что при бесконечно большом числе электромагнитов можно было бы обеспечить равномерное вращение магнитного поля. Прибор У. Бейли не нашел никакого применения. Тем не менее он был некоторым связующим звеном между опытом Д.Ф. Араго и более поздними исследованиями. С позиций сегодняшнего дня представляется крайне простым осуществление вращающегося магнитного поля в установке У. Бейли или в подобном приборе иной конструкции путем питания электромагнитов синусоидальными токами с различными начальными фазами. Однако в 80-х годах XIX столетия на это ушло несколько лет работы и поисков многих ученых, среди которых были Марсель Депре, разработавший в 1883 г. систему синхронной связи двух движений, изобретатель репульсионного двигателя американский ученый Илайю Томсон (1853–1937 гг.), американский электротехник Чарльз Бредли, немецкий инженер Фредерик Хазельвандер (1859–1932 гг.) и др. В связи с этим интересно привести фразу И. Томсона: «Трудно составить такую комбинацию из магнитов переменного тока и кусков меди, которая не имела бы тенденции к вращению». История открытия вращающегося магнитного поля и многофазных систем до крайности запутана. В 90-е годы XIX в. прошли многие судебные процессы, на которых разные фирмы, скупившие патенты изобретателей, пытались утвердить свои права на многофазные системы. Только американская фирма «Вестингауз» провела более 25 судебных процессов.

Рис. 3.10. К пояснению открытия Феррариса 

Однако исчерпывающие и получившие наибольшую известность экспериментальные и теоретические исследования вращающегося магнитного поля выполнили независимо друг от друга выдающиеся ученые итальянец Галилео Феррарис (1847–1897 гг.) и серб Никола Тесла (1856–1943 гг.) [1.6; 3.6; 3.7].

Г. Феррарис утверждал, что суть явления вращающегося магнитного поля он осознал еще в 1885 г., но доклад «Электродинамическое вращение, произведенное с помощью переменных токов» он сделал в Туринской академии (членом которой он состоял с 1880 г.) 18 марта 1888 г.

Н. Тесла в своей автобиографии рассказывал, что идея двухфазного асинхронного двигателя родилась у него еще в 1882 г., когда он работал в Будапештской телеграфной компании. Гуляя в парке с другом, он, осененный идеей, тростью сделал на песке набросок принципа, который изложил шесть лет спустя на конференции в американском Институте электроинженеров. Доклад в этом институте состоялся 16 мая 1888 г., т.е. на два месяца позднее доклада Г. Феррариса. Но первую заявку на получение патента на многофазные системы Н. Тесла подал еще 12 октября 1887 г, т.е. ранее выступления Г. Феррариса.

Остановимся сначала на работе Г. Феррариса, исходя не из приоритетных соображений, а из того, что в его работе дан более обстоятельный теоретический анализ, и еще потому, что именно перевод доклада Г. Феррариса в английском журнале попал в свое время в руки М.О. Доливо-Добровольскому и вызвал первый импульс в серии последующих замечательных изобретений.

Рис. 3.11. Модель двигателя Феррариса 

Г. Феррарис умел в очень ясной форме объяснять трудные физические процессы. Вот как им было объяснено явление вращающегося магнитного поля. Рассмотрим показанную на рис. 3.10 пространственную диаграмму, на которой ось х представляет собой положительное направление вектора магнитной индукции, создаваемой одной из катушек, а ось у — положительное направление поля другой катушки. Для момента времени, когда одна магнитная индукция в точке О изображается отрезком ОА, а другая — ОБ, суммарная результирующая магнитная индукция изобразится отрезком OR. При изменении ОА и OB точка R перемещается по кривой, форма которой определяется законами изменений во времени двух полей. Если две напряженности магнитного поля имеют одинаковые амплитуды и сдвинуты по фазе на четверть периода, то геометрическим местом точки R станет окружность. Налицо вращение магнитного поля. Если фазу одной из напряженностей магнитного поля или возбуждающего его тока изменить на 180°, то изменится и направление вращения результирующего магнитного поля. Если поместить в это магнитное поле снабженный валом и подшипниками медный цилиндр, то он будет вращаться. Позднее асинхронные двигатели с полым ротором в виде медного стакана получили название двигателей Феррариса.

Но как получить два переменных тока, сдвинутых один относительно другого по фазе? Г. Феррарис предложил метод «расщепления фаз», при котором искусственным путем создавался сдвиг по фазе при включении в цепь двух взаимно перпендикулярно расположенных катушек фазосмещающих устройств. На рис. 3.11 показан внешний вид модели двухфазного асинхронного двигателя, хранящейся в музее г. Турина, директором которого до конца жизни был Г. Феррарис.

Г. Феррарисом был сделан существенный вклад в теорию переменных токов. В 1886 г. в своем труде «О разности фаз у токов, о запаздывании вследствие индукции и о потерях в трансформаторе» он впервые рассматривает разность фаз токов в первичной и вторичной обмотках трансформаторов, а также дает методы расчета потерь на гистерезис и вихревые токи. В 1898 г. был опубликован его фундаментальный труд «Научные основания электротехники», вскоре переведенный на русский язык.

Н. Тесла, один из самых известных и плодовитых ученых в области электротехники, начинавший свою научную карьеру в 80-х годах XIX в., получил только в области многофазных систем 41 патент. Некоторое время Н. Тесла работал в Эдисоновской компании в Париже (1882–1884 гг.), а затем переехал в США. В 1888 г. все свои патенты по многофазным системам Н. Тесла продал главе известной фирмы Д. Вестингаузу, который в своих планах развития техники переменного тока сделал ставку на работы Н. Теслы. Впоследствии Н. Тесла много внимания уделял технике высоких частот (трансформатор Теслы) и идее передачи электроэнергии без проводов. Интересная деталь: при решении вопроса о стандартизации промышленной частоты, а диапазон предложений был от 25 до 133 Гц, Н. Тесла решительно высказался за принятую им для своих опытных установок частоту 60 Гц. Тогда отказ инженеров Вестингауза от предложения Н. Теслы послужил начальным импульсом для ученого, решившего расстаться с Вестингаузом. Но вскоре именно эта частота была принята в США в качестве стандартной.

В патентах Н. Теслы были описаны различные варианты многофазных систем. В отличие от Г. Феррариса Н. Тесла полагал, что токи следует получать от многофазных источников, а не пользоваться фазосмещающими устройствами. Утверждая, что двухфазная система, являясь минимальным вариантом системы многофазной, окажется и наиболее экономичной, Н. Тесла, а вслед за ним и фирма «Вестингауз», основное внимание сосредоточили именно на этой системе.

Схематически система Н. Теслы в ее наиболее характерной форме представлена на рис. 3.12, слева изображен синхронный генератор, справа — асинхронный двигатель. В генераторе между полюсами вращались две взаимно перпендикулярные катушки в которых генерировались два тока, сдвинутые по фазе на 90°. Концы каждой катушки были выведены на кольца, расположенные на валу генератора (на чертеже для ясности эти кольца имеют различные диаметры). Ротор двигателя имел обмотку в виде двух расположенных под прямым углом одна к другой замкнутых на себя катушек.

Основным недостатком двигателя Н. Тесла, который впоследствии сделал его неконкурентоспособным, было наличие выступающих полюсов с сосредоточенной обмоткой. Эти двигатели имели большое магнитное сопротивление и крайне неблагоприятное распределение намагничивающей силы вдоль воздушного зазора, что приводило к ухудшению характеристик машины. Таковы были следствия механического переноса в технику переменного тока конструктивных схем машины постоянного тока.

Конструкция обмотки ротора, как выяснилось позднее, тоже оказалась неудачной. Действительно, выполнение обмоток сосредоточенными (а не распределенными по всей окружности ротора) при выступающих полюсах на статоре приводило к ухудшению пусковых условий двигателя (зависимость пускового момента от начального положения ротора), а то обстоятельство, что обмотки ротора имели сравнительно большое сопротивление, ухудшало рабочие характеристики.

Рис. 3.12. Конструктивные схемы генератора и двигателя Тесла 

Неудачным оказался и выбор двухфазной системы токов из всех возможных многофазных систем. Известно, что значительную долю стоимости установки для передачи электроэнергии составляют затраты на линейные сооружения и, в частности, на линейные провода. В связи с этим казалось очевидным, что чем меньше принятое число фаз, тем меньше будет число проводов и тем, следовательно, экономичнее устройство электропередачи. Двухфазная система требовала применения четырех проводов, а удвоение числа проводов по сравнению с установками постоянного или однофазного переменного токов представлялось нежелательным. Поэтому Н. Тесла предлагал в некоторых случаях применять в двухфазной системе трехпроводную линию, т.е. делать один провод общим. В этом случае число проводов уменьшалось до трех. Однако расход металла на провода при этом снижался меньше, чем можно было ожидать, так как сечение общего провода должно было быть примерно в 1,5 раза (точнее, в ?2 раз) больше сечения каждого из двух других проводов.

Встретившиеся экономические и технические трудности задерживали внедрение двухфазной системы в практику. Фирма «Вестингауз» построила несколько станций по этой системе, из которых наибольшей по масштабам была Ниагарская гидроэлектростанция.


3.6. ТРЕХФАЗНЫЕ СИСТЕМЫ И АСИНХРОННЫЕ ЭЛЕКТРОДВИГАТЕЛИ

В то время как Н. Тесла и его сотрудники пытались усовершенствовать двухфазную систему, в Европе была разработана более совершенная электрическая система — трехфазная. Изучение документальных материалов показывает, что в 1887–1889 гг. многофазные системы разрабатывались с большим или меньшим успехом несколькими учеными и инженерами [1.6; 3.7]…

Например, Ч. Бредли, стремясь изготовить электрическую машину с лучшим использованием активных материалов, сконструировал двух- и трехфазные генераторы. Однако Ч. Бредли не знал о явлении вращающегося магнитного поля и предполагал, что потребители в многофазных системах должны включаться как однофазные на каждую пару проводов.

Ф. Хазельвандер подошел к трехфазной системе токов с других исходных позиций. Зная, что коллектор у генератора и двигателя постоянного тока выполняет взаимообратимые функции, он решил его устранить, считая что достаточно те точки обмоток якорей каждой из машин, от которых идут отпайки к пластинам коллектора, соединить соответственно друг с другом. Это удобно сделать у обращенных машин, якоря которых неподвижны, а полюсы вращаются. Тогда генератор будет связан с двигателем проводами, число которых равно числу коллекторных пластин. Стремясь уменьшить число линейных проводов,

Ф. Хазельвандер нашел минимальный вариант — три провода. Однако он не сумел увидеть всех возможностей новой системы и создать пригодные для практики конструкции машин.

Наибольших успехов в развитии многофазных систем добился Михаил Осипович Доливо-Добровольский, который сумел придать своим работам практический характер. Поэтому он по праву считается основоположником техники трехфазных систем.

М.О. Доливо-Добровольский (1862–1919 гг.) родился в Петербурге, учился в Рижском политехническом институте, но был отчислен в связи с массовыми антиправительственными выступлениями студентов в год цареубийства (1881 г.).

Лишенный права поступать в высшие учебные заведения России, он выехал в Германию и завершил свое образование в Высшем техническом училище г. Дармштадта, в котором большое внимание уделялось практическим применениям электричества.

Осенью 1888 г. М.О. Доливо-Добровольский прочел доклад Г. Феррариса о вращающемся магнитном поле и был крайне удивлен его выводом о практической непригодности «индукционного» электродвигателя. Еще до этого М.О. Доливо-Добровольский заметил, что если замкнуть накоротко обмотку якоря двигателя постоянного тока его торможении (т.е. в опыте динамического торможения), то возникает большой тормозящий момент. «Я тотчас же сказал себе, — вспоминал позднее М.О. Доливо-Добровольский, — что если сделать вращающееся магнитное поле по методу Г. Феррариса и поместить в него такой короткозамкнутый якорь малого сопротивления, то этот якорь скорее сам сгорит, чем будет вращаться с небольшим числом оборотов. Мысленно я прямо представил себе электродвигатель многофазного тока с ничтожным скольжением».

Так М.О. Доливо-Добровольский пришел к выводу о нецелесообразности изготовления обмотки ротора с таким большим сопротивлением, при котором ротор имел бы скольжение 50%. В стержнях малого сопротивления при небольшом скольжении возникнут токи, которые в достаточно сильном магнитном поле статора создадут значительный вращающийся момент.

Усиленная деятельность в этом направлении в необычайно короткий срок привела к разработке трехфазной электрической системы и совершенной, в принципе не изменившейся до настоящего времени, конструкции асинхронного электродвигателя.

Первым важным шагом, который сделал М.О. Доливо-Добровольский, было изобретение ротора с обмоткой в виде беличьего колеса.

Рис. 3.13. Варианты ротора с обмоткой в виде беличьего колеса (из патента Доливо-Добровольского)
1 — стальной цилиндр; 2 — медные стержни; 3 — медные пластины или кольца

Для уменьшения сопротивления обмотки ротора лучшим конструктивным решением мог быть ротор в виде медного цилиндра, как в двигателе Г. Феррариса. Но медь является плохим проводником для магнитного поля статора, и КПД такого двигателя был бы очень низким. Если же медный цилиндр заменить стальным, то магнитный поток резко возрастает. Однако отметим, что электрическая проводимость у стали меньше, чем у меди. М.О. Доливо-Добровольский нашел блестящее решение — выполнить ротор в виде стального цилиндра (что уменьшало магнитное сопротивление ротора) и в просверленные по периферии последнего каналы закладывать медные стержни (что уменьшает электрическое сопротивление ротора). На лобовых частях ротора эти стержни должны быть хорошо электрически соединены. На рис. 3.13 представлены чертежи из первого патента М.О. Доливо-Добровольского в области трехфазной системы. Этим патентом он закрепил за собой изобретение ротора с «беличьим колесом», конструкция которого принципиально сохранилась в том же виде и до настоящего времени.

Следующим шагом М.О. Доливо-Добровольского явилась замена двухфазной системы трехфазной. Он совершенно справедливо отмечал, что при увеличении числа фаз улучшается распределение намагничивающей силы по окружности статора асинхронного электродвигателя. Уже переход от двухфазной системы к трехфазной дает значительный выигрыш в этом отношении. Дальнейшее увеличение числа фаз нецелесообразно, так как оно привело бы к значительному увеличению расхода меди на провода. Вскоре выяснились и другие преимущества трехфазной системы.

Рис. 3.14. Схемы двухфазного (а) и трехфазного (б) одноякорных преобразователей 

Но каким образом проще всего получить трехфазную систему? Уже был известен способ, при помощи которого обычную машину постоянного тока можно было превратить в генератор переменного тока. Как уже отмечалось, П.Н. Яблочков и 3. Грамм еще в конце 70-х годов XIX в. секционировали кольцевой якорь генератора и получали от каждой секции переменный ток. В середине 80-х годов были построены первые вращающиеся одноякорные преобразователи. Эти преобразователи очень просто получались из обычной машины постоянного тока: от двух диаметрально противоположных точек обмотки якоря двухполюсной машины делались отпайки, которые выводились на контактные кольца. В этом случае к коллектору машины подводился постоянный ток, а с колец снимался переменный. Если в том же якоре машины постоянного тока сделать отпайки от четырех равноотстоящих точек, то на четырех кольцах легко получить двухфазную систему тока (рис. 3.14, а).

Н. Тесла построил синхронный генератор, в котором имелись три независимые катушки, расположенные под углом 60° одна к другой. Такой генератор давал трехфазную систему токов, но требовал для передачи энергии шесть проводов, так как в этом случае получалась несвязанная трехфазная цепь с токами, сдвинутыми по фазе на 60°. М.О. Доливо-Добровольский в результате исследования различных схем обмоток сделал ответвления от трех равноотстоящих точек якоря машин постоянного тока. Таким образом были получены токи с разностью фаз 120° (рис. 3.14. б). Сохранив в этой машине коллектор, можно было использовать ее в качестве одноякорного преобразователя.

Таким путем была найдена связанная трехфазная система, при которой для передачи и распределения электроэнергии требуется только три провода. В двухфазной системе Н. Теслы также имелась возможность обойтись тремя проводами, однако достоинства симметричной связанной трехфазной цепи подкреплялись другими преимуществами как двигателей, так и вообще трехфазной системы. Последняя является симметричной, уравновешенной и экономичной. На три провода в трехфазной системе для передачи одинаковой мощности требовалось затратить металла на 25% меньше, чем на два провода в однофазной. Эта очевидная экономия металла была одним из главных аргументов в пользу трехфазной системы.

Дальнейшее увеличение числа фаз привело бы к некоторому улучшению использования электрических машин, но вызвало бы соответствующее увеличение числа линейных проводов. Таким образом, трехфазная система электрических токов является оптимальной многофазной системой.

Системе трех «сопряженных» токов М.О. Доливо-Добровольский дал специальное наименование «Drehstrom», что в переводе на русский язык означает «вращающийся ток». Указанный термин, хорошо характеризующий способность образовывать вращающееся магнитное поле, до настоящего времени сохранился в немецкой литературе.

Весной 1889 г. был построен первый трехфазный асинхронный электродвигатель мощностью около 100 Вт (рис. 3.15). Этот двигатель питался током от трехфазного одноякорного преобразователя и при испытаниях показал вполне удовлетворительные результаты.

Поражает конструктивная законченность первых асинхронных электродвигателей М.О. Доливо-Добровольского. Стержни «беличьего колеса» он предлагает делать неизолированными, сердечник ротора массивным или шихтованным, стержни по торцам он соединил короткозамыкающими кольцами, для статора впервые ввел полузакрытые пазы.

Вслед за первым одноякорным преобразователем был создан второй, более мощный, а затем началось изготовление трехфазных синхронных генераторов. Уже в первых генераторах применялись два основных способа соединения обмоток: в звезду и треугольник. В дальнейшем М.О. Доливо-Добровольскому удалось улучшить использование статора с помощью широко применяемого в настоящее время метода, заключающегося в том, что обмотку делают разрезной и противолежащие катушки соединяют встречно.

Важным достижением М.О. Доливо-Добровольского явилось также то, что он отказался от выполнения двигателя с выступающими полюсами и сделал обмотку статора распределенной по всей его окружности, благодаря чему значительно уменьшилось магнитное рассеяние по сравнению с двигателями Н. Теслы. Так трехфазный асинхронный двигатель с короткозамкнутым ротором получил современные конструктивные формы. Вскоре М.О. Доливо-Добровольским было внесено еще одно усовершенствование: кольцевая обмотка статора была заменена барабанной. После этого асинхронный электродвигатель с короткозамкнутым ротором приобрел современный вид.

Новое затруднение в развитии трехфазной техники возникло в связи с ограниченной мощностью первых источников энергии, как отдельных генераторов, так и электростанций в целом. Дело в том, что пусковой ток асинхронного электродвигателя с короткозамкнутым ротором может в несколько раз превышать номинальный, и по этому включение двигателя мощностью свыше 2 кВт отражалось на работе других потребителей.

Рис. 3.15. Первый трехфазный асинхронный двигатель Доливо-Добровольского (в собранном и разобранном виде)
Рис. 3.16. Трехфазный асинхронный двигатель Доливо-Добровольского с фазным ротором и пусковым реостатом 

М.О. Доливо-Добровольский в 1890 г. изготовил двигатель с короткозамкнутым ротором мощностью примерно 3,7 кВт и при первом же испытании обнаружил значительное ухудшение пусковых свойств. Причина этого заключалась в том, что короткозамкнутый ротор был «слишком замкнут накоротко». При увеличении сопротивления обмотки ротора пусковые условия заметно улучшались, но рабочие характеристики двигателя ухудшались. Анализ возникших затруднений привел к созданию так называемого фазного ротора, т.е. такого, обмотка которого делается, подобно обмотке статора, трехфазной и ее концы соединяются с тремя кольцами, насаженными на вал. С помощью щеток эти кольца соединяются с пусковым реостатом. Таким образом, в момент пуска цепь ротора имеет большое сопротивление, которое уменьшается по мере нарастания частоты вращения. На рис. 3.16, взятом из доклада М.О. Доливо-Добровольского на первом Всероссийском электротехническом съезде (1899), показана принципиальная конструкция двигателя.

Но фазный ротор требовал устройства на валу контактных колец, а это рассматривалось многими электротехниками как недостаток по сравнению с короткозамкнутым ротором, не имевшим никаких трущихся контактов. Однако с этим недостатком пришлось мириться, и, несмотря на то что впоследствии были разработаны различные меры по улучшению условий пуска крупных асинхронных электродвигателей с короткозамкнутым ротором, двигатели с контактными кольцами применяются в промышленности до настоящего времени.

В статьях и докладах М.О. Доливо-Добровольского содержится много рассуждений о недопустимости сосредоточенных обмоток в машинах переменного тока, о пульсациях намагничивающей силы, о повышенном магнитном рассеянии, ухудшающем условия пуска. Налицо формирование элементов теории асинхронных машин. Конструктивные же формы созданных М.О. Доливо-Добровольским двигателей были настолько совершенны, что не претерпели сколько-нибудь существенных изменений более чем за 100 лет своего существования.

Трехфазная система не получила бы в первые же годы своего существования быстрого распространения, если бы она не решила проблемы передачи энергии на большие расстояния. Но электропередача выгодна при высоком напряжении, которое в случае переменного тока получается при помощи трансформатора. Трехфазная система не представляла принципиальных затруднений для трансформирования энергии, но требовала трех однофазных трансформаторов вместо одного при однофазной системе. Такое увеличение числа довольно дорогих аппаратов не могло не вызвать стремления найти более удовлетворительное решение.

В 1889 г. М.О. Доливо-Добровольский изобрел трехфазный трансформатор. Вначале это был трансформатор с радиальным расположением сердечников (рис. 3.17, а). Его конструкция еще напоминает машину с выступающими полюсами, в которой устранен воздушный зазор, а обмотки ротора перенесены на стержни. Затем было предложено несколько конструкций так называемых «призматических» трансформаторов, в которых удалось получить более компактную форму магнитопровода (рис. 3.17, б, в, г). Наконец, в октябре 1891 г. была сделана патентная заявка на трехфазный трансформатор с параллельными стержнями, расположенными в одной плоскости (рис. 3.17, д). В принципе эта конструкция сохранилась по настоящее время.

Целям электропередачи отвечали также работы, связанные с изучением схем трехфазной цепи. В 80–90-х годах XIX в. значительное место в электропотреблении занимала осветительная нагрузка, которая часто вносила существенную несимметрию в систему. Кроме того, иногда потребителю было желательно иметь в своем распоряжении не одно, а два напряжения: одно — для осветительной нагрузки, другое, повышенное, — для силовой.

Чтобы можно было регулировать напряжение в отдельных фазах и располагать двумя напряжениями в системе (фазным и линейным), М.О. Доливо-Добровольский разработал в 1890 г. четырехпроводную схему трехфазной цепи, или, иначе, систему с нейтральным проводом. Одновременно он указал, что вместо нейтрального, или нулевого, провода можно использовать землю.

Рис. 3.17. Трансформаторы Доливо-Добровольского
а) — с радиальным расположением сердечников; бг — «призматические»; д — с параллельным расположением стержней в одной плоскости 

М.О. Доливо-Добровольский обосновал свои предложения доказательством того, что четырехпроводная трехфазная система допускает определенную несимметрию нагрузки; при этом напряжение на зажимах каждой фазы будет оставаться неизменным. Для регулирования напряжения в отдельных фазах четырехпроводной системы М.О. Доливо-Добровольский предложил использовать изобретенный им трехфазный автотрансформатор.

Таким образом, в течение 2–3 лет были конструктивно разработаны все основные элементы трехфазной системы электроснабжения: трансформатор, трехпроводная и четырехпроводная линии передачи и асинхронный двигатель в двух его основных модификациях (с фазным и короткозамкнутым ротором). Из всех возможных конструкций многофазных синхронных генераторов, принцип построения которых был уже известен, получили широкое применение только трехфазные машины. Так зародилась и получила свое начальное развитие трехфазная система электрического тока.

Изучение истории техники трехфазных цепей показывает, что решающую роль в ее зарождении и развитии сыграли труды М.О. Доливо-Добровольского. Он не только разработал основные элементы трехфазной системы, но и сделал ряд важнейших изобретений в области техники постоянного тока, в электроизмерительной технике; ему принадлежат также некоторые другие работы. Несомненно, столь быстрый и полный успех трудов М.О. Доливо-Добровольского во многом определяется тем обстоятельством, что они отвечали основным потребностям практики. Действительно, М.О. Доливо-Добровольский начал свою инженерную и научную деятельность в тот период, когда развивавшиеся производительные силы общества ставили перед электротехникой все новые и более ответственные задачи. Основное направление работ Доливо-Добровольского совпало с главным направлением развития электроэнергетики [3.8].

В своем докладе на Международном конгрессе электриков в г. Франкфурте-на-Майне (1891 г.) он показал, что магнитный поток в магнитопроводе катушки, включенной в цепь переменного тока, целиком определяется напряжением (если считать частоту и число витков заданным) и не зависит от магнитного сопротивления. С изменением магнитного сопротивления меняется только намагничивающий ток. Это положение, которое М.О. Доливо-Добровольский называет первым основным положением теории переменного тока, действительно является исходным во всех расчетах электромагнитных устройств. Далее он отметил, что если магнитный поток изменяется синусоидально, то ЭДС (или соответственно напряжение) также изменяется по закону синуса, причем ЭДС и магнитный поток различаются по фазе на ?/2. Он ввел понятия активной и реактивной составляющих тока, которые назвал соответственно ваттным (рабочим) и безваттным (возбудительным) токами. Метод разложения любого тока на две составляющие был рекомендован М.О. Доливо-Добровольским для практических расчетов и анализа процессов в электрических машинах и аппаратах.

М.О. Доливо-Добровольский рекомендовал принять в качестве основной формы кривой тока синусоиду. В отношении частоты тока он высказался за 30–40 Гц. Позднее в результате критического отбора получили применение лишь две частоты промышленного тока: 60 Гц в США и 50 Гц в других странах. Эти частоты оказались оптимальными, ибо повышение частоты ведет к чрезмерному возрастанию частоты вращения электрических машин (при том же числе полюсов), а ее снижение неблагоприятно сказывается на равномерности освещения.

Следует отметить, что в 1888 г. У. Томсон показал возможность применения гармонического анализа Фурье для любого периодического (несинусоидального) тока. (Французский ученый Жак Батист Фурье (1768–1830 гг.) предложил свой знаменитый метод в 1822 г., разрабатывая теорию тепла).


3.7. ЭЛЕКТРОПРИВОД, ЭЛЕКТРОТРАНСПОРТ И ЭЛЕКТРОТЕХНОЛОГИИ

Как известно, одними из наиболее распространенных в промышленности являются механические процессы. Поэтому уже в 70–80-х годах XIX столетия начинает проявляться стремление электрифицировать эти процессы, т.е. осуществить электрический привод различных исполнительных механизмов. Однако до начала 90-х годов применение электропривода носило эпизодический характер. Лишь в некоторых случаях, когда предприятия располагали блок-станциями для электрического освещения, электродвигатели применялись для привода вентиляторов, насосов, подъемников и других механизмов. Следует отметить, что на Всероссийской политехнической выставке в 1872 г. В.Н. Чиколев впервые демонстрировал швейную машину с электрическим приводом — это был первый в мире «электрифицированный станок».

Положение изменилось коренным образом в связи с изобретением асинхронного двигателя. В достаточно короткий срок этот тип двигателя занял доминирующее положение в системе электропривода промышленных предприятий. Чрезвычайная простота асинхронного двигателя, особенно с короткозамкнутым ротором, его надежность и невысокая стоимость позволяют установить в любом цехе сотни и тысячи двигателей при небольшом обслуживающем персонале. Такие двигатели могут выполняться в герметических корпусах, и, следовательно, их можно использовать в тяжелых условиях: в атмосфере повышенной влажности, бензиновых паров и т.п. Асинхронные двигатели без повреждений выдерживают значительные кратковременные перегрузки, тогда как в двигателях постоянного тока любая перегрузка ускоряет износ коллектора.

Существенным недостатком асинхронного двигателя является трудность регулирования частоты вращения. Поэтому до настоящего времени еще очень велик удельный вес регулируемых машин постоянного тока в системе промышленного электропривода. Недостатком асинхронных двигателей с короткозамкнутым ротором также является ограничение их мощности условиями пуска. Это обстоятельство в начальный период развития трехфазной техники, когда мощности электрических станций были невелики, заставляло во многих случаях отказываться от применения двигателей с короткозамкнутым ротором. Мощные двигатели с короткозамкнутым ротором применялись только в случаях, когда они питались от отдельного генератора. Такие установки часто использовались, например, в водокачках.

Практически развитие электропривода происходило двумя неравнозначными путями. Первый, наиболее типичный, — замена паровых двигателей, работавших на трансмиссию. Это был путь создания крупногруппового электропривода, который не исключал тяжелых производственно-гигиенических условий, определявшихся наличием трансмиссий. Второй путь — эпизодическое применение одиночного привода. Последнее, как правило, имело место только в случае крупных ответственных исполнительных механизмов, предъявлявших специфические требования к приводному двигателю (привод кранов, центрифуг, прокатных станов и т.п.). Но уже в конце века практика наглядно убеждала в преимуществах одиночного привода.

Последний вид привода освобождает промышленное предприятие от трансмиссий и, главное, позволяет работать каждому отдельному исполнительному механизму при переменных нагрузках и наивыгоднейших скоростях, а также позволяет ускорить пуск и изменение направления вращения. Одиночный привод оказал существенное влияние и на конструкцию самого исполнительного механизма. Сближение приводного двигателя с исполнительным механизмом иногда получалось настолько тесным, что конструктивно они представляли собой единое целое. Например, в случае электропривода рольганга ролик, служащий для перемещения металла, является наружным ротором асинхронного двигателя.

Рис. 3.18. Электрическая железная дорога Сименса (1879 г.) 

В 70-х и особенно 80-х годах XIX в. проводилось много работ по применению электричества на транспорте. Так называемые конно-железные дороги уже не удовлетворяли возросших потребностей городского населения, а применение парового городского транспорта оказалось неприемлемым из-за дыма и копоти. Реальная возможность для проведения опытов по электрификации транспорта появилась после изобретения генератора Грамма.

Во всех случаях, когда электрическая энергия для питания тягового двигателя генерировалась гальванической или аккумуляторной батареей, техническое решение шло в направлении создания автономных устройств тяги, т.е. таких, в которых как генерирующая установка, так и электродвигатель были размещены на самом экипаже или судне. Когда же для выработки электроэнергии стали применять генераторы Грамма, приводимые в действие соответствующими паровыми агрегатами, система автономной электрической тяги перестала распространяться. Проблема электрической тяги могла найти решение лишь при условии разработки приемов экономичной передачи электроэнергии от места ее генерирования к движущемуся экипажу, вагону и т.п. Таким образом, электрическая тяга могла развиваться в виде неавтономной тяги с применением методов экономичной передачи электроэнергии на расстояние.

Система автономной электрической тяги, однако, не была полностью отвергнута; усовершенствование аккумуляторов позволило устраивать систему автономной тяги, пользуясь смонтированной в вагоне или на судне аккумуляторной батареей, током от которой питался электродвигатель.

В 1879 г. В. Сименсом была построена первая небольшая электрическая железная дорога на промышленной выставке (рис. 3.18.). Электрическая энергия по отдельному контактному рельсу передавалась к двигателю небольшого вагона, напоминавшего собой современную аккумуляторную тележку (электрокар); обратным проводом служили рельсы, по которым двигался «локомотив». К последнему были прицеплены три тележки, на которых могли разместиться 18 пассажиров.

В России первые опыты неавтономной электрической тяги были проведены Ф.А. Пироцким. Еще в 1875–1876 гг. он использовал для передачи электроэнергии обычный железнодорожный рельсовый путь. Чтобы улучшить проводимость рельсового пути, он применил стыковые электрические соединения, а для усиления изоляции двух ниток рельсов одной колеи (они были изолированы слоем окалины и шпалами) — смазку подошвы рельсов асфальтом.

В августе 1880 г. Ф.А. Пироцкий осуществил пуск электрического трамвая на опытной линии в районе Рождественского парка конной железной дороги в Петербурге. Питалась эта линия от небольшой электростанции, построенной в парке, с генератором мощностью 4, а позднее 6 л.с. Под трамвайный электровагон был приспособлен двухъярусный вагон конной железной дороги (масса с пассажирами 6,5–7,0 т), к раме которого был подвешен электродвигатель, приводивший в движение ведущую ось через двухступенчатую зубчатую передачу. Схема, предложенная Ф.А. Пироцким, некоторое время применялась для питания трамвайной сети и за рубежом. Она была достаточно проста и давала возможность обойтись без третьего рельса, затруднявшего уличное движение и усложнявшего все сооружение. Недостатком такой схемы было наличие больших потерь электроэнергии от токов утечки из-за плохой изоляции рельсов.

После изобретения способа питания от верхнего контактного провода, сделанного в 1883 г. независимо Ван-Депулем (США) и В. Сименсом (Германия), схему питания по двум рельсам перестали применять на электротранспорте, если не считать ее применения в настоящее время для автоблокировки. Заслугой Ф.А. Пироцкого является также введение зубчатой передачи (вместо ременной) от вала двигателя к колесам. В 1889 г. подобный же передаточный механизм, получивший название «трамвайного привода», был применен Спрэгом в США.

С 1883 г. действовала линия трамвая в г. Портуме (Ирландия) длиной 9,6 км; в 1884 г. были открыты для эксплуатации трамвайные линии в городах Брайтоне (Англия) длиной 1,5 км и Франкфурте-на-Майне (Германия) длиной 6,56 км. Первый трамвай в России, киевский, был пущен для общего пользования в 1892 г., причем решение о строительстве трамвайной линии было принято лишь после того, как убедились, что ни конная, ни паровая тяга не способны преодолеть крутой подъем от ул. Подол к Крещатику. Трамвайная линия соединила густонаселенную окраину Киева с центром города.

На электрическом транспорте почти исключительное применение получил постоянный ток, обеспечивающий надежную работу тяговых электродвигателей и удобное регулирование скорости. Поэтому по мере развития техники переменного тока пришлось сооружать преобразовательные подстанции.

Наиболее естественным и поэтому первым по времени преобразователем переменного тока в постоянный была двигатель-генераторная установка. В 1885–1889 гг. создаются первые одноякорные преобразователи переменного тока в постоянный, которые в каждом случае представляли собой комбинацию синхронного электродвигателя и генератора постоянного тока с общим якорем. Одноякорный преобразователь обладает рядом существенных преимуществ перед двигатель-генераторной установкой: меньшая на 30–40% масса, значительно меньшие габариты (до 50%), высокий КПД.

Громадное значение в развитии производительных сил сыграли новые отрасли промышленного производства, появление которых обусловливалось применением электрической энергии в качестве основного технологического фактора: промышленная электрохимия и электротермия. Промышленная электрохимия зародилась вместе с гальванотехническими мастерскими и предприятиями по производству электролитическим путем кислорода и водорода.

Опыты по применению электрических дуговых печей для плавки руд, металлов и других веществ начались еще в конце 40-х годов, но лишь в 1878 г. В. Сименсу удалось создать такую конструкцию дуговой печи, что она могла использоваться в промышленном производстве [3.9].

Чтобы оценить значение электротермии в конце XIX в., достаточно напомнить, что алюминий благодаря электротехнологии перестал быть драгоценным металлом. Электролитический способ получения алюминия был разработан американским инженером Ч.М. Холлом и французским инженером П. Эру в 1886–1888 гг. Вслед за электролизом алюминия начинает развиваться ряд других электротермических производств. В конце XIX в. был найден способ получения карборунда. Тогда же был разработан метод получения карбида кальция, который стал потребляться в больших количествах для выработки ацетилена. Позднее были изобретены и усовершенствованы различные конструкции электрических печей для производства высококачественных сталей.

СПИСОК ЛИТЕРАТУРЫ

3.1. Белькинд Л.Д. Павел Николаевич Яблочков. М: Госэнергоиздат, 1950.

3.2. Белькинд Л.Д. Александр Николаевич Лодыгин. М: Госэнергоиздат, 1948.

3.3. Белькинд Л.Д. Томас Альва Эдисон. М.: Наука, 1964.

3.4. Ржонсницкий Б.Н. Федор Аполлонович Пироцкий. М. — Л. Госэнергоиздат, 1951.

3.5. Ржонсницкий Б.Н. Дмитрий Александрович Лачинов. М. — Л. Госэнергоиздат, 1949.

3.6. Цверава Г.К. Никола Тесла. М.: Наука, 1974.

3.7. Веселовский О.Н. Михаил Осипович Доливо-Добровольский. М.: Госэнергоиздат, 1958.

3.8. Доливо-Добровольский М.О. Избранные труды о трехфазном токе. М.: Госэнергоиздат, 1948.

3.9. Швецов М.С., Бородачев А.С. Развитие электротермической техники М.: Энергоатомиздат, 1983.


Глава 4.
ТЕОРЕТИЧЕСКАЯ ЭЛЕКТРОТЕХНИКА

4.1. ВВЕДЕНИЕ

Теоретическая электротехника (ТЭ) как самостоятельное научное направление образовалась в результате синтеза физических представлений об электрических и магнитных полях, электрических цепях, математических методах для исследования и расчета электромагнитных явлений в технических устройствах. В этом качестве ТЭ является основой развития теории, методов расчета и синтеза широкого спектра электротехнических изделий. История развития ТЭ неотделима от развития электротехники и физики, поскольку открытие новых физических явлений и законов практически одновременно приводило к появлению новых электротехнических устройств. Характерно, что практически одновременно имели место открытие в 1831 г. закона электромагнитной индукции, т.е. возникновения электродвижущей силы в результате изменения потока вектора магнитной индукции М. Фарадеем, демонстрация в 1832 г. электрического генератора постоянного тока, созданного братьями Пиксии в Париже, и изобретение электродвигателя в 1834 г. Б.С. Якоби. Однако для создания серьезной теоретической, расчетной и проектной базы, а также глубокого изучения электромагнитных процессов в таких машинах и целенаправленного развития их конструкций потребовались многие десятилетия. Для ТЭ характерен учет влияния множества факторов и в этой связи усложнение картины протекания физических процессов, поскольку только при этих условиях стало возможным решить проблему создания и повышения эффективности новых электротехнических устройств. Именно необходимость учета множества факторов потребовала разработки методов создания соответствующего математического описания, т.е. математических моделей этих устройств.

Начальный этап становления ТЭ определялся не только историей развития физических представлений об электрических и магнитных явлениях. С созданием гальванических элементов, формулированием законов Ома и Кирхгофа, а также с началом практического использования физических явлений, связанных с протеканием постоянного тока по проводникам, независимо от теории электромагнитного поля (ЭМП) появился новый раздел ТЭ, известный в настоящее время под названием «Теория электрических цепей». Вначале раздельное развитие этих двух направлений ТЭ было обусловлено тем, что расчет электрических цепей постоянного тока не требовал привлечения закона электромагнитной индукции и введения понятия токов смещения, т.е. использования всех законов ЭМП. Однако и в дальнейшем выявленные особенности описания процессов в электрических цепях и их математических моделей, даже при необходимости использовать уравнения ЭМП, позволили создавать специфические методы расчета и сохранять теорию электрических цепей в качестве самостоятельного раздела. В этом отношении показательна возможность вывода законов Кирхгофа без использования уравнений Максвелла, исходя только из топологических особенностей электрических цепей. По этой причине в ТЭ с самого начала ее становления относительно самостоятельно развивались исследования, связанные с явлениями, вызванными протеканием электрического тока по проводникам, образующим цепи (теория электрических цепей) и с эффектами взаимодействия электромагнитного поля с веществом (теория ЭМП). Таким образом, это разделение было вызвано не только историческими причинами и различиями в методах анализа и синтеза электрических цепей и электромагнитных полей, но и используемым при этом математическим аппаратом.

Поражающая воображение быстрота появления практических устройств на основе использования электромагнитных явлений способствовала ускоренному развитию производительных сил с конца XIX в. и существенным образом повлияла на становление ТЭ в качестве самостоятельной науки. Со времени открытия гальванических источников тока, электрической дуги и появления возможности практического использования этих открытий для освещения и электротермии прикладные аспекты использования ЭМП приобретают особое значение для развития производства. Именно это обстоятельство в первую очередь стимулировало развитие ТЭ в качестве самостоятельной отрасли науки.


4.2. СТАНОВЛЕНИЕ ФИЗИЧЕСКИХ ОСНОВ ТЭ

Д.К. Максвелл в течение 1855–1873 гг., обобщив результаты экспериментальных исследований, известных в виде законов Ш. Кулона, А. Ампера, законов и идей М. Фарадея и Э.Х. Ленца сформировал на их основе систему уравнений ЭМП, описывающую поведение электромагнитного поля в общем случае. Впоследствии Г. Герц в 1884 и 1890 гг., О. Хевисайд в 1885 г., А. Эйнштейн в 1905 г., Г. Лоренц в 1909 г. и др. сформулировали варианты этой системы уравнений. С точки зрения теории математического моделирования система уравнений Максвелла является математической моделью электромагнитного поля для самого общего случая. Приспособление этой модели к конкретным свойствам исследуемого устройства и стало одной из основных задач ТЭ при создании общих методов разработки конкретных математических моделей, т.е. математического описания электромагнитных процессов в конкретном устройстве.

Становление ТЭ в области теории ЭМП протекало в период столкновения двух подходов толкования сути самих уравнений Д.К. Максвелла. В первом из них, характерном для ученых, придерживающихся позиций школы М. Фарадея и Д.К. Максвелла, математическое описание процессов производится на основе построения физической картины их протекания. Для подхода, характерного в основном для физиков немецкой школы, преимущественную роль играет сама математическая модель, которая является продуктом субъективного мыслительного процесса. Эти школы отражали принципиально различные подходы к толкованию результатов экспериментальных данных. В первом признается реальность существования электромагнитного поля в качестве особой формы материи и принципа близкодействия, т.е. взаимодействия, материальных тел через процесс, протекающий в разделяющем их пространстве. Для сторонников второго подхода, приверженцев принципа дальнодействия, по мнению которых взаимодействие тел происходит без участия какого-либо материального процесса в разделяющем эти тела пространстве, нет необходимости использовать ЭМП для объяснения процесса взаимодействия. Следует отметить, что при попытке понять картину физических процессов, представляющих ЭМП, физики столкнулись с дуальностью проявления света, а следовательно и ЭМП, когда явление фотоэффекта вынудило представить свет в качестве потока дискретных частиц-фотонов — квантов света, а дифракционные эффекты в виде волн. Этот двойственный характер поведения ЭМП и попытки создания адекватной математической модели послужили причиной появления новых физических концепций. Вследствие дуальности проявления ЭМП стало невозможным описать реальную картину поведения индивидуальных частиц и это заставило ввести в квантовую физику (на основе работ Н. Бора (1895–1962 гг.), Л. де-Бройля (1892–1987 гг.), Э. Шредингера (1887–1961 гг.), В. Гейзенберга (1901–1971 гг.), П. Дирака (1902–1984 гг.) и М. Борна (1882–1970 гг.)) понятий, определяющих только статистические, вероятностные особенности поведения множества частиц, в том числе фотонов и электронов.

Согласно этой теории реальное распределение частиц в пространственно-временном континууме (это слово использовано для выражения идеи о невозможности раздельного представления пространства и времени) можно описать только на основе понятий функции вероятности или «волны вероятности». При использовании данного подхода может быть определена только вероятность нахождения частицы в данной точке в данный момент времени. Разумеется, что столь глубокое проникновение в физическую картину построения вещества и поля выходит за рамки ТЭ, однако выяснение наличия различных ответов на вопрос, что такое ЭМП, и причин, порождающих эти расхождения, необходимо для понимания истории развития основных физических представлений о природе ЭМП, что важно не только для физиков, но и для электриков, специализирующихся в области ТЭ. Сторонники принципа близкодействия и в физике, и в ТЭ, ярким представителем которого являлся академик АН СССР В.Ф. Миткевич (1872–1951 гг.), вынуждены были предложить модели вхождения пространства в процесс взаимодействия первоначально при помощи введения понятия эфира, а в последующем и концепции электронно-позитронной теории вакуума. Согласно современным представлениям свободное от материальных частиц пространство — вакуум (некий непротиворечивый эквивалент эфира), состоит из совокупности взаимосвязанных электронно-позитронных пар. Поскольку принимается, что масса и электрона, и позитрона определяется только энергией, связанной с этими частицами ЭМП, которая при образовании пары освобождается, то вакуум представляет собой пространство с минимальным уровнем энергии. В таком вакууме может иметь место явление поляризации в полном соответствии с представлениями М. Фарадея и Д.К. Максвелла. Однако при этом возникает вопрос о причинах и механизмах взаимодействия вакуума с полем тяготения. Согласно представлениям о строении материи элементарные частицы вещества электрон и позитрон обладают всеми качествами материальных тел и отличаются наличием у них свойства взаимодействовать с ЭМП, мерой которого является электрический заряд. Заряд, в свою очередь, является следствием наличия кварков, этих нецелых по значению зарядов. Вследствие невозможности исчезновения зарядов следует, что вакуум состоит из кварков, которые должны обладать и другими свойствами, связанными с гравитационным полем. Таким образом, даже попытка представления основной физической особенности материи, связывающей ее с ЭМП, приводит к необходимости более глубокого проникновения в свойства материи. В этом заключается одна из важнейших особенностей ЭМП, познание которой послужило в прошлом важным стимулом развития физики.

Развитие физических представлений о строении материи и элементарных частиц привело к пониманию объективности существования материи в виде ЭМП. В настоящее время превалирует принцип близкодействия и на этой основе признание независимо от нашего сознания существования, т.е. материальности, ЭМП. Признание этого факта не просто некий результат абстрактного спора, но важный шаг к пониманию сути самого ЭМП, следовательно, более адекватному описанию электромагнитных процессов в конкретных условиях, что способствует созданию более точных математических моделей. Электромагнитное поле и его математическая модель в виде системы уравнений Максвелла сыграли важную роль в развитии физики и понимании строения вещества. В отличие от гравитационного поля, для которого не было экспериментально выявлено основное свойство вещества в виде поля, а именно свойство распространяться в пространстве в виде отделенной от вещественных тел материи, исследования электромагнитных явлений позволили наблюдать эффекты, связанные с отдельным от материальных частиц существованием ЭМП в виде предсказанных Д.К. Максвеллом электромагнитных волн (Г. Герц, 1880 г., П.Н. Лебедев, 1895 г.). В этом отношении исключительное значение имеют исследования П.Н. Лебедевым (1866–1912 гг.) коротких электромагнитных волн (6 мм), позволившие установить наличие давления света на материальные тела (1899 г.).


4.3. РАЗВИТИЕ ОТЕЧЕСТВЕННОЙ ШКОЛЫ ТЭ

В России ТЭ с самого начала своего появления развивалась на основе признания материальности ЭМП и важности понимания картины протекания рассматриваемых физических процессов для их практического использования и описания в виде математических моделей. Развитие этой школы до 20-х годов XX столетия отличается освоением достижений в области, главным образом, физики электромагнитных явлений. Характерной для этого периода в России следует считать практическую неделимость исследований физических явлений, разработки простейших моделей этих явлений и решения задач, связанных с расчетом исследуемых физических величин. В этом отношении работы множества ученых можно отнести и к области физики, т.е. к фундаментальным наукам, и к области ТЭ, поскольку в них предлагались и методы создания математических моделей, и методы анализа и расчета этих моделей для простейших с современной точки зрения задач.

Русские ученые внесли заметный вклад в развитие электротехники и физики и тем самым заложили надежную базу для создания отечественной школы ТЭ. В этом отношении следует отметить работы А.Г. Столетова и представителей его школы (Н.С. Акулов, В.К. Аркадьев, А.С. Займовский и др.) по исследованию магнитных свойств железа и ферромагнетиков. Вкладом в развитие ТЭ следует считать исследование зависимости экономичности передачи электрической энергии от напряжения, проведенное Д.А. Лачиновым и М. Депре. В России становление отечественной школы ТЭ одновременно протекало в двух главных центрах науки — в Петербурге и Москве. Отставание России в промышленном развитии по сравнению с западными странами вынуждало русских ученых реализовать свои идеи и новые разработки на Западе. В этом отношении весьма показательна судьба М.О. Доливо-Добровольского, который изобретением трехфазных систем и вращающегося магнитного поля совершил революцию в электромашиностроении и электроэнергетике.

На начальном этапе внедрения электричества в практику русские инженеры показали свои большие потенциальные возможности. В 1893 г. инженер А.Н. Шенснович построил Новороссийский элеватор с электростанцией мощностью 1200 кВт, (максимальная к тому времени мощность), в которой работали четыре синхронных трехфазных генератора мощностью по 300 кВт. Трехфазные генераторы и двигатели переменного тока, использованные на элеваторе, были изготовлены в собственных мастерских по проектной документации фирмы «Броун Бовери». По сути, на этом предприятии фактически была реализована наиболее оптимальная схема компоновки электропривода.

Однако в целом отсутствие в России равноценной западным странам проектной и промышленной базы стимулировало работы теоретического и исследовательского характера. В ТЭ такие исследования развивались в области формирования собственной точки зрения на ЭМП и, в частности, на влияние свойств среды на распространение электромагнитного поля и его использование для передачи сигналов. В прикладном аспекте следует отметить работы А.С. Попова (1859–1906 гг.), который в 1895 г. на заседании физического отделения Русского физико-химического общества продемонстрировал возможность передачи сигналов при помощи электромагнитных волн. Следует особо отметить изобретение Б.Л. Розингом, работавшим в Петербургском политехническом институте, системы передачи изображения (1911 г.) при помощи электронно-лучевой трубки (патент 1907 г.).

Важное значение для развития ТЭ имела изначальная ориентация большинства русских физиков на фарадей-максвелловы идеи о физической реальности процессов, происходящих в ЭМП. Профессор Петербургского университета И.И. Боргман (1849–1914 гг.) и ряд ученых на своих лекциях и в докладах на собраниях, организованных физическим отделением Русского физико-химического общества и электротехническим отделом Русского технического общества, пропагандировали и распространяли идеи, способствующие формированию знаний в области ТЭ. В контексте этих идей предметом глубокого и всестороннего рассмотрения стала проблема оценки принципов близко- и дальнодействия.

История создания электротехнических устройств показала, что решающее значение приобретает глубокое понимание физической картины протекающих в них электромагнитных процессов. Именно эта особенность в максимальной мере отличала развитие отечественной школы ТЭ. В этой связи следует отметить принципиальное отличие методических основ подготовки научных и инженерных кадров для экономики и формирования ТЭ в нашей стране от иностранных. Несмотря на совпадение на начальном этапе развития ТЭ и раздела физики, относящегося к ЭМП, в университетских курсах и у нас и за границей прикладные аспекты электромагнитных процессов не рассматривались. В этом отношении весьма показательно высказывание автора двухтомного курса физики И.И. Боргмана «Основания учения об электрических и магнитных явлениях», вышедшего из печати в 1895 г. в Петербурге. В этой книге автор заканчивает раздел, относящийся к рассеянию энергии в стали, следующими словами: «Вопрос о выделении тепла в железе при намагничивании его, т.е. рассеянии энергии при этом, представляет большой интерес в электротехнике, в теории трансформатора. Более подробное рассмотрение этого вопроса выходит из пределов настоящего курса». Эти, по существу дела, общие теоретические вопросы недостаточно полно рассматривались и в ряде специальных электротехнических курсов, читавшихся известными учеными электротехниками того времени: П.Д. Войнаровским, организовавшим первую русскую лабораторию высоких напряжений (2x100 кВ), А.А. Вороновым, крупным специалистом по электрическим машинам, и др. О необходимости восполнения этого пробела при подготовке кадров будущих специалистов-электриков вспоминает крупный ученый М.А. Шателен (1866–1957 гг.), чл.-корр. АН СССР с 1931 г.: «Особенно нас не удовлетворяла подготовка по теоретической электротехнике. Читавшийся тогда в Электротехническом институте «Специальный курс электричества», несмотря на то, что он читался таким крупнейшим профессором, как И.И. Боргман, не удовлетворял нас. В сущности это был тот же курс, который И.И. Боргман читал на физико-математическом факультете университета, только сокращенный. Никакой специфики, связанной с его целевым назначением не было.

И вот тут у Владимира Федоровича Миткевича начали назревать те мысли, которые потом были осуществлены в Политехническом институте, когда он начал читать на электромеханическом факультете (тогда отделении) курс теоретических основ электротехники. Аналогичного курса не было ни в русской, ни в иностранной литературе. Это было действительно изложение основ учения об электрических и магнитных явлениях, предназначенное специально для будущих инженеров-электриков и подготавливающее студентов к сознательному восприятию тех сведений, которые они потом получали в специальных курсах электрических машин, высоких напряжений и т.п.

Я помню тот исключительный интерес, который проявляли к этому курсу не только студенты, но и преподаватели и молодые электрики и физики. Литографированные листы этого курса разбирались нарасхват».

Речь здесь идет о курсе «Теория электрических и магнитных явлений», который В.Ф. Мит-кевич начал читать в 1904 г. в Политехническом институте и который был издан в 1912 г. В этих воспоминаниях высказана основная идея создания не просто учебного курса, а всего направления ТЭ, заключающаяся в создании совместными усилиями теоретиков и специалистов прикладного направления общего физического и математического фундамента для всех специальных дисциплин. В 1905 г. была начата подготовка инженеров электротехнической специальности и в Московском высшем техническом училище (МВТУ). Основные теоретические курсы «Теория переменных токов» (изданный в 1906 г.) и «Электрические измерения» в МВТУ начал читать Карл Адольфович Круг (1873–1952 гг.). Этими курсами, в систематической форме излагающими основные положения двух важнейших разделов ТЭ, и была заложена основа отечественной школы ТЭ. Со времени появления этих курсов в учебные программы всех высших учебных заведений, готовивших инженеров-электриков, неизменно входил курс «Теоретические основы электротехники».

Монографии и учебники по ТЭ отражали и систематизировали технические и научные достижения в области электротехники и физико-математических дисциплин в России и за ее пределами и в свою очередь служили фундаментом для дальнейшего развития электротехники. Вместе с тем развитие прикладных аспектов электротехники приводило к возникновению все новых и новых проблем, входящих в компетенцию ТЭ. На начальном этапе развития электротехники быстрее появлялись новые области приложения физических открытий, а следовательно, и новые отрасли электротехники. В последующем наблюдалась обратная картина, когда окрепшие и самостоятельно развивающиеся отрасли электротехники ставили перед наукой новые задачи, побуждающие развитие ТЭ. Установление основных законов электродинамики, т.е. взаимодействия токов и магнитных полей, привело к изобретению электрической связи, электрических машин и трансформаторов. В свою очередь, анализ процессов в электрических цепях способствовал оптимальному проектированию электрических сетей и линий электропередачи. Открытие электромагнитных волн дало толчок к изобретению радио и радиотелефонной связи, космической связи и навигации и т.п. Широкое применение электрических цепей и систем переменного тока, содержащих трансформаторы, электрические машины, двигатели и другие элементы, в которых происходило преобразование электрической энергии, поставило новые задачи перед ТЭ. Началось интенсивное развитие теории электрических цепей переменного тока, теории симметричных составляющих, переходных процессов и др. В этой связи особо значительным как в инженерном отношении, так и в отношении развития методов расчета электрических цепей было введение метода представления синусоидальных токов и напряжений в виде комплексных величин американским инженером Ч.П. Штейнмецем. Об этом методе Ч.П. Штейнмец докладывал в 1893 г. на Международном электротехническом конгрессе.

Исследования токов коротких замыканий при включении и выключении нагрузки привели к разработке новых методов расчета переходных процессов во всех электротехнических установках и в других областях инженерной практики, например при расчете гидравлических процессов.

Следует особо отметить вклад в развитие методов ТЭ английского физика Оливера Хевисайда (1850–1925 гг.). Подход О. Хевисайда к исследованию электромагнитных явлений — пример для специалиста в области ТЭ. Он стремился гармонически сочетать глубину понимания физического процесса и математических методов его представления и расчета для получения данных, количественно характеризующих эти процессы. В ТЭ он ввел много новых понятий (функцию Хевисайда, определяющую современное понятие единичной функции, импульсной функции и др.) и методов расчета. Большое внимание было уделено развитию раздела математики, необходимого для расчета переходных процессов в электрических цепях. Исследуя процесс установления тока в проволоке (сопротивление) при ее включении под действие постоянного напряжения, он пришел в выводу, что в процессе установления тока (по современной терминологии, в течение переходного процесса) он течет «по слоям, сильный на поверхности провода, слабый в середине» и определил зависимость этого явления от скорости изменения тока, т.е. предсказал явление поверхностного эффекта и объяснил его, введя понятие, аналогичное вектору Умова — Пойнтинга почти одновременно с Д.Г. Пойнтингом. Для расчета переходных процессов он использовал операторы, преобразующие дифференциальные уравнения в алгебраические. Подходы физика О. Хевисайда к исследованию электромагнитных процессов были близки к таковым в ТЭ в отношении доведения исследований до количественных данных. И то обстоятельство, что Хевисайд изобретал математические методы, отчасти разработанные задолго до него математиками, являлось отражением основного пробела в развитии ТЭ на начальном этапе — недостаточного использования достижений математики.


4.4. ТЕОРЕТИЧЕСКАЯ ЭЛЕКТРОТЕХНИКА В СССР

Масштабное развитие ТЭ в СССР неразрывно связано с Октябрьской социалистической революцией, которая поставила перед народом грандиозные задачи развития экономики и науки. Интересно отметить, что чуть более месяца спустя после Октябрьской революции в декабре 1917 г. на конференции фабрично-заводских комитетов Урала была поставлена задача «разработать план развития электротехнической индустрии с целью использования силы текущих вод». В те же годы техническая общественность выдвигала многочисленные проекты электрификации. Так, например, Русское техническое общество ставило вопрос о проведении изысканий в районе Самарской дуги для постройки мощной гидростанции. Электрификация страны означала перевод народного хозяйства на уровень, определяемый проникновением электротехники во все области жизни современного общества, поскольку только на этой основе возможно ускоренное и эффективное развитие производительных сил, новых технологий, улучшение условий труда и повышение жизненного уровня населения. С точки зрения опыта, накопленного к концу XX в., все это выглядит самоочевидным, однако в то время такой выбор для создания плана долговременного развития в масштабе целой страны был поистине революционным. В СССР своевременно оценили и сделали государственной техническую политику, основанную на максимальном использовании особых свойств ЭМП, а именно высокой степени упорядоченности его внутреннего движения, отсутствии массы покоя и в связи с этим предельной скорости движения. Эти свойства обеспечивают преобразование ЭМП в другие формы с высоким КПД и позволяют их эффективно применять при электрификации не только для выработки, передачи и преобразования энергии в энергетике, но и для управления большими потоками энергии, передачи сигналов, создании быстродействующих информационных систем, ЭВМ и дискретной техники и др.

Опыт нашей, в то время отсталой, страны показал, что целенаправленную электрификацию эффективнее осуществлять в рамках единого в масштабе всей страны плана. Для создания и осуществления такого плана в 1920 г. была создана комиссия, возглавляемая Г.М. Кржижановским, в состав которой вошли крупные специалисты России, в том числе представители ТЭ В.Ф. Миткевич, М.А. Шателен, К.А. Круг, М.К. Поливанов, А.А. Горев, А.А. Смуров и др. Этот план получил название Плана государственной электрификации России (ГОЭЛРО), опыт которого послужил основой планового развития СССР. Реализация плана ГОЭЛРО привела к созданию новых отраслей промышленности, в частности энергомашиностроительной, электротехнической и приборостроительной. Для научного обеспечения планов были созданы многочисленные исследовательские и проектные институты, организации для проектирования технологического обеспечения и заводы для изготовления многочисленного оборудования для электрических станций, линий электропередачи и потребителей электрической энергии. Были созданы многочисленные кафедры и научные лаборатории в высших учебных заведениях, что позволило обеспечить инженерными кадрами эти новые отрасли.

Реализация планов электрификации в области ТЭ основывалась на научном потенциале и результатах исследований отечественных ученых. При создании уникальной по протяженности и размерам сети высоковольтных и сверхвысоковольтных линий передачи электрической энергии, основы единственной в мировой практике единой электроэнергетической системы, широко применяется выдвинутая в 1910 г. В.Ф. Миткевичем идея расщепления проводов фаз для подавления коронного разряда. Создание высоковольтной техники для подстанций и линий передачи с научной точки зрения было подкреплено наличием в лабораториях высших школ изобретенным В.К. Аркадьевым и Н.Н. Баклиным в 1914 г. генераторов импульсных напряжений. Имелись значительные результаты в исследованиях по теории длинных линий, измерительной технике, в том числе высоковольтной, и другим аспектам теории в области ТЭ, которые были представлены в докладах М.А. Шателена, А.А. Чернышева, А.А. Горева и др. на восьмом Всероссийском электротехническом съезде на рубеже 1912–1913 гг. Однако для реализации планов электрификации необходимо было развитие не только исследовательской, но и технической базы страны.

Приступая к реализации плана ГОЭЛРО, наши инженеры были вынуждены в значительной мере ориентироваться на технический опыт развитых в промышленном отношении стран вследствие слабой промышленной базы России и особенно ее электротехнического сектора. В одной из технических записок, характеризующих то время, говорится: «Только собственный опыт может помочь русским техникам в правильном решении всей совокупности всех сложных вопросов техники высоких напряжений и высоковольтных передач, и только при наличии собственных опытных данных возможно будет для будущих высоковольтных сооружений вполне сознательно и с полным основанием установить надлежащие и наивыгодные формы, которые пока еще только выявляются, но окончательно еще не определены». Несмотря на то что именно в области техники высоких напряжений российские ученые имели большой научный задел, строительство на практике первой высоковольтной линии электропередачи напряжением 110 кВ, показало недостаточность конкретных данных, столь необходимых при выборе конструкций, конструкционных материалов и их свойств. Для решения этих проблем уже в 1921 г. было принято решение основать Государственный экспериментальный электротехнический институт, впоследствии Всесоюзный электротехнический институт (ВЭИ им. В.И. Ленина). Его основателем и первым руководителем стал видный специалист в области ТЭ К.А. Круг — создатель Московской школы теоретической электротехники.

Как уже отмечалось ранее, передача энергии большой мощности на дальние расстояния возможна только при высоких напряжениях. В противном случае, как это стало ясно из первых теоретических исследований Д.А. Лачинова, КПД передачи оказывается недостаточно высоким. По этой причине выявилась необходимость в создании новых лабораторий именно техники высоких напряжений для ответа на конкретные запросы проектных и строительных организаций. В этой области большие работы были успешно выполнены А.А. Смуровым (Ленинград) и Л.И. Сиротинским (Москва), участниками строительства наших первых высоковольтных сооружений. Результаты, касающиеся расчетов электрических полей, приведены во многих разделах монографий указанных выше авторов. Здесь уместно отметить, что строительство высоковольтных линий электропередачи (ЛЭП) вынуждало развивать не только разделы ТЭ, связанные с расчетами электростатических полей, но также разделы, связанные с проникновением ЭМП в нелинейные анизотропные среды. При строительстве ЛЭП возникла необходимость повышать механическую прочность проводов ЛЭП на разрыв при помощи использования двухслойных сталеалюминевых проводов, токонесущие алюминиевые жилы которых навивались на внутренний стальной трос. Такая конструкция породила задачу расчета электрических параметров таких проводов вследствие специфического проявления поверхностного эффекта в них из-за нелинейных магнитных свойств стального троса. При решении этой задачи будущий академик АН СССР Л.Р. Нейман (1902–1975 гг.) в середине 30-х годов создал и развил теорию поверхностного эффекта в ферромагнитных средах, важного раздела ТЭ.

С развитием энергосистем возникла необходимость разработки специфических разделов теории электрических цепей и длинных линий для учета инженерных аспектов использования результатов теоретических исследований. Для таких систем жизненно важными стали проблемы перенапряжений и токов коротких замыканий при коммутации электрической цепи. В маломощных цепях при коротких замыканиях длительность протекания и значения токов просто ограничиваются при помощи плавких предохранителей или автоматов. Однако при большой мощности энергосистем приходится использовать специальную технику отключения, обеспечивающую допустимые значения перенапряжений и сверхтоков, и методы ТЭ должны были позволять рассчитать эти величины с точностью, удовлетворяющей требованиям конструкторов аппаратов и систем защиты. Исходя из особенностей протекания переходных процессов теория и разработанные на ее основе методы должны были формулировать требования и рекомендации конструкторам аппаратуры, предлагать методы расчета протекающих через выключатели токов и способы ограничения максимальных их значений.

Эти требования усложнялись необходимостью учета влияния переходных процессов на динамику поведения множества параллельно работающих генераторов с точки зрения устойчивости их работы. Развитие энергосистем, связанных длинными линиями электропередачи, привело к тому, что электрические станции с многочисленными генераторами, объединенные в общую сеть, вынуждены были работать параллельно. Выяснилось, что при параллельной работе нескольких станций переменного тока необходимо строго соблюдать условие синхронности вращения генераторов, поскольку его нарушение приводит систему к режиму, подобному режиму короткого замыкания. В этой связи возникла проблема выработки условий, необходимых для синхронной работы и устойчивости системы при аномальных режимах, вызванных коммутациями, короткими замыканиями и перегрузками в сети.

Изучению вопросов устойчивости параллельной работы электростанций, динамических режимов их работы и созданию соответствующего теоретического фундамента посвящены многочисленные работы Н.Н. Боголюбова, А.А. Горева, П.С. Жданова, С.А. Лебедева, Л.Р. Неймана и др. Актуальность этих проблем в СССР была постоянной в связи с непрерывным усложнением конфигурации, ростом мощности Единой электроэнергетической системы СССР (ЕЭС), появлением новых типов и классов ЛЭП. Изучение динамических режимов стало особенно важным в связи со строительством новых гидроэлектростанций огромной для того времени мощности после окончания Великой Отечественной войны. Созданная к тому времени научная школа ТЭ была способна решать сложнейшие теоретические и технические задачи в применении к системам, связанным дальними линиями электропередачи.

СССР в течение пяти лет успел залечить глубокие раны, нанесенные фашистской Германией нашей стране, и начиная с 1950 г. приступил к составлению и реализации новых планов ускоренного развития экономики. В этих планах электрификация страны приобрела еще большее значение, поскольку географические особенности распределения источников энергетического сырья и гидроресурсов обусловливали необходимость передачи больших потоков электроэнергии из восточных районов СССР на запад и строительства гидроэлектрических станций по всей стране. Неудивительно, что в этой обстановке Г.М. Кржижановский вторично возглавил работы по их научному обеспечению и привлек к решению этих проблем новых ученых, среди которых следует отметить М.П. Костенко (электрические машины), Л.Р. Неймана (теоретическая электротехника), В.И. Попкова (электрофизические проблемы высоких напряжений), Д.А. Завалишина (преобразовательная техника). Особенно интенсивно развивались области ТЭ, обеспечивающие создание теории, методов расчета и проектирования новых электрических машин и двигателей, измерительных приборов и электротехнического, особенно высоковольтного, оборудования. (М.П. Костенко, И.А. Глебов, Н.Н. Шереметьевский, Р.Л. Лютер, А.Г Иосифьян, Я.Б. Данилевич, Г.Н. Петров, А.И. Вольдек, В.В. Домбровский, В.И. Радин, И.З. Богуславский, И.П. Копылов, А.В. Иванов-Смоленский, А.А. Бальчитис и др.). При строительстве протяженных ЛЭП особое место в ТЭ заняли проблемы, связанные с созданием в СССР в 1970–1990 гг. сверх- и ультравысоковольтных ЛЭП переменного тока напряжением 750–1150 кВ и постоянного тока напряжением 800–1500 кВ (В.И. Попков, Н.Н. Тиходеев, Г.Н. Александров, В.П. Фотин, И.М. Бортник и др.) и сопутствующей высоковольтной аппаратуры, в частности ограничителей перенапряжения (А.А. Торосян, М.М. Карапетян в филиале ВЭИ в г. Ереване). Для разработки, испытания и производства высоковольтной аппаратуры для этих ЛЭП потребовались более точные методы расчета электрических полей, конструкций проводов для ограничения потерь на корону и новых моделей короны, специальные физические модели отдельных элементов ЛЭП и методы их ускоренных испытаний. В.И. Попков, Н.Н. Тиходеев, К.С. Демирчян, Г.Н. Александров, В.П. Фотин, И.М. Бортник и возглавляемые ими научные коллективы внесли большой вклад в решение проблем ТЭ, связанных с научным обеспечением этих разработок. Особо следует отметить теорию и практику реализации ускоренных испытаний высоковольтной изоляции, предложенные школой Н.Н. Тиходеева, М.В. Костенко, Г.С. Кучинского в Ленинграде. Эти работы, связанные с непрерывной диагностикой состояния изоляции, внесли большой вклад в теорию и практику диагностики электротехнического оборудования. Следует также отметить работы А.В. Миткевича в области создания стабильных магнитных систем электроизмерительных приборов, и особенно в области теории и практики их ускорения испытаний.

Выше было отмечено, что в ТЭ развитие методов исследования электромагнитных процессов увязывалось с возможностями вычислительных устройств. Ограниченность возможностей аналитических и численных методов расчета для количественного анализа процессов в электротехнических устройствах и энергосистемах потребовала разработки теории и методов физического и математического моделирования этих систем. В этой связи в послевоенные годы для получения численных данных исключительную роль стали играть аналоговые и физические модели устройств и такие модели энергосистем, которые дали возможность воспроизводить не только статические, но и динамические режимы их работы.

Перед учеными ставились все более сложные задачи теоретического характера, связанные с математическим описанием процессов в этих новых условиях. Например, с появлением линий передачи постоянного тока в качестве системообразующего элемента возникли теоретические проблемы описания и представления в математических моделях особенностей ЛЭП постоянного тока в ЕЭС СССР. Уникальными по решению этой проблемы являются исследования, проведенные Л.Р. Нейманом и его школой ТЭ на кафедре ТОЭ в Ленинградском политехническом институте и в Ленинградском отделе электроэнергетики Энергетического института им. Г.М. Кржижановского. Эти исследования привели не только к созданию моделей ЛЭП постоянного тока, но и новых методов расчета нелинейных цепей, содержащих элементы с кусочно-линейной характеристикой, каковыми могут быть представлены электрические и магнитные характеристики элементов многих современных электротехнических устройств, например систем на основе полупроводниковых вентилей для многочисленных устройств преобразования частоты.

Наряду с развитием методов расчета ТЭ, связанных с созданием сильноточных электротехнических устройств, появлялись методы, специфичные для слаботочных электротехнических устройств: новых средств автоматики, приборов, измерительных устройств и связи. Особое развитие получили устройства с электронными и полупроводниковыми приборами с дискретными системами управления. Появление этих приборов и их широкое распространение было обусловлено возможностью осуществить управление электромагнитными процессами. Это позволило создать большой класс устройств для усиления мощности, напряжения и тока, воздействующих на вход этих приборов.

В ТЭ появился большой раздел, посвященный созданию математических моделей таких приборов и специфических методов расчета процессов в устройствах, созданных на их основе. В их число вошла теория активных электрических цепей с зависимыми источниками и цепей с обратными связями. Особое значение приобрело использование этих приборов в радиотехнике, автоматике, информационной, вычислительной технике. Для расчета и конструирования устройств на основе таких приборов в ТЭ развился раздел теории и методов расчета цепей с активными и дискретными элементами.

Разделение теоретических методов в указанных выше технических направлениях, безусловно носит относительный характер, и по этой причине целесообразнее их отличать по характеру использования свойств ЭМП. В сильноточных электротехнических устройствах используется энергия ЭМП при условии возможности пренебрежения излучаемой энергией. В радиотехнике, наоборот, главное значение имеет способность устройства излучать энергию. В информационной технике главное значение имеет преобразование формы и характера передаваемых при помощи ЭМП порций энергии. Во всех этих областях имеются общие методы, что способствует взаимопроникновению знаний и более разностороннему и глубокому развитию ТЭ.

В ЕЭС сильноточные электронные и полупроводниковые приборы, главным образом тиристоры, нашли применение в области преобразования частоты. На их основе еще до Великой Отечественной войны были созданы выпрямители для преобразования переменного тока промышленной частоты в постоянный для электролитического производства меди и алюминия. Характерно, что именно для решения проблемы повышения производства алюминия М.П. Костенко в части электрических машин и Л.Р. Нейман в 1942–1944 гг. на Чирчикском алюминиевом комбинате в Узбекистане разработали методы расчета процессов в машинно-вентильных системах, положив начало теории электрических машин и теории электрических цепей с преобразовательными устройствами. В эти же годы сформировалась Узбекская школа ТЭ, в создании которой помимо эвакуированных из Ленинграда названных выше ученых заметную роль сыграли Х.Ф. Фазылов (по методам расчета режимов в электроэнергетических системах), Г.Р. Рахимов (по исследованию влияния нелинейных элементов на режимы работы этих систем). Еще больший толчок развитию сильноточных полупроводниковых приборов и преобразовательной техники на их основе дала программа создания высоковольтных ЛЭП постоянного тока, начало реализации которой можно отнести к 1948–1950 гг. Научные разработки в рамках этой программы в Физико-техническом институте им. А.Ф. Иоффе, НИИ постоянного тока в Ленинграде и ВЭИ им. Ленина в Москве положили начало созданию производства сильноточных полупроводниковых приборов в г. Саранске и опытного производства в ВЭИ уже к 1960 г. С точки зрения ТЭ значительными были дальнейшее развитие теории нелинейных электрических цепей с управляемыми нелинейными элементами с кусочно-линейными вольт-амперными характеристиками, методов решения некорректных задач в теории цепей, предложенных Л.Р. Нейманом, А.В. Поссе, С.Р. Глинтерником, П.А. Бутыриным и другими учениками школы ТЭ Л.Р. Неймана. Сложность решаемых задач этого типа при отсутствии соответствующих средств вычислений привели к разработке теории и созданию физических и аналоговых математических моделей таких цепей. Эти разработки явились составной частью развития методов физического моделирования ЕЭС, развитых М.П. Костенко, В.А. Вениковым и Л.Р. Нейманом в течение 1950–1960 гг.

В развитии ТЭ большую роль сыграла организация выбора направлений и тематики научных исследований в области ТЭ с учетом перспектив развития производств и экономики страны. Организованные в рамках АН СССР научные советы, в частности по проблемам «Электрофизика, электроэнергетика и электротехника» (руководимый М.П. Костенко, затем В.И. Попковым и далее К.С. Демирчяном), «Использование сверхпроводимости в энергетике» (руководимый Г.Н. Петровым, затем Л.Р. Нейманом и впоследствии И.А. Глебовым и Н.А. Черноплековым), в рамках государственной организации фундаментальных исследований по комплексным планам развития перспективных научных исследований в АН СССР, вузах и отраслевых научно-исследовательских институтах определяли, организовывали и координировали целевые научные разработки наиболее важных, фундаментальных исследований. В рамках высшей школы аналогичную организационную роль играл научно-методический совет «Теоретические основы электротехники», первым председателем которого стал Л.Р. Нейман. Этот совет провел исключительно большую работу по организации методических и научных исследований на кафедрах ТОЭ страны, подготовки и переподготовки преподавательских кадров и кадров высшей квалификации.


4.5. ТЕОРИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Истоками теории электрических цепей в качестве раздела ТЭ в значительной мере являются технические задачи передачи и распространения энергии и анализ режимов в электрических цепях. В этом разделе теории наиболее остро встали проблемы создания математических моделей реальных устройств. Для относительно простых электрических цепей постоянного тока топология цепей и их эквивалентных схем совпадали и, таким образом, математические модели цепей

и эквивалентные им идеальные цепи, представленные в виде электрических схем, были тождественны. Но даже в этих простых моделях и эквивалентных им схемах нашли отражение принципы перехода от ЭМП с распределенными в пространстве и во времени векторами напряженностей электрического Е и магнитного Н полей к идеализированным цепям с сосредоточенными параметрами (R, L, С) и интегральными величинами (токи, напряжения, заряды и потоко-сцепления). Именно при расчете параметров эквивалентных схем наиболее полно выявилась неразрывная связь между задачами теории ЭМП и физическими и математическими проблемами создания математических моделей. Например, практика передачи сигналов при помощи азбуки Морзе показала существенное влияние длины линии связи на уровень сигнала. Особенно остро эта проблема встала при попытке осуществить трансатлантическую телеграфную связь в середине XIX в. Решению этой проблемы способствовало понимание физической природы этого явления, связанного с особенностями временных и пространственных изменений токов и напряжений линии, на основе которого и были сформулированы уравнения в частных производных, названные телеграфными или волновыми. Несмотря на то обстоятельство, что теория электрических цепей с распределенными параметрами в середине XIX в. родилась для решения специфических задач линий связи, понятия бегущих, отраженных, преломленных волн и волнового сопротивления в середине XX столетия вошли также в теорию четыреполюсников, электрических фильтров, цепных схем, формирующих формы сигналов цепей и др. Решение ряда задач, для которых была характерна необходимость более детального описания ЭМП в реальных устройствах, также было связано с формированием математических моделей в форме телеграфных уравнений. Методы решения таких уравнений были использованы для расчета волновых процессов в электрических машинах, трансформаторах, ЛЭП. Разработанный в ТЭ математический аппарат, методы и понятия для расчета распространения электромагнитной волны в цепях с распределенными параметрами дали возможность практически с одних и тех же позиций исследовать процессы и в миниатюрных слаботочных интегральных схемах и в охватывающей всю страну сильноточной ЕЭС.

Важным в теории электрических цепей является раздел, относящийся к расчету и анализу установившихся и переходных процессов в линейных цепях (ЛЦ) с сосредоточенными параметрами. Математические модели реальных устройств, как правило, являются упрощенными, идеализированными образами исходных физических процессов. Степень соответствия этих образов исходным зависит от уровня понимания физических процессов и возможности математически строго и достаточно полно учитывать характерные особенности процессов и свойств сред. Математические модели физических процессов в реальных системах в основном характеризуются нелинейными уравнениями. Одной из основных задач ТЭ в течение первой половины XX в. являлась разработка методов создания математических моделей. Для этого необходимо было правильное понимание картины протекания физических процессов. По этой причине в ТЭ большое место занял раздел под названием «Физические основы электротехники». В развитии этого раздела большой вклад внесла отечественная школа теоретических основ электротехники, созданная В.Ф. Миткевичем, К.А. Кругом, Л.Р. Нейманом, П.Л. Калантаровым, К.М. Поливановым, А.В. Нетушилом и их учениками. Были выработаны критерии, позволяющие для большого количества реальных устройств и режимов их работы выделить такие математические модели, которые в первом приближении допускают линеаризацию и описываются системой дифференциальных уравнений с постоянными коэффициентами. Сочетание методов решения таких уравнений и метода последовательных приближений применительно к линеаризованным моделям дало возможность отыскать более точные решения нелинейных задач для устройств, математические модели которых описывались нелинейными уравнениями.

Развитие методов расчета ЛЦ происходило в течение всего XX в., первоначально преимущественно для цепей с периодическими токами и напряжениями и простых цепей при ЭДС, несинусоидальной формы кривой. Предложенный Ч.П. Штейнмецем метод использования комплексных чисел для расчета установившихся процессов в цепях с синусоидальными токами и напряжениями в сочетании с разложением периодических несинусоидальных функций в ряд Фурье стал основным инструментом для расчета ЛЦ. В России и СССР основными пропагандистами этих методов стали К.А. Круг, В.Ф. Миткевич, Г.Е. Евреинов, А.И. Берг и др. Применение комплексного метода позволяло алгебраизировать интегродифференциальные уравнения и производить расчеты сложных электрических цепей. В связи со скромными возможностями используемых до середины 50-х годов технических средств вычислений (логарифмические линейки, механические счетные устройства) большое значение приобрели методы, позволяющие снизить порядок уравнений. Наряду с предложенным еще Д.К. Максвеллом методом контурных токов и узловых напряжений в практику расчетов были введены методы эквивалентного генератора, симметричных составляющих, эквивалентных преобразований и др. Существенное развитие теории линейных систем и электрических цепей связано с описанием динамических процессов в них при помощи метода переменных состояния (Т. Башков, Л. Заде, Ч. Дезоер, Ю.В. Ракитский, К.С. Демирчян, В.Г. Миронов, П.Н. Матха-нов, П.А. Бутырин и др.), позволившего более продуктивно использовать классические математические формы описания системы дифференциальных уравнений (уравнения Коши) и возможности ЭВМ. По мере усложнения конфигурации электрических цепей для расчета установившихся процессов в сложных электрических цепях были предложены методы расщепления цепей на четырехполюсные и многополюсные подцепи (Э.В. Зелях, 1931 г.; Г.Е. Пухов, 1949 г.; Р.А. Воронов, 1951 г.; В.П. Сигорский, 1954 г.; Г.Т. Адонц, 1951 г. и др.) с привлечением новых разделов тензорного анализа (Г. Крон), диакоптики (Г. Крон, А.З. Гамм, Л.А. Крумм, И.А. Шер, М.А. Шакиров, О.Т. Гераскин, В.А. Строев и др.) и матричной алгебры (В.П. Сигорский, А.И. Петренко, В.Г. Миронов и др.). Специфика расчета электрических цепей, особенно ЕЭС, породила новое направление в теории матриц, связанное с использованием особенностей слабозаполненных матриц для упрощения процедуры их обращения (Н. Сато и К. Тинней, 1963 г.). Методы обращения слабозаполненных матриц, разработанные в ТЭ с учетом возможностей ЭВМ, легли в основу специального раздела прикладной математики и оказались продуктивными и для других областей техники. Тождественность математических моделей и идеализированных электрических цепей позволила отыскать физические аналоги для различных математических процедур. Например, физически наглядно можно представить прямой и обратный ходы Гаусса, а также тензорный метод Крона с его элементарными контурами через процедуру сворачивания схемы электрической цепи при помощи представления влияния тока в одной ветви на напряжение другой через индуктивную связь (М.А. Шакиров). В электроэнергетике нашел широкое применение метод симметричных составляющих не только для расчета цепей, но также для создания аппаратуры с целью улучшения качества преобразования электрической энергии и создания теории и методов измерения мощности и электрической энергии (А.Н. Милях, А.К. Шидловский, И.М. Чиженко, Г.М. Торбенков, Ф.А. Крогерис и др.).

Для ТЭ характерно стремление разработать такие теоретические методы, которые обеспечивают возможность произвести качественный и количественный анализ результатов решения конкретной задачи. С этой точки зрения использование матричных методов без применения современных ЭВМ вплоть до 70-х годов носило больше методический, чем прикладной характер. Именно стремление довести решение задачи до аналитических выражений для выяснения общих свойств решаемой задачи помимо получения численных результатов в 50-х годах породило методы: матрично-топологичёские (Л.Д. Кудрявцев, Э.А. Меерович, Э.В. Зелях, В.А. Тафт, В.П. Сигорский и др.), алгебраические (К.Т. Ванг, С. Беллерт, Г. Возняцки, Я.К. Трохименко, П.Ф. Хасанов) и сигнальных графов (С. Мэзон, Г. Циммерман П.А. Ионкин, и др.). Однако для цепей с большим количеством узлов и контуров расчеты, произведенные по этим методам для вычисления определителя матрицы и ее алгебраических дополнений, оказались громоздкими. На практике эти методы оказываются малопродуктивными для анализа электрических цепей, поскольку выражение для определителя цепи даже с шестью узлами при взаимном соединении всех узлов будет содержать 64 = 1296 слагаемых. Не намного более продуктивным оказался и метод сигнальных графов по тем же причинам. Однако эти методы сыграли важную методическую роль и позволили по-иному формировать математические модели для многочисленных прикладных задач с уравнениями низкого порядка.

Важным новым направлением развития теории электрических цепей стала диагностика их параметров и состояния. Задачи, связанные с диагностикой, приобрели определяющее значение при управлении процессами в электрических цепях и системах. Особенно острыми они стали при организации диспетчерской службы ЕЭС страны для принятия оперативных решений по управлению эффективным распределением потоков электромагнитной энергии в ней.

Для решения этой задачи требуется знание текущего состояния системы т.е. ее структуры и параметров элементов системы, для чего и необходимо провести диагностику системы: определить путем измерений и расчетов параметры, необходимые для управления состоянием системы (или электрической цепи), и организовать проверку достоверности результатов диагностики. В решение этой проблемы заметный вклад внесли Н.В. Киншт, П.А. Бутырин, А.З. Гамм и др.

В теории линейных цепей особое положение занимают цепи с переменными во времени параметрами. Математический аппарат, пригодный для представления решения уравнений процессов в аналитической форме, существенно менее развит, чем таковой для линейных цепей, и в этом основная причина сложности создания пригодной для практики теории расчета процессов в таких цепях. Общие решения и анализ их свойств содержится во многих работах (в частности, Л. Заде и Ч. Дезоер «Теория линейных систем», К.С. Демирчян и П.А. Бутырин «Моделирование и машинный расчет электрических цепей», В.А. Тафт «Электрические цепи с переменными параметрами»). Исследованию специфических свойств таких цепей, в частности случаю периодичности изменения параметров цепей, посвящены многие работы. В таких цепях при помощи нахождения соответствующих преобразований иногда оказывается возможным свести их к цепям с постоянными параметрами. Этот случай характерен для описания процессов в электрических машинах (А.А. Горев).


4.6. ТЕОРИЯ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЛЦ

Важным разделом в ЛЦ являются методы анализа переходных процессов. На заре зарождения теории электрических цепей стало очевидным, что переход от одного установившегося режима к другому происходит не сразу. Наличие в электрических цепях конденсаторов и индуктивных элементов, заряды и потокосцепления которых не могут изменяться скачкообразно, приводит к тому, что становление нового режима происходит по мере изменения энергии ЭМП в этих элементах. В классической постановке задачи анализ переходных процессов в цепях сводится к нахождению полного решения системы интегродифферециальных уравнений и с этой точки зрения является традиционной. По мере развития теории дифференциальных уравнений этот подход обогащался различными методами нахождения частных решений исходной системы уравнений. Важным следует считать предложенное в 1853 г. Дюамелем выражение для исследования динамики линейных систем, позволяющее применительно к линейным электрическим цепям, для которых применим принцип наложения, по известной переходной или импульсной характеристике электрической цепи отыскать ее реакцию на воздействие произвольной формы, названное в его честь интегралом Дюамеля, или интегралом свертки. Интеграл Дюамеля по праву считается одной из основных формул в теории цепей. Обобщение интеграла Дюамеля для систем уравнений Коши в случае переменных во времени параметров электрической цепи мало пригодно для нахождения аналитических решений. С самого начала применения классического общего подхода для решения задач теории цепей выявились и ограничения, связанные с отысканием корней полиномов для нахождения решения однородного дифференциального уравнения, частного решения неоднородного уравнения, и проблема определения неизвестных постоянных интегрирования. По этим причинам, а также и для упрощения получения исходной системы уравнений О. Хевисайдом в 1892 г. был предложен метод операторов и интегрального преобразования, позволяющий алгебраизировать и находить решение системы дифференциальных уравнений. Впоследствии Д. Карсоном, Б. Ван-дер-Полем, Т. Бромвичем и др. было показано, что преобразование, лежащее в основе этого метода, является одной из множества модификаций преобразования П.Лапласа (1749–1827 гг.), предложенного им в 1779 г. Однако именно О. Хевисайду принадлежит заслуга внедрения этого метода решения системы дифференциальных уравнений в электротехнику. Этот метод с середины 20-х годов нашел широкое распространение в теории переходных процессов. В теории линейных цепей особое место занимает проблема нахождения частного решения исходной неоднородной системы дифференциальных уравнений, описывающего установившийся процесс.

Работы К.С. Демирчяна, П.А. Бутырина позволили установить, что преобразование Лапласа со сдвигом во времени, представляющее собой установившуюся реакцию системы с импульсной переходной функцией вида ept на воздействие f(t), порождается интегралом Дюамеля для бесконечного интервала времени, т.е.

Такое преобразование позволяет получить решение для установившегося процесса непосредственно через изображение задающей функции F(p,t), которая для данного преобразования является функцией времени. Если система дифференциальных уравнений записана относительно переменных состояний в виде матричного уравнения dx/dt = Ax + f (t) и изображение f(t) имеет вид F(p,t), то решение для установившегося процесса для системы уравнений состояний можно записать в виде хуст = — F(A, t), и тогда полное решение системы дифференциальных уравнений будет иметь вид x(t) = eAt[x(0) + F(A,0)] — F(A,t)]. Такой подход позволяет исключить трудоемкий процесс обратного преобразования Лапласа для нахождения оригинала x(t) изображения X(p) и установить непосредственную взаимосвязь между интегралом Дюамеля и преобразованием Лапласа со сдвигом. Применение этого подхода в случае электрических цепей с периодически изменяющимися параметрами позволяет в ряде случаев (например, электрические машины) отыскать аналитические решения (П.А. Бутырин). Решение дифференциальных уравнений может быть найдено не только на основе преобразования Лапласа или Фурье (где в качестве ядра интегрального преобразования использована экспоненциальная (Лаплас) или тригонометрическая (Фурье) функция), но и других видов функций. В этом отношении методы на основе представления входящих в дифференциальные уравнения функций при помощи степенных рядов Тейлора (Г.Е. Пухов) являются оригинальными. Преимуществом этого метода является возможность его использования и для случая нелинейных уравнений.

В СССР теория переходных процессов начала привлекать внимание в связи с быстрым развитием электроэнергетики и расширением прикладных областей применения электрических цепей в приводе, электротермии, связи, автоматическом управлении и др. Важным этапом для развития исследований в этой области явилось появление работ Р. Рюденберга, К.А. Круга, молодых ученых A.M. Данилевского и A.M. Эфроса, погибших во время Великой Отечественной войны, и многих специалистов в области математики. 40–50-е годы стали новым этапом развития теории переходных процессов. Была разработана теория, предложены критерии и методы подобия для физического и математического моделирования переходных процессов в сложных системах с электромеханическими преобразователями энергии (М.П. Костенко, Л.Р. Нейман, В.А. Веников). Развитие ЕЭС потребовало разработки теории переходных процессов в электрических цепях, содержащих электрические машины и линии с распределенными параметрами, которые существенным образом влияют на перенапряжения в системах (М.В. Костенко, С.А. Ульянов, Л.Г. Мамиконянц, К.П. Кадомская, М.Л. Левинштейн, В.В. Бушуев, Ч.М. Джуварлы, Л.А. Жуков, Ю.Г. Шакарян, В.В. Постолатий и др.).

Наряду с классическим и операторным методами широкое распространение получил частотный, или спектральный метод расчета переходных процессов. В течение 1950–1970 гг. частотные методы получили широкое внедрение в расчетную практику благодаря возможности экспериментального определения спектра частот входных и передаточных функций реальных устройств. Частотные характеристики ЛЦ полностью характеризуют поведение цепи, поскольку они зависят от ее инерционных свойств (наличия индуктивных и емкостных элементов) и от интенсивности рассеяния энергии ЭМП (наличия резистивных или эквивалентных им элементов) в ней. Поскольку любое воздействие может быть представлено своим спектром частот, то знания частотных свойств цепи достаточно, чтобы выяснить реакцию цепи на интересующее воздействие. Специфичными для этого метода оказались расчетные приемы, позволяющие описать переходные процессы на основе частотных характеристик цепи и воздействующих на нее возмущений. Частотные характеристики электротехнических устройств требовали особенно глубокого изучения в области автоматики и управления, усилительной техники и электросвязи. Поэтому именно в этих областях впервые с исчерпывающей полнотой была установлена зависимость между переходными процессами и частотными характеристиками и были разработаны методы расчета этих процессов. Этим вопросам в советской научной литературе уделялось большое внимание. Спектральные характеристики анализировались многими учеными, в том числе Л.И. Мандельштамом, Б.В. Булгаковым, А.А. Харкевичем, А.А. Вороновым, Г.А. Атабековым, В.В. Солодовниковым, В.А. Тафтом, И.С. Гоноровским, П.Н. Матхановым, Г. Боде, Э.А. Гиллемином, Дж. Карсоном и др. В практику расчета и проектирования электромагнитных процессов в электрических машинах большой вклад в части использования частотных методов внесли Я.М. Казовский, А.И. Важное, И.З. Богуславский и др. Использование частотных методов оказалось особенно продуктивным при анализе устойчивости состояния линеаризированных систем. Проблема устойчивости возникала также для систем с обратными связями. В этой связи следует отметить работы X. Найквиста (1932 г.), Г. Боде, Я.З. Цыпкина, А.В. Михайлова, который установил новый критерий устойчивости системы, и В.В. Солодовникова, предложившего замечательный по своей простоте и точности метод приближенного расчета переходных процессов по частотным характеристикам. Этот метод, известный как метод трапеций, получил широкое распространение в СССР.

В теории переходных процессов в последние десятилетия важное место заняли проблемы, связанные с протеканием процессов при наличии помех и под воздействием сил, носящих случайный или хаотический характер. Важность выяснения особенностей протекания таких процессов связана с повышением точности расчетных методов, с одной стороны, и необходимостью выделения полезной информации при выполнении полевых измерений в целях диагностики реального состояния исследуемой системы или устройства — с другой. Особое значение эта проблема приобретает при регулировании процессов в сложных электрических системах в реальном масштабе времени (Ю.Н. Руденко, Ф. Швепп, Д.В. Ром, А.З. Гамм, Л.А. Крумм, В.А. Баринов, С.А. Совалов и др.).


4.7. ПРОБЛЕМЫ СИНТЕЗА ЛЦ

Обстоятельное и глубокое изучение свойств ЛЦ позволило выявить основные закономерности и математические особенности функций, описывающих свойства этих цепей (Г. Боде, Э.А. Гиллемин, Н. Балабанян, А.А. Фельдбаум и др.). На их основе оказалась возможной постановка и решение задачи синтеза определенного класса линейных электрических систем, таких, например, как электрические фильтры, формирующие линии и усилители. Следует выделить исследования (Н. Балабанян, Д.А. Калахан, Э.А. Гиллемин, К. Су, В.А. Тафт, П.А. Ионкин, В.Г. Миронов, А.А. Ланне, П.Н. Матханов, А.В. Бондаренко, И.А. Орурк и др.), в которых формулировались условия реализуемости ЛЦ. В отличие от задач анализа решения задач синтеза электрических цепей обладают свойством многовариантности, что в свою очередь ставит проблемы нахождения оптимального решения в зависимость от условий реализации устройств, поставленных перед разработчиком. Среди этих условий важнейшим является физическая реализуемость электрической цепи при помощи пассивных элементов. Наибольшее ограничение накладывается на положительность параметров R, L, С. Несмотря на долголетние исследования и разработки методов синтеза ЛЦ, круг реализуемых задач остается узким, и в этой области теории остается обширное поле деятельности. Задачи синтеза были рассмотрены применительно и к цепям с перестраиваемыми структурами, в частности для синтеза активных электрических фильтров с использованием переключаемых конденсаторов (В.Г. Миронов).


4.8. ОБЩИЕ ВОПРОСЫ ТЕОРИИ НЕЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

В самом общем случае при учете всех физических факторов математическая модель реального устройства всегда будет состоять из системы нелинейных уравнений. Современное состояние разработки в математике методов решения системы нелинейных уравнений таково, что имеется весьма узкий круг решаемых уравнений с ограниченными возможностями исследования их свойств. По этой причине в ТЭ раздел нелинейных цепей является наименее полным в смысле набора средств и методов нахождения аналитических решений. Однако именно в нелинейных электрических цепях наиболее полно проявляются их особые свойства: полезные, которые следует использовать, или нежелательные, которых следует избегать.

В области ТЭ особенно важным разделом теории нелинейных электрических цепей является обоснованное выделение тех явлений, без учета которых исследуемый процесс теряет свои важнейшие свойства. Такими свойствами реальных элементов электрической цепи являются зависимость параметров (сопротивления, индуктивности, емкости) этих элементов от значения или направления приложенного к ним напряжения или протекающего по ним тока, возникшая в связи с практическим применением нелинейных и вентильных элементов в радиотехнике. Теория нелинейных электрических цепей необходима для решения современных задач проектирования систем, где нелинейные свойства приобретают важное положительное значение. В качестве примера можно сослаться на многочисленные практические приложения систем, содержащих катушки с ферромагнитным сердечником. В этой области исследования советских ученых имели первостепенное значение. Следует особо отметить исследования в области феррорезонансных явлений. Первые наблюдения этих явлений и их анализ были выполнены заведующим кафедрой теоретических основ электротехники Ленинградского политехнического института учеником В.Ф. Миткевича Павлом Лазаревичем Калантаровым (1892–1951 гг.), автором одного из наиболее распространенных учебников по ТОЭ (в соавторстве с Л.Р. Нейманом). Впоследствии эти исследования были продолжены в области феррорезонансных стабилизаторов напряжения профессором этой кафедры А.Г. Лурье, а в области феррорезонансных явлений в электроэнергетических системах чл.-корр. АН Узбекистана Г.Р. Рахимовым. Использование особых свойств индуктивных катушек с ферромагнитными сердечниками, где при токах звуковой частоты имеет место явление магнитострикции и механического резонанса, поставило задачи создания их математических моделей и конструирования соответствующих электротехнических устройств, решенные И.Ф. Кузнецовым и В.И. Радиным.

Особые свойства нелинейных электрических цепей, содержащих ферромагнитные сердечники, такие, как возможность усиления, стабилизации, генерации колебаний и др., основывались на открытой еще А.Г. Столетовым зависимости магнитной проницаемости ферромагнитных сердечников от магнитной индукции. Так, например, подмагничивая ферромагнитные сердечники током в дополнительной обмотке, можно изменять магнитное сопротивление индуктивных катушек, содержащих такие сердечники. Электрическое сопротивление таких катушек переменному току пропорционально магнитной проницаемости сердечника, которая может быть изменена при помощи изменения тока подмагничивания в другой катушке, навитой на этот же сердечник. В многочисленных устройствах наряду с этой особенностью магнитных систем, содержащих ферромагнитные сердечники, использовались новые возможности таких систем при наличии обратной связи. На этой основе в послевоенные годы были разработаны магнитные усилители и их теория. Существенную роль в развитии теории нелинейных цепей, содержащих индуктивные катушки с ферромагнитными сердечниками, разработке специальных видов магнитных усилителей в релейном и генераторном режимах их работы, особых видов релаксационных колебаний в цепях, исследовании свойств ферромагнитных материалов и теории чувствительности сыграли научные работы, проведенные заведующим кафедрой ТОЭ Московского энергетического института К.М. Поливановым (1904–1983 гг.) и представителями его школы (В.Е. Боголюбов, Ю.М. Шамаев, А.И. Пирогов и др.). Важное значение имели разработки математических моделей катушек с ферромагнитными сердечниками и методов расчета цепей с такими элементами с учетом гистерезисных явлений (Ф. Прейсач, О. Бенда, Л.А. Бессонов, Э. Торре). Нелинейные свойства полупроводниковых триодов в режиме большого сигнала были учтены в модели этих приборов, разработанной Дж. Эберсом, Дж. Моллом в 1954 г.

В развитие теории цепей, содержащих вентильные элементы, большой вклад внесли Н.П. Папалекси, Л.Р. Нейман, В.Г. Комар, Ю.Г. Толстое, СР. Глинтерник, А.А. Янко-Триницкий и др. Особо важное значение приобрели методы расчета таких цепей в связи с созданием сверхдальних передач энергии по высоковольтным линиям электропередачи постоянного тока и широким внедрением в практику преобразователей частоты для увеличения эффективности использования энергии ЭМП.

В теорию электрических цепей нелинейные элементы внесли новые проблемы, связанные с такими явлениями, как устойчивость процессов, колебательность режимов в отсутствие обратных связей, существование хаотических процессов. В разработку математических моделей нелинейных цепей, учитывающих возможность существования таких явлений, и соответствующего математического аппарата большой вклад внесли отечественные ученые A.M. Ляпунов, И.А. Вышнеградский, Н.Д. Папалекси, А.А. Андронов, А.А. Витт, С.Э. Хайкин, Л.С. Понтрягин, Б.В. Булгаков, Н.М. Крылов, Н.Н. Боголюбов, Л.Р. Нейман и др. В ТЭ эти работы нашли применение в многочисленных прикладных разработках. В этой связи следует отметить исследование проблем устойчивости режимов работы ЕЭС СССР, содержащей линию передачи постоянного тока с нелинейными элементами (полупроводниковыми преобразователями частоты), проведенное Л.Р. Нейманом и его учениками.

В настоящее время отсутствует идея объединения решений для отдельных типов нелинейных цепей в общую теорию нелинейных электрических цепей. Помимо графических и графоаналитических методов для расчета и анализа установившихся режимов наиболее распространены следующие приближенные методы: метод возмущений (А. Пуанкаре), пригодный для нелинейных цепей, где нелинейные свойства могут быть привязаны к некоторому малому параметру; медленно меняющихся амплитуд (метод усреднений), пригодный для цепей с малыми нелинейными параметрами (Б. Ван-дер-Поль, Л.И. Мандельштам, Н.Д. Папалекси, Н.М. Крылов, Н.Н. Боголюбов). Приближенным является и метод гармонической линеаризации (Н.М. Крылов, Н.Н. Боголюбов), в котором допускается существование режимов на частоте основной гармоники, воздействующей на цепь функции. Еще более ограниченными являются методы решения переходных процессов в нелинейных цепях. В расчетах цепей, где нелинейные зависимости могут быть представлены как совокупность ломаных линий, применяется метод, основанный на возможности рассматривать цепь как линейную в интервале времени, в течение которого параметры элементов цепи являются постоянными.

Этот метод нашел широкое применение для расчета нелинейных цепей с тиристорами. Интересны исследования возможностей использования рядов Волтерра — Пикара для расчета нелинейных цепей, проведенные Л.В. Даниловым и Е. Филипповым. Другим, но уже универсальным методом является численное решение конечно-разностного аналога нелинейных дифференциальных уравнений, который нашел широкое применение в связи с использованием ЭВМ. История развития раздела дифференциальных уравнений классической математики за последние почти 50 лет показывает, что перспективы обобщения различных подходов весьма туманны, и по этой причине наиболее динамично развиваются методы решений с использованием вычислительных машин.


4.9. ТЕОРИЯ ЭМП

В ТЭ теория ЭМП имеет фундаментальное значение в связи с необходимостью освоить профессиональные навыки, способствующие пониманию особенностей протекания процессов взаимодействия ЭМП с вещественными средами, распределения и распространения электромагнитных волн в пустоте. Важной особенностью ЭМП является отсутствие наглядного визуального проявления в реальных устройствах, что существенно осложняет запоминание особенностей распределения ЭМП в пространстве и в материальных средах реального устройства. В этой связи в ТЭ много внимания было уделено развитию методов визуализации ЭМП при помощи введения таких понятий, как силовые линии и трубки, эквипотенциальные линии и линии равного потока и др. Поэтому создание большинства аналитических, графоаналитических и численных методов расчета ЭМП сопровождалось развитием методов визуализации ЭМП. Другая важная особенность ЭМП заключается в тройственном проявлении, а именно в виде электрических, магнитных полей и электромагнитных волн. Именно это обстоятельство сыграло важную роль в экспериментах Ш. Кулона при исследовании силовых взаимодействий в электрических и магнитных полях, в экспериментах Г. Герца по исследованию волнового характера ЭМП. Система уравнений Максвелла представляет собой взаимосвязь между двумя парами (Е, D и B, Н) векторов и одной скалярной величиной (объемной плотностью электрического заряда p) в данной точке пространства. Введение векторного и скалярных (электрического и магнитного) потенциалов позволяет свести систему векторных уравнений к одному уравнению, что существенно облегчает решение задачи поиска распределения ЭМП во всем пространстве.

В течение всего XX столетия в силу необходимости создания новых видов электротехнических, радиотехнических и электронных устройств развивались методы расчета ЭМП. Особое развитие теория ЭМП (ТЭМП) получила в связи с созданием ЛЭП, электрических машин и трансформаторов, высоковольтного коммутационного оборудования, измерительных и полупроводниковых приборов, формирующих линий для передачи импульсов ЭМП, ускорителей заряженных частиц и др.

Прежде всего следует отметить, что современная теория ЭМП (особенно ТЭМП в вещественных средах и динамика заряженных частиц в ЭМП) физически объясняет все электромагнитные процессы, протекающие в электрических цепях, и служит базой для расчета исходных для электрических цепей интегральных параметров (индуктивности L, емкости С, сопротивления R и др.). Со времен работ Н.А. Умова, Д.Г. Пойнтинга, О. Хевисайда стало ясно, что энергия ЭМП передается не по проводам, а вдоль проводов через окружающее эти провода пространство. По этой причине проблемы организации оптимальной конфигурации проводников и расчета параметров электрической цепи остаются важнейшей задачей для ТЭ. Именно в этом кроется условность разделении ТЭ на теорию цепей и теорию поля.

Среди фундаментальных работ в области ЭМП следует отметить монографии В.Ф. Миткевича «Магнетизм и электричество», 1912 г. и «Физические основы электротехники», 1928 г., И.Е. Тамма, «Основы теории электричества», 1929 г., Я.И. Френкеля «Электродинамика», 1934 г. Дальнейшее развитие ТЭМП в ТЭ носило преимущественно прикладной характер, поскольку требования практики привели к существенному развитию ТЭМП в следующих областях: расчет полей; ЭМП и электромагнитные процессы в вещественных средах (в изоляторах, ферромагнетиках, проводниках, плазме, полупроводниках и разреженных газах); динамика свободных заряженных частиц и тел в ЭМП; преобразование и генерация ЭМП в технологических целях. Последняя область ТЭМП в большей части связана с новыми методами преобразования различных форм энергии в электрическую и использованием энергии ЭМП.


4.10. РАСЧЕТЫ И ИССЛЕДОВАНИЯ ПОЛЕЙ

Этот раздел ТЭ развивался по мере создания собственной промышленной базы в СССР, поскольку в XIX в. расчетам полей были посвящены лишь единичные работы, например, Н.А. Булгакова в 1897 г. «О распределении заряда на поверхности проводников». В специализированном журнале «Вестник теоретической и экспериментальной электротехники» ряд расчетов полей опубликовали в 1928 г. И.С. Брук (расчеты ЭМП в асинхронной машине), в 1932 г. Л.И. Балабуха (расчеты электростатических полей) и др. Интересные исследования провел Л.Р. Нейман по распределению токов в биметаллических проводах (1932 г.) и магнитных полей в циклотроне. В дальнейшем расчетным методам и конкретным расчетам уделяется большое внимание в специальных монографиях, в учебной и журнальной литературе. Для развития инженерных методов расчета полей существенную роль сыграли большое число журнальных публикаций по уравнениям математической физики, а также методам приближенных решений таких уравнений С. Л. Соболева, А.Н. Тихонова, А.А. Самарского, А.Н. Крылова и книги М.А. Лаврентьева «Конформные отображения», К.М. Поливанова «Электростатика», Л.Р. Неймана «Поверхностный эффект в ферромагнетиках», Г.А. Гринберга «Избранные вопросы теории электрических и магнитных явлений», В. Смайта «Электростатика и электродинамика», Д.А. Стреттона «Теория электромагнетизма» и др.

В развитии теории и методов ЭМП существенную роль играют введенные еще Д.К. Максвеллом электрический и магнитный потенциалы, позволяющие сократить количество полевых уравнений. В этой связи значительным продвижением в теоретическом отношении было введение в практику расчетов стационарных и квазистационарных магнитных полей метода, основанного на приведении вихревых магнитных полей к квазипотенциальным, в котором система уравнений сводится к одному скалярному уравнению. Этот подход, предложенный и разработанный для расчета и моделирования магнитных полей (К.С. Демирчян, В.М. Грешняков, В.Л. Чечурин, В.Н. Воронин) на кафедре ТОЭ Ленинградского политехнического института в 60-х и начале 70-х годов, впоследствии нашел широкое применение в практике расчетов трехмерных квазистационарных магнитных полей. Попытки создать высоковольтные электрические машины (К.Д. Биннс, П.Д. Лавренсон, А.В. Иванов-Смоленский, В.А. Кузнецов), конструкции высоковольтной техники (Н.Н. Миролюбов, М.В. Костенко, М.Л. Левинштейн, Н.Н. Тиходеев, Е.С. Колечицкий и др.), сверхпроводящие магнитных систем (К.С. Демирчян, Я.Б. Данилевич, Ю.В. Ракитский, В.Л. Чечурин и др.) потребовали повышенного внимания к расчетам статических электрических и магнитных полей. Повышение точности вычисления максимальных значений напряженности электрических полей и магнитной индукции стало необходимым условием разработки новых методов. Значительные работы были выполнены по расчету ЭМП и электродинамических сил в токонесущих конструкциях (О.В. Тозони, Э.А. Меерович, И.Ф. Кузнецов, В.Л. Чечурин, К.М. Чальян, Е.Л. Львов, Г.Н. Цицикян и др.), в электрических машинах и трансформаторах (Я.Б. Данилевич, Ф.Г. Рутберг, В.Л. Чечурин, Э.А. Кашарский, А.В. Иванов-Смоленский, В.Н. Боронин, В.А. Казанский, А.И. Инкин и др.), в устройствах с движущейся плазмой и дуговых электрических печах (М.Ф. Жуков, Ф.Г. Рутберг, Э.А. Меерович, В.И. Пищиков и др.), в электрофизических установках термоядерного синтеза (В.А. Глухих, В.М. Юринов, ГА. Шнеерсон, А.Б. Новгородцев и др.). Решения многих задач, связанных с расчетами нестационарных ЭМП в электрофизических установках, приведены в книге Г/А. Шнеерсона «Поля и переходные процессы в аппаратуре сверхсильных токов». Важным направлением стало решение комплексных задач электродинамики, где расчет токов и напряжений в электрической цепи требовал одновременного расчета и ЭМП. Такие задачи, носящие комплексный характер, были решены Л.Р. Нейманом (поверхностный эффект в ферромагнитных средах), В.М. Юриновым (электрические цепи, содержащие элементы с движущимися телами), ГА. Шнеерсоном (электрические цепи, содержащие элементы с движущимися средами) и др.

Помимо развития аналитических методов расчета ЭМП, возможности которых отставали от практических требований, в 50–60 годы широкое распространение получили аналоговые, сеточные и физические методы моделирования и исследования ЭМП. В этой области следует отметить работы А.И. Гантмахера, И.М. Тетельбаума, В.Д. Карплюса, К.С. Демирчяна, К.Х. Табакса, В.Н. Воронина, В.В. Попова и др.

В практике генерации, преобразования и передачи электрической энергии важное место заняли проблемы понижения потерь, возникающих за счет вихревых токов. Расчет и моделирование эквивалентных R- и L-параметров электрических цепей и измерение потерь от протекания вихревых токов связаны с именами Л.Р. Неймана, И.Ф. Кузнецова, Э.А. Мееровича, О.В. Тозони, Х.В. Двайта, П.Л. Калантарова, Л.А. Цейтлина и др. Развитие методов расчета ЭМП привело к широкому внедрению в практику электрических методов геологической разведки с применением импульсных генераторов тока, в частности на основе МГД-источников (Е.П. Велихов), индукционного нагрева (В.П. Вологдин), дуговой и электронной сварки (школа Е.О. и Б.Е. Патонов), дуговой плавки металлов (Э.А. Меерович), дефектоскопии (В.Г Герасимов).

На заре зарождения ТЭ исследования ЭМП производились без разделения методов по частотному критерию. Однако специфические задачи генерации, передачи и приема энергии высокочастотных ЭМП потребовали разработки собственных методов расчета. Так родилась новая область техники — радиотехника, в которой основное внимание уделялось не столько эффективности использования энергии ЭМП, сколько возможности передачи сигналов. Однако в последние годы в связи с развитием высокочастотной техники и возможности при ее помощи передавать на землю солнечную энергию, преобразованную в высокочастотное излучение на орбитальных или лунных электрических станциях, разделение электротехники и радиотехники становится весьма условным. В этой связи показательны исследования передачи энергии ЭМП при помощи волноводов (А.Н. Диденко). Фактически в таких системах передача состоит из одного проводника — волновода, внутри которого сосредоточена передаваемая энергия ЭМП.

Напомним, что для создания аналогичной ситуации с передачей энергии ЭМП постоянного тока или переменного тока промышленной частоты в простейшем случае кабельной линии электропередачи необходимы два провода (внутренний и внешний в виде полого цилиндра) для ограничения распределения ЭМП только в пространстве между ними. В волноводных ЛЭП со всей остротой встает привычная для ТЭ проблема повышения КПД таких систем.


4.11. ЭЛЕКТРОМАГНИТНЫЕ ПРОЦЕССЫ В ВЕЩЕСТВЕННЫХ СРЕДАХ

Расчеты ЭМП потребовали более точного описания свойств среды. Потребовалось привлечение и освоение разделов физики диэлектриков, металлов, полупроводящих материалов и ферромагнетизма. Проблема промышленного изготовления изоляторов и изолирующих материалов, а также их применения привела к необходимости не только постановки исследований в области технологии, но и к разработке теории физических процессов в диэлектриках. Серии обширных работ по теории электрического пробоя и свойствам диэлектриков были проведены в ВЭИ (П.А. Флоренский), в созданном почти одновременно с ВЭИ Ленинградском физико-техническом институте, руководимым А.Ф. Иоффе (В.А. Фок, Н.Н. Семенов), и организованном Г.М. Кржижановским в 1930 г. Энергетическом институте (B.C. Комельков, Ю.Н. Вершинин). Исследовались природа потерь в диэлектриках (А.П. Александров, И.В. Курчатов, Я.И. Френкель и др.) и физические процессы в диэлектриках, полупроводниках и многофазных средах (А.Ф. Иоффе, И.В. Курчатов, Я.И. Френкель, А.П. Александров, Н.С. Лидоренко и др.), что привело к открытию многочисленных новых материалов с исключительными диэлектрическими (сегнетоэлектрики, материалы высокой проницаемости) и электрическими свойствами. В связи с разработкой и производством новых изоляционных материалов важными стали методы теоретического расчета их диэлектрической проницаемости, синтеза таких материалов с заданными электрическими и магнитными свойствами (А.Н. Лагарьков, Г.С. Кучинский, М.А. Карапетян и др.).

Исключительное место в практических приложениях заняли полупроводники. Особые свойства полупроводников, заключающиеся в зависимости электрического сопротивления контактного слоя между металлами и некоторыми полупроводниками от направления тока, температуры, освещения и электрического поля, созданного другим электродом (транзисторы и тиристоры), привели к созданию многих новых отраслей науки и техники. Вся современная дискретная и вычислительная техника в основе своей имеет дело с полупроводниковыми приборами различного размера и степени интеграции в одном кристалле. В энергетических отраслях важное место занимает свойство полупроводников преобразовывать тепловую и солнечную энергию непосредственно в электрическую.

На основе использования мощных полупроводниковых приборов (тиристоров) стало возможным преобразовывать переменный ток в постоянный и управлять этим процессом. Эта возможность широко используется в многочисленных промышленных установках преобразования частоты в технологических целях и для передачи энергии постоянным током, при освоении которой в СССР были достигнуты выдающиеся результаты.

В ТЭ особое место занимают устройства с ферромагнитными сердечниками, и по этой причине исследование ферромагнитных свойств материалов занимает большое место в научных разработках. Непосредственное отношение к ТЭ имеют исследования, связанные с теорией поведения ферромагнитных тел в ЭМП и теорией электрических цепей, содержащих индуктивные катушки с ферромагнитными сердечниками. Выдающаяся роль в этой области принадлежит В.К. Аркадьеву. Он еще в 1913 г. произвел важные исследования железа и никеля в области сверхвысоких частот и наблюдал исчезновение ферромагнитных свойств при электромагнитных волнах длиной 1 и 3 см. В дальнейших своих исследованиях В.К. Аркадьев показал возможность существования релаксационных и резонансных явлений в ферромагнетиках. Эти исследования применительно к современным задачам электротехники, радиотехники и элементов магнитной памяти в вычислительной технике продолжались К.М. Поливановым и его научной школой на кафедре ТОЭ в МЭИ.

Следует заметить, что вопросам поведения ферромагнетиков в электротехнических устройствах посвящено много исследований именно на кафедрах теоретических основ электротехники. Помимо кафедры ТОЭ в Московском энергетическом институте такие работы проводились на кафедре ТОЭ Ленинградского политехнического института под руководством Л.Р. Неймана (проникновение ЭМП в среды с ферромагнитными свойствами), П.Л. Калантарова (открытие и исследование феррорезонансных явлений в электрических цепях).

С начала 60-х годов явление сверхпроводимости, открытое в 1911 г. Г. Камерлинг-Оннесом, нашло техническое применение в области создания сверхпроводящих электрических машин и трансформаторов, кабельных линий передач энергии, индуктивных накопителей энергии, магнитной сепарации и томографии. Перспективы уменьшения габаритов этих устройств и потерь энергии в них стимулировали проведение научных исследований. В этой связи с точки зрения ТЭ важной стала проблема описания электрических свойств сверхпроводящих материалов и токоведущих частей этих устройств. Особенность существования магнитного поля в сверхпроводнике, а также тепловая неустойчивость таких систем весьма остро поставили задачу введения в систему уравнений Д.К. Максвелла их вещественных характеристик. Успешному решению этой задачи способствовали успехи отечественной школы физики в области феноменологической теории сверхпроводимости (Л.Д. Ландау, В.Л. Гинзбург, Л.П. Горькое, А.А. Абрикосов). Большую роль в создании технических устройств сыграли работы В.Б. Зенкевича по методам расчета электрических параметров композитных сверхпроводников с учетом реальных особенностей конструкции; В.А. Альтова, В.В. Сычева по термостабилизации и опыт создания сверхпроводящих катушек для термоядерных устройств, выполненных в Институте атомной энергии им. И.В. Курчатова под руководством Н.А. Черноплекова.


4.12. ДИНАМИКА СВОБОДНЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ И ТЕЛ В ЭМП

Длительный период исследования взаимодействия заряженных частиц и ЭМП носили академический характер и представляли интерес только с точки зрения дополнительного развития теории ЭМП. Однако для ТЭ даже эти разработки имели большое значение. Характерна в этом отношении наиболее простая задача определения ЭМП движущегося электрона. В 1888 г. О. Хевисайд решил эту задачу без введения ограничения на скорость движения электрона (в отличие от Д.Д. Томсона). В этой работе, намного опередившей работы Г. Лоренца, показана зависимость энергии ЭМП движущегося заряда от скорости и изменения картины распределения напряженности электрического поля электрона в пространстве. Если скорость движения электрона составляет 0,99 от скорости света, то напряженность поля по окружности меридионального разреза некоторой сферы оказывается в 100 раз больше таковой на сфере по линии движения электрона. При скорости движения v, равной скорости света с, все поле собирается в плоскости, перпендикулярной линии движения, на которой находится электрон (меридиональная плоскость), «образуя плоскую электромагнитную волну». В этой же работе О. Хевисайд вычислил полную энергию заряда в предположении конечного значения радиуса электрона и показал, что энергии электрического и магнитного полей растут пропорционально величине 1/(1 — v22)0,5, позже связанной с именем Г. Лоренца. Прикладные задачи, возникшие в связи с созданием ускорителей заряженных частиц, электронных приборов, различных технологических установок с использованием возможности управления движением материальных тел при помощи ЭМП привели к разработке методов расчета сил и траекторий движения заряженных тел в ЭМП. Появились также монографии и учебные пособия, посвященные именно этому разделу ТЭ. Среди них следует отметить монографии К.М. Поливанов «Электродинамика движущихся тел», Э.А. Мееровича «Методы релятивистской электродинамики и электротехники», Г.Я. Сермонса «Динамика твердых тел в электромагнитном поле», в которых изложены основные методические подходы к прикладным проблемам взаимодействия заряженных тел и ЭМП.

Большое значение имеют исследования коронного разряда и создание его математической модели (В.И. Попков, Н.Н. Тиходеев, Г.Н. Александров, В.В. Щербачев, В.И. Левитов и др.). В последние годы велись интенсивные исследования возможности передачи энергии при помощи потока электронов — создания электрокинетических линий электропередачи. Поток электронов, ускоренных в электрическом поле до энергии 1 МэВ, в трубе с разреженным до уровня технического вакуума газом способен передавать электроэнергию на дальние расстояния и служить в качестве ЛЭП (Е.А. Абрамян). Особенности взаимодействия ЭМП с потоком заряженных частиц связаны с созданием оригинальных методов реализации двоичных кодов путем переключения струи заряженного газа при помощи электрического поля (А.А. Денисов). Такая система логических элементов была создана и носит название «эоника».


4.13. ПРЕОБРАЗОВАНИЕ И ГЕНЕРАЦИЯ ЭМП В ТЕХНОЛОГИЧЕСКИХ ЦЕЛЯХ

Развитие промышленности и ее электротехнической отрасли, а также необходимость создания новых изделий с повышенными качественными показателями и эффективностью способствовали созданию новых технологий на основе открытия и использования различных эффектов, связанных с электромагнитными явлениями. Создание технологий, особенно основанных на новых физических эффектах, требует прежде всего понимания физической картины явлений и умения исследовать, рассчитывать влияние множества факторов на технологический процесс. Подготовка вузами страны инженеров-электриков, изначально была направлена на понимание законов физики, происходящих в реальных устройствах электромагнитных явлений, позволяла им успешно решать задачи создания новых технологий. Именно благодаря этим обстоятельствам успешно развилась техника высокочастотного нагрева, впервые предложенная В.П. Вологдиным в начале XX в. и получившая широкое распространение благодаря развитию техники высокой частоты, связанной с созданием новых отраслей производства аппаратуры для связи и радиотехники. Технология высокочастотного нагрева диэлектриков и полупроводников была предложена Б. Р. Лазаренко, и на ее основе развито производство полупроводниковых материалов.

В промышленности широко внедрялись электрические методы очистки выбрасываемых тепловыми электростанциями отходящих газов и сепарация руды при помощи ЭМП. В связи с повышением требований к охране окружающей среды проблема улучшения эффективности работы электрофильтров на электростанциях потребовала разработки новых методов расчета и использования эффектов взаимодействия газов и ЭМП (И.П. Верещагин). В связи с обеднением руды требуется повышение эффективности сепарации, для чего нужно было достичь более высоких значений градиентов магнитного или электрического полей (Н.А. Черноплеков).

Важное направление в ТЭ связано с изучением и прикладными сторонами использования явления электризации при трении, контакте и деформации (статическое электричество, или трибоэлектричество). Такая электризация во многих случаях нежелательна и подчас представляет опасность. Так, например, в процессе изготовления и эксплуатации современных интегральных схем, которые могут быть выведены из строя электрическим полем относительно низкой напряженности, необходимо исключить возможность влияния такого явления. Появление трибоэлектричества при пуске космических кораблей может (и были случаи) привести к аварии, и это обстоятельство потребовало разработки специальных мер защиты (К.С. Демирчян). Новое направление технологического характера было разработано на основе эффекта, связанного с возникновением гидравлических волн высокого давления в жидкости, возникающих вследствие электрического разряда в жидкой среде, открытого Л.А. Юткиным в Высоковольтной лаборатории им. А.А. Горева в Ленинградском политехническом институте.

Существование связей между электрическими и неэлектрическими явлениями позволило создать специальную область в измерительной технике — электрические измерения неэлектрических величин, на основе использования влияния неэлектрических воздействий (например, давления, температуры, деформации, влажности и др.) на электрические параметры (сопротивление, индуктивность, емкость) и процессы (возникновение ЭДС в термопарах, появление заряда на пьезокристаллах). Сфера применения этого метода измерения настолько обширна, что было создано новое направление производства — выпуск первичных преобразователей. Важное значение приобрела разработка теории и способов создания устройств непосредственно преобразующих химическую и тепловую энергию в электрическую (Н.С. Лидоренко, Л.М. Биберман, В.И. Пищиков и др.).

Многочисленные научные и прикладные проблемы, связанные с ЭМП, должны более полно входить в раздел теории поля современных теоретических основ электротехники.


4.14. ВЛИЯНИЕ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ НА РАЗВИТИЕ ТЭ

Для создания новых устройств при помощи их математических моделей важное значение имеет возможность представления количественных характеристик, определяющих исследуемые процессы нового устройства, в виде аналитических зависимостей и численных данных. Важнейшими для практики теоретическими проблемами оказались разработка методов учета особенностей протекания электромагнитных процессов в зависимости от электромагнитных свойств сред и их конфигурации, формирование принципов и методов анализа и синтеза математических моделей электротехнических устройств, а также диагностирование процессов в них и управление ими. История создания общих подходов к решению этих проблем — важнейшая часть истории ТЭ. Поскольку ТЭ является мостом между фундаментальной и прикладной науками, она вынуждена была выбирать и разрабатывать такие математические методы, которые позволяют производить аналитические исследования и численные расчеты с необходимой для практики точностью. Возможность получения аналитических решений, как правило, определяется сложностью математической модели. Точность же численных расчетов в рамках данной математической модели определяется возможностями аппаратных средств, используемых для выполнения численных расчетов.

По этим причинам методы, предлагаемые в ТЭ, развивались с развитием новых разделов математики и средств вычислительной техники. Появление ЭВМ и их внедрение в практику, начиная с 1950 г., оказало решающее воздействие на ТЭ.

Практика использования ЭВМ для расчета электрических цепей привела к существенному изменению направления теоретических разработок в ТЭ. Ограниченные возможности существоваших до появления ЭВМ средств численных расчетов стимулировали развитие методов, позволяющих снижать количество уравнений, вынуждали развивать теорию подобия и создавать физические и математические аналоги электрических цепей.

Так, например, в 50-е годы широкое распространение получили расчетные столы для исследования сложных цепей и систем, физические модели электроэнергетических систем (М.П. Костенко, Л.Р. Нейман, В.А. Веников, и др.), аналоговые и цифроаналоговые модели (Г.Е. Пухов, Б.Я. Коган, Н.Е. Кобринский, Г. Ольсон и др.) и цифровые дифференциальные анализаторы (А.В. Каляев) для исследования переходных процессов. Ограниченное математическое обеспечение первого и второго поколения ЭВМ вынудило записывать уравнения электрических цепей в виде системы дифференциальных уравнений, разрешенных относительно первой производной, т.е. в форме уравнений Коши. Поскольку динамические свойства цепей определяются появлением ЭДС при изменении магнитного потока и токов смещения вследствие изменения потока электрического смещения, то уравнения Коши для цепей естественно записать для переменных потокосцеплений ? и электрических зарядов Q. Поскольку именно таков был подход к выбору значимых переменных в термодинамике, то и в ТЭ эти переменные были названы переменными состояния. В 1957 г. Т.Р. Башков впервые записал уравнения электрических цепей относительно переменных состояния. Развитие матрично-топологического метода в большой мере определялось необходимостью автоматизировать ввод данных о топологии цепи и формировать на этой основе уравнения состояния (Г. Крон, Р. Рорер, Ф.Х. Брэнин, С.Д. Фенвес, Э. Ку, Д.Р. Рос, И.П. Норенков, В.Н. Ильин и др.).

Численные расчеты электрических цепей на ЭВМ показали, что использование стандартного математического обеспечения недостаточно для эффективного использования вычислительной техники. Специфичными для цепей были проблемы учета разреженности узловых и контурных матриц параметров, большого разброса собственных чисел этих матриц, жесткости системы дифференциальных уравнений; проблемы достижения решения для периодических установившихся режимов, выбора переменных для обеспечения однозначности решения уравнений нелинейных цепей и др. Вклад ученых (Н. Сато, В.Ф. Тинней, Г.Д. Хэчел, Р.К. Брейтон, Т.Д. Эприл, Т.Н. Трик, К.В. Гир, К.Г. Бройден, Ю.В. Ракитский, С.М. Устинов, К.С. Демирчян, П. А. Бутырин и др.), работающих в области ТЭ, при решении этих проблем привел к появлению в прикладной математике новых разделов. Так, например, метод обращения слабозаполненных матриц, предложенный Н. Сато и В.Ф. Тиннеем инициировал создание таких матриц в прикладной математике. Проблемы выбора шага численного интегрирования в случае жесткости системы дифференциальных уравнений были успешно решены Ю.В. Ракитским и его учениками при помощи разработки нового метода численного интегрирования, названного системным. По этой методике можно на каждом новом шаге интегрирования удвоить его без снижения точности интегрирования и нарушения устойчивости численного процесса интегрирования. Метод, названный Ю.В. Ракитским квазистационарностью производной, позволил существенно упростить решение жестких систем уравнений, снизить их порядок. Использование метода нахождения решения для установившегося состояния при помощи операторного метода (К.С. Демирчян, П.А. Бутырин) позволило организовать такой процесс численного решения уравнений состояний, в котором сочетаются все достоинства системных методов с непосредственным расчетом установившегося режима.

Еще одним важным направлением численных расчетов динамики цепей оказалось приведение цепей с реактивными элементами методом конечно-разностного представления операции дифференцирования при помощи ее дискретной схемы замещения к цепям, содержащим только резисторы и источники. Этот метод обладает тем преимуществом, что позволяет без потери топологического соответствия исходной и дискретной схем замещения использовать весь арсенал преобразования цепей для создания типовых макромоделей различных устройств. Однако специфические особенности цепей сохраняются и для их дискретных аналогов. В этой связи следует выделить работы, проводившиеся на кафедре ТОЭ Ленинградского политехнического института (К.С. Демирчян, Н.В. Коровкин и др.), где на основе синтеза численного метода интегрирования и идеи дискретных схем были предложены новые методы создания макромоделей дискретных схем, названных синтетическими, которые позволили использовать все преимущества системных методов интегрирования и метода квазистационарности производной, чтобы сочетать наглядность дискретных схем с экономичностью и устойчивостью системных методов. На основе этих идей оказалось возможным создание макромоделей цепей с распределенными параметрами, что дало возможность рассматривать задачи, решение которых было затруднено.

Большое количество работ по новым методам численных расчетов выполнено для определения распределения потоков мощности в электроэнергетической системе СССР в режиме реального времени. Эта задача была сложна для решения вследствие сложности ЕЭС СССР и квазилинейности уравнений баланса мощностей. Эти работы (А.З. Гамм, Л.А. Крумм, С.М. Устинов, Л.Н. Герасимов и др.) посвящены методам расчетов цепей при условиях обеспечения такой эффективности самого процесса численного расчета, при котором возможно управление потоками мощностей в темпе реального времени. В них поставлены и частично решены проблемы верификации результатов расчетов при условии недостаточности и неточности исходной информации о состоянии системы и ее параметров.

В области ЭМП наибольшее влияние ЭВМ сказалось на разработке математических моделей, методов численного интегрирования, а также способов описания и ввода в ЭВМ реальной конфигурации и свойств среды исследуемого устройства. Быстродействие вычислительной техники, особенно в конце XX в., и новые методы обработки и представления результатов численных расчетов позволили производить практические расчеты для математических моделей на все более и более детальном уровне описания геометрических особенностей устройства, а также свойств материалов, используемых в нем. В этих условиях классические методы решения задач численного расчета (Г.И. Марчук, А.А. Самарский, Н.П. Калиткин и др.), особенно метод интегральных уравнений, нуждались в существенном развитии. Особое значение приобрела разработка при помощи современных вычислительных машин математических моделей таких свойств материалов, как гистерезис, вследствие важного значения гистерезисных явлений в теории поля, автоматики и регулирования процессами в сложных системах, о чем свидетельствуют работы иностранного члена РАН академика Словацкой академии наук О. Бенды, О.В. Толмачева, С.Х. Щерапа, Г. Фридмана и др. По этой причине и в ТЭ значительное место заняла разработка новых методов расчета ЭМП, в максимальной мере использующих возможности ЭВМ, и учета в них особенностей уравнений ЭМП. Особое внимание уделялось проблемам численного интегрирования уравнений ЭМП методом конечных элементов, сеток и интегральных уравнений (Ю.В. Ракитский, О.В. Тозони, К.С Демирчян, В.Л. Чечурин, А.Ф. Верлань и др.). Отечественные методы моделирования и численного расчета ЭМП, особенно в трехмерных областях с нелинейными и анизотропными свойствами, разработанные и апробированные даже на маломощных ЭВМ 70-х годов школой К.С. Демирчяна и Ю.В. Ракитского, были широко использованы в практике проектирования новых электрических машин большой мощности, в том числе на основе использования явления сверхпроводимости. При этом оказалось, что математические модели, созданные с учетом особенностей физических процессов и численных методов, наиболее продуктивны при решении проблем прикладного характера.

Важным новым направлением на основе вычислительных систем, дискретной техники, твердотельных полупроводниковых приборов и преобразовательной техники явилось развитие электрического привода и интегрированных в электромашинные комплексы систем управления со свойствами адаптивности. В ТЭ появилась необходимость развивать методы создания математических моделей электротехнических устройств с обратными связями не только в аналоговом исполнении, но и с элементами дискретной техники, выполняющими логические функции. Многообещающие возможности систем, в которых были интегрированы электрические машины типа шаговых двигателей, преобразовательная, дискретная и вычислительная техника, показана при организации новых технологий, созданных коллективом под руководством К.С. Демирчяна и Б.А. Ивоботенко в 1987 г. Была продемонстрирована эффективность интеграции операций точного перемещения и позиционирования рабочего тела и инструмента в сочетании с выполнением технологических операций в любой точке трехмерного пространства для создания новых видов перестраиваемых в течение рабочего процесса технологических линий. Такой способ организации рабочего пространства и особенности организации и управления процессом перемещений дали возможность создать полностью автоматизированную систему производства, в которой на основе использования персонального компьютера объединены системы автоматизации проектирования, технологического обеспечения, управления и изготовления. Образец такой системы для изготовления элементов магнитной системы электрических двигателей на основе использования в качестве рабочего инструмента технологических лазеров с единственным оператором-конструктором был продемонстрирован в 1987 г. В этой установке конструктор использовал персональный компьютер для автоматического проектирования изделия, после чего его производство начиналось нажатием клавиши клавиатуры. Компьютер в автоматическом режиме определял параметры технологического режима, задавал параметры движения и организовывал движение рабочего инструмента. Аналогичная система была спроектирована Д.А. Аветисяном для изготовления электрической части автономных энергетических установок. Использование в этих системах комплекса особых свойств ЭМП позволило создать эффективные единые технологические процессы.


4.15. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

История ТЭ неразрывно связана не только с развитием экономики и техники, но и с подготовкой инженерных и научных кадров. В качестве фундамента подготовки кадров в области электротехники, а следовательно и ТЭ, особое место занимает учебная дисциплина «Теоретические основы электротехники» — ТОЭ. Идеи, заложенные в основу создания курса ТОЭ были приведены в начале главы. В школе ТОЭ, созданной В.Ф. Миткевичем, его учениками и последователями П.Л. Калантаровым, Л.Р. Нейманом, и К.С. Демирчяном превалировал принцип образования у студентов цельной взаимосвязанной системы знаний о физической картине протекания электромагнитных процессов, умения свести это понимание к созданию их расчетных моделей. В школе, созданной К.А. Кругом и его учениками и последователями К.М. Поливановым, А.В. Нетушилом, П.А. Ионкиным, В.Г. Мироновым, большее внимание уделялось расчетам конкретных проявлений ЭМП, особенно в электрических цепях. Наличие этих школ обеспечило организацию и развитие многих кафедр ТОЭ в период интенсивного и ускоренного развития экономики СССР и новых технических направлений. В настоящее время работают более 150 кафедр ТОЭ. При их создании и организации учебной и методической работы определяющую роль сыграли наличие учебников по ТОЭ вышеназванных коллективов, их опыт организации учебного процесса. Особенно интенсивно организационно-методические работы развернулись в течение 50–70-х годов. Организация тесных экономических связей между странами, входящими в СЭВ, привела к созданию в вузах этих стран учебной дисциплины и кафедр ТОЭ, не существовавших ранее. Положительный опыт организации кафедр ТОЭ в СССР, а также перевод с русского на национальные языки учебника по ТОЭ Л.Р. Неймана и П.Л. Калантарова практически во всех странах СЭВ имели большое значение в установлении тесных научных международных связей в области ТОЭ.

Большую роль в систематизации знаний в области ТЭ сыграла разработка терминологии в области ТОЭ. Публикация в 1948 г. брошюры П.Л. Калантарова «Единицы измерения электрических и магнитных величин» и позже списка терминов по ТОЭ, а также дискуссия в журнале «Электричество» послужили основой для создания в нашей стране государственного стандарта по терминам и их определениям. Такая работа под руководством Л.Р. Неймана и при активном участии К.М. Поливанова, А.В. Нетушила и других ведущих ученых в области ТЭ была успешно завершена в конце 1959 г. и передана в МЭК для подготовки международного электротехнического словаря, где все материалы печатались в трех колонках на английском, французском и русском языках, признанных официальными языками в рамках этой организации. Официальными членами рабочей группы по подготовке раздела ТОЭ, начиная с 1965 г., были Л.Р. Нейман и К.С. Демирчян.


4.16. ПЕРСПЕКТИВЫ РАЗВИТИЯ ТЭ

Требования, связанные с обеспечением эффективного и надежного функционирования такой огромной по сложности и условиям работы системы, каковой является ЕЭС, по результатам ее эксплуатации привели к необходимости создания в рамках ТЭ специфических разделов, связанных с расчетом установившихся и переходных процессов в электрических цепях высокой степени сложности в режиме реального времени в условиях переменности их структуры. В этих условиях воссоздание действительной картины соединений элементов ЕЭС и на этой основе адекватное моделирование распределения напряжений, токов и потоков мощностей при неопределенности исходных данных для расчетов превратились в сложную теоретическую проблему. Такая неопределенность является следствием ограниченной пропускной способности, точности и надежности телекоммуникационных каналов связи, по данным которых приходится воссоздавать структуру соединений ЕЭС и параметры ее элементов. Конфигурация ЕЭС и в этой связи распределение напряжений и токов практически меняются непрерывно, что снижает эффективность работы ЕЭС, если заданное распределение потоков мощностей отлично от реального. Снижение будет иметь место из-за неточности и неполноты информации о состоянии системы, поскольку вычисленные по ним структура и параметры модели не будут соответствовать ЕЭС. Специфичность этой проблемы с точки зрения ТЭ заключается в создании теории и методов адаптивных моделей сложной электрической цепи в процессе непрерывного изменения ее структуры, параметров и результатов диагностирования. В решение этой проблемы большой вклад внесли Ю.Н. Руденко, А.З. Гамм, М.И. Розанов и другие ученые.

Расширение сферы применения ЭВМ наряду с созданием и использованием баз данных с элементами искусственного интеллекта будет превалирующим и определит развитие ТЭ в XXI в. Тенденция улучшения показателей ЭВМ показывает, что следует ожидать дальнейшей миниатюризации вычислительной техники одновременно с резким повышением ее вычислительных возможностей. Вследствие этого уже в начале следующего века произойдет широкая интеграция вычислительных средств непосредственно с электротехническими устройствами, что резко изменит условия их проектирования, расчета и эксплуатации. С учетом этих тенденций в дальнейшем наиболее актуальным будет развитие создаваемой в настоящее время теории адаптивных электродинамических систем, поскольку именно таковыми будут электротехнические устройства следующего поколения, и для создания таких устройств будет необходимо дальнейшее развитие соответствующей теоретической базы. Перспективное оборудование, в том числе электротехническое и энергетическое, с интегрированием информационной и вычислительной техники должно будет производить самодиагностику состояния и параметров эксплуатируемого устройства, определять допустимые пределы воздействующих на него усилий и осуществлять управление ими. Для устройств со сложными математическими моделями диагностические эксперименты в рабочем режиме всегда будут неполными. По этой причине для диагностирования и прогнозирования состояния системы придется воспользоваться выводами и данными, полученными при прошлых измерениях и использовать их в качестве дополнительных к информации, получаемой при помощи текущей диагностики, для восполнения недостающих данных.

Приведенные выше соображения о роли использования в ТЭ новых методов обработки информации, развитии новых методов анализа и расчета систем с интегрированными элементами вычислительной техники и искусственного интеллекта необходимы только при условии организации в стране проектирования и производства высокотехнологичных изделий. Опыт развития страны в прошлом свидетельствует о том, что только при целенаправленном комплексном развитии экономики создаются условия для развития науки, а следовательно и техники, и подготовки кадров.

СПИСОК ЛИТЕРАТУРЫ

4.1. Ампер А. Электродинамика. Изд-во. АН СССР, 1954.

4.2. Анго А. Математика для электро- и радиоинженеров. М.: Наука, 1957.

4.3 Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. М.: Физматгиз, 1959.

4.4. Атабеков Г.И. Теория линейных электрических цепей. М.: Сов. радио, 1960.

4.5. Балабанян Н. Синтез электрических цепей. М.: Госэнергоиздат, 1958.

4.6. Бальчитис А.А. Емкостная подобласть индукционных процессов преобразования потоков энергии. Вильнюс: Минтис, 1973.

4.7. Bashkow T.R. The a matrix-new network description // IRE Trans. 1957. Vol. CT-4. № 2.

4.8. Беллерт Т.С., Возняцки Г. Анализ и синтез электрических цепей методом структурных чисел. М.: Мир, 1972.

4.9. Берг А.И. Избранные труды. М. — Л.: Энергия, 1964.

4.10. Бессонов А.А. Теоретические основы электротехники. Ч. 1, 2. М.: Высшая школа, 1996.

4.11. Боде Г. Теория цепей и преобразование усилителей с обратной связью. Изд-во иностр. лит., 1948.

4.12. Боргман И.И. Основания учения об электрических и магнитных явлениях. СПб.: Изд-во К.Л. Риккерт, 1914.

4.13. Булгаков Б.В. Колебания. М.: Гостехиздат, 1954.

4.14. Важное А.И. Электрические машины. Л.: Энергия, 1968.

4.15. Ван-дер-Поль Б. Нелинейная теория электрических колебаний. М.: Связьиздат, 1935.

4.16. Wang K.T. On a new method for the analysis of electrical networks // Nath Res Ins for En-ginering, Academia Sinia Memor. 1934. № 2.

4.17. Веников В.А. Применение теории подобия и физического моделирования в электротехнике. М.: Госэнергоиздат, 1949.

4.18. Электромагнитные процессы в торцевых частях электрических машин / А.И. Вольдек, Я.Б. Данилевич, В.П. Косачевский, В.И. Яковлев. Л.: Энергоатомиздат, 1983.

4.19. Воронов Р.А. Общая теория четырехполюсников и многополюсников. Киев: Изд-во АН УССР, 1955.

4.20. Неразрушающий контроль качества изделий электромагнитными методами / В.Г. Герасимов, Ю.Я. Останин, А.Д. Покровский. М.: Энергия, 1978.

4.21. Гиллемин Е.А. Синтез пассивных цепей. М.: Связь, 1970.

4.22. Глебов И.А. Диагностика турбогенераторов. Л.: Наука, 1989.

4.23. Глебов И.А. Системы возбуждения мощных синхронных машин. Л.: Наука, 1979.

4.24. Глинтерник С.Р. Электромагнитные процессы и режимы мощных статических преобразователей. Л.: Наука, 1970.

4.25. Гринберг Г.А. Избранные вопросы теории электрических и магнитных явлений. М.: Изд-во АН СССР, 1948.

4.26. Горев А.А. Переходные процессы в синхронных машинах. Л.: Энергия, 1979.

4.27. Электромагнитные поля в электрических машинах. / Я.Б. Данилевич и др. Л.: Энергия, 1979.

4.28. Данилевич Я.Б. Численные методы анализа электрических машин. Л.: Энергоатомиздат, 1988.

4.29. Данилов Л.В. Ряды Вольтерра — Пикара в теории нелинейных электрических цепей. М.: Радио и связь, 1987.

4.30. Данилов Л.В., Матханов П.Н., Филиппов Е.С. Теория нелинейных электрических цепей. Л.: Энергоатомиздат, 1990.

4.31. Демирчян К.С. Моделирование магнитных полей. Л.: Энергия, 1974.

4.32. Демирчян К.С, Бутырин П.А. Моделирование и машинный расчет электрических цепей. М.: Высшая школа, 1988.

4.33. Демирчян К.С, Чечурин В.Л. Машинные расчеты электромагнитных полей. М.: Энергоатомиздат, 1986.

4.34. Демирчян К.С, Кузнецов И.Ф., Воронин В.Н. Поверхностный эффект в электроэнергетических устройствах. Л.: Наука, 1983.

4.35. Дирак П. Лекции по квантовой теории поля. М.: Мир, 1971.

4.36. Доливо-Добровольский М.О. Избранные труды. М. — Л.: Госэнергоиздат, 1948.

4.37. Жданов П. С. Вопросы устойчивости электрических систем. М.: Энергия, 1979.

4.38. Заде Л., Дезоер Ч. Теория линейных систем. М.: Наука, 1970.

4.39. Зелях Э.В. Основы теории электрических схем. М.: Изд-во АН СССР, 1951.

4.40. Иванов-Смоленский А.В. Электромагнитные поля и процессы в электрических машинах и их моделирование. М.: Энергия, 1969.

4.41. Теоретические основы электротехники / П.А. Ионкин, А.И. Даревский, Е.С. Кухаркин, В.Г. Миронов, Н.А. Мельников. Т. 1,2. М.: Высшая школа, 1976.

4.42. Ионкин П.А., Миронов В.Г. Синтез RC-схем с активными невзаимными элементами. М.: Энергия, 1976.

4.43. Синтез линейных электрических и электронных цепей методом переменных состояния / П.А. Ионкин, Н.Г. Максимович, В.Г. Миронов, Ю.С. Перфильев, П.Г. Стахиев. Львов: Вища школа, 1982.

4.44. Иосифьян А.Г. Вопросы электромеханики. М.: Энергия, 1975.

4.45. Калахан Д.А. Современный синтез цепей. М.: Энергия, 1966.

4.46. Кирхгоф Г.Р. Избранные труды. М.: Наука, 1988.

4.47. Костенко М.П., Нейман Л.Р., Блавдзевич Г.Р. Электромагнитные процессы в системах с мощными выпрямительными установками. М.-Л.: Изд-во АН СССР, 1946.

4.48. Крон Г. Применение тензорного анализа в электротехнике. М.: Госэнергоиздат, 1955.

4.49. Крон Г. Исследование сложных систем по частям. М.: Наука, 1972.

4.50. Круг К.А. Переходные процессы в линейных цепях. М.—Л.: Госэнергоиздат, 1948.

4.51. Круг К.А. Основы электротехники. М.: СИЛА, 1916.

4.52. Ландау Л.Д. Собрание трудов. М.: Наука, 1969.

4.53. Ланнэ А.А. Нелинейные динамические системы: синтез, оптимизация, идентификация. Л.: Военная академия связи, 1985.

4.54. Ланнэ А.А. Оптимальный синтез линейных электронных схем. М.: Связь, 1978.

4.55. Лачинов Д.А. Электромеханическая работа // Электричество. 1980. № 1,2.

4.56. Лебедев С.А., Жданов П.С. Устойчивость параллельной работы. М.: Госэнергоиздат, 1934, 1937.

4.57. Ленц Э.Х. Избранные труды. М.: Изд-во АН СССР, 1950.

4.58. Максвелл Д.К. Избранные сочинения по теории электромагнитного поля. М.: Гостехиздат, 1954.

4.59. Мандельштам Л.И. Полное собрание трудов. М.: Изд-во АН СССР, 1947.

4.60. Матханов П.Н. Основы электрических цепей. Линейные цепи. М.: Высшая школа, 1981.

4.61. Миллях А.Н., Шидловский А.И., Кузнецов А.Г. Схемы симметрирования однофазных нагрузок в трехфазных цепях. Киев: Наукова думка, 1973.

4.62. Методы расчета электрических полей / Н.Н. Миролюбов, М.В. Костенко, М.Л. Ле-винштейн, Н.И. Тиходеев. М., 1963.

4.63. Миронов В.Г. Кузовкин В.А., Казанцев Ю.А. Моделирование на ЭВМ режимов в нелинейных цепях. М.: Изд-во МЭИ, 1990.

4.64. Миронов В.Г., Кузовкин В.Г., Казанцев Ю.А. Машинный расчет характеристик аналоговых и дискретных цепей М.: Изд-во МЭИ, 1990.

4.65. Миткевич В.Ф. Физические основы электротехники. М.: Госиздат, 1928.

4.66. Миткевич В.Ф. Курс переменных токов. СПб.: Политехнический ин-т, 1907.

4.67. Миткевич В.Ф. Магнитный поток и его преобразование. М.: Изд-во АН СССР, 1946.

4.68. Миткевич В.Ф. Магнетизм и электричество. 1912.

4.69. Миткевич В.Ф. Физические основы электротехники, 1928.

4.70. Динамика непрерывных линейных систем с детерминированными и случайными параметрами / Ф.А. Михайлов, Е.Д. Теряев, В.П. Булеков и др. М.: Наука, 1971.

4.71. Нейман Л.Р. Поверхностный эффект в ферромагнетиках. Л.: Госэнергоиздат. 1949.

4.72. Нейман Л.Р., Калантаров П.Л. Теоретические основы электротехники. Л. — М.: Госэнергоиздат, 1948.

4.73. Электропередача постоянного тока как элемент энергетических систем / Л.Р. Нейман, С.Р. Глинтерник, А.В. Емельянов и др. М.-Л.: Энергия, 1962.

4.74. Нейман Л.Р., Демирчян К.С. Теоретические основы электротехники. Л., 1981.

4.75. Нетушил А.В., Поливанов К.М. Теория электромагнитного поля. М.-Л.: Госэнергоиздат, 1956.

4.76. Папалекси Н.Д. Собрание трудов. М.: Изд-во АН СССР, 1948.

4.77. Поливанов К.М. Развитие теоретической электротехники // Очерки по истории энергетической техники СССР. М.: Госэнергоиздат, 1956. Вып. 19.

4.78. Поливанов К.М. Электростатика. М., 1947.

4.79. Поливанов К.М. Теоретические основы электротехники. М.: Энергия, 1972.

4.80. Поливанов К.М. Электродинамика вещественных сред. М.: Энергоатомиздат, 1988.

4.81. Попов А.С. Прибор для обнаружения и регистрации электрических колебаний в атмосфере // Электричество. 1896. № 13–14.

4.82. Поссе А.В. Схемы и режимы электропередач постоянного тока. Л.: Энергия, 1973.

4.83. Пухов Г.Е. Дифференциальные преобразования функций и уравнений. Киев: Наукова думка, 1980.

4.84. Ракитский Ю.В., Устинов СМ., Черноруцкий И.Г. Численные методы решения жестких систем. М.: Наука, 1979.

4.85. Rohrer R. Circuit Theory: An Introduction to the State Variable Approach to Network Theory. New York.: Mc.Graw Hill Book Company, 1969.

4.86. Рюденберг Р. Эксплуатационные режимы электроэнергетических систем. Л.: Энергия, 1981.

4.87. Сигорский В.П., Петренко А.И. Алгоритмы анализа электронных схем. М.: Сов. радио, 1976.

4.88. Синицкий Л.А. Элементы качественной теории нелинейных электрических цепей. Львов: Вища школа, 1975.

4.89. Сиротинский Л.И. Волновые процессы и внутренние перенапряжения в электрических системах. М.-Л.: Госэнергоиздат, 1959.

4.90. Смайт В. Электростатика и электродинамика М.: Изд-во иностр. лит., 1954.

4.91. Смуров А.А. Электротехника высокого напряжения и передача электрической энергии. М.-Л.: Гостехиздат, 1932.

4.92. Steinmetz C.P. Theorie und Rerechnung der Wechselstrom erscheinung. Berlin, 1900.

4.93. Стокер Дж. Нелинейные колебания в электрических системах. М.: Изд-во иностр. лит., 1952.

4.94. Столетов А.Г. Собрания сочинений. Т. 1. М.-Л.: Гостехиздат, 1948.

4.95. Стреттон Д.А. Теория электромагнетизма. Гостехиздат, 1948.

4.96. Тамм И.Е. Основы теории электричества. М.-Л.: Гостехиздат, 1932.

4.97. Тафт В.А. Вопросы теории электрических цепей с переменными параметрами и синтеза импульсных и цифровых автоматических регуляторов. М.: Изд-во АН СССР, 1960.

4.98. Tellegen B.D.H. A General Network Theorem with Applications // Phillips Res. Rept. 1952. №7.

4.99. Толстое Ю.Г. Теория электрических цепей. М.: Высшая школа, 1971.

4.100. Тозони О.В. Метод вторичных источников в электротехнике. М.: Энергия, 1975.

4.101. Трохименко Я.К. Метод обобщенных чисел и анализ линейных цепей. М.: Сов. радио, 1972.

4.102. Умов Н.А. Уравнения движения энергии. Одесса, 1874, М., 1874.

4.103. Френкель Я.И. Электродинамика. М.-Л.: ОНТИ, 1935.

4.104. Хаяси Т. Нелинейные колебания в физических системах. М.: Мир, 1988.

4.105. Heavisite О. Electromagnetic Theory. London, 1899.

4.106. Цыпкин Я.З. Теория импульсных систем. М.: Физматгиз, 1958.

4.107. Чуа Л., Пен-Мин Лин. Анализ электронных схем. М.: Энергия, 1980.

4.108. Шакиров М.А. Преобразование и диакоптика электрических цепей. Л.: Изд-во Ленингр. гос. университета, 1980.

4.109. Шидловский А.К., Кузнецов В.Г, Николаенко В.Г. Оптимизация несимметричных режимов систем электроснабжения. Киев: Hayкова думка, 1987.

4.110. Шимони К. Теоретическая электротехника. М.: Мир, 1964.

4.111. Эйнштейн А. Собрание научных трудов в 4-х т. М.: Наука, 1965.


Глава 5.
ЭЛЕКТРОЭНЕРГЕТИКА И ЭЛЕКТРИФИКАЦИЯ

5.1. ЭЛЕКТРОЭНЕРГЕТИКА В КОНЦЕ XIX И В XX ВЕКЕ

5.1.1. ПЕРВАЯ ТРЕХФАЗНАЯ ЛИНИЯ ЭЛЕКТРОПЕРЕДАЧИ

Электрификация ведет свой отсчет времени с 1891 г., когда состоялось испытание трехфазной системы на Международной электротехнической выставке в г. Франкфурте-на-Майне (Германия) [5.1].

После многочисленных дискуссий о выборе рода тока для электропередачи было решено предложить фирме АЭГ, в которой в то время работал М.О. Доливо-Добровольский, передать посредством электричества энергию водопада на р. Неккар (близ местечка Лауфен) на территорию выставки во Франкфурт на расстояние 170 км. В Лауфене для этой цели выделялась турбина, дававшая полезную мощность 300 л.с. До этого времени дальность электропередачи не превышала 15 км, и некоторые компетентные специалисты полагали, что КПД установки может оказаться ниже 50%.

М.О. Доливо-Добровольскому предстояло в течение года спроектировать и построить асинхронный двигатель мощностью около 75 кВт и трехфазные трансформаторы мощностью 100–150 кВ?А. Изготовление генератора было поручено главному инженеру швейцарского завода «Эрликон» Ч. Броуну, который сотрудничал с М.О. Доливо-Добровольским в области конструирования многофазных машин. Срок был чрезвычайно коротким, а задачи — весьма ответственными: во-первых, новая система тока должна была подвергнуться испытанию перед лицом представителей всего мира; во-вторых, масштабы испытания были невиданными. Двигатели и трансформаторы на такие мощности еще никогда не строились.

В августе 1891 г. на выставке впервые зажглись 1000 ламп накаливания, питаемых током от Лауфенской гидроэлектростанции (ГЭС); 12 сентября того же года двигатель М.О. Доливо-Добровольского привел в действие декоративный водопад. Налицо была своеобразная энергетическая цепь: небольшой искусственный водопад приводился в действие энергией естественного водопада, удаленного от первого на 170 км.

Что же представляла собой эта первая трехфазная линия?

На гидроэлектростанции в Лауфене энергия, развиваемая турбиной, передавалась через коническую зубчатую передачу на вал трехфазного синхронного генератора (мощность 230 кВ?А, частота вращения 150 об/мин, напряжение 95 В, соединение обмоток звездой). В Лауфене и Франкфурте находилось по три трехфазных трансформатора с магнитопроводом призматической формы. Трансформаторы были погружены в баки, наполненные маслом.

Трехпроводная линия была выполнена на деревянных опорах со средним пролетом около 60 м. Медный провод диаметром 4 мм крепился на штыревых фарфорово-масляных изоляторах. Интересной деталью линии являлась установка плавких предохранителей со стороны высокого напряжения: в начале линии в разрыв каждого провода был включен участок длиной 2,5 м, состоявший из двух медных проволок диаметром 0,15 мм каждая. Для отключения линии во Франкфурте посредством простого приспособления устраивалось трехфазное короткое замыкание, плавкие вставки перегорали, турбина начинала развивать большую скорость, и машинист, заметив это, останавливал ее.

На выставочной площадке во Франкфурте был установлен понижающий трансформатор, от которого при напряжении 65 В питались 1000 ламп накаливания, расположенных на огромном щите. Здесь же был установлен трехфазный асинхронный двигатель Доливо-Доброволь-ского, приводивший в действие гидравлический насос мощностью около 100 л.с. Одновременно с этим мощным двигателем М.О. Доливо-Добровольский экспонировал асинхронный трехфазный двигатель мощностью около 100 Вт с вентилятором на его валу и двигатель мощностью 1,5 кВт с сидящим на его валу генератором постоянного тока.

Перед пуском электропередачи возникли неожиданные затруднения. Дело в том, что линия пересекала территории четырех германских земель, и местные власти очень опасались высокого напряжения. Люди испытывали страх перед деревянными столбами с табличками, на которых был изображен череп. Людей смущало и то, что оборудование на электростанции было заземлено, как заземлена была и нейтраль трансформатора. В связи с этим очень опасались обрыва провода и падения его на землю, хотя было разъяснено, что все опасности предусмотрены и линия надежно защищена. М.О. Доливо-Добровольскому пришлось провести опасный, но убедительный эксперимент. На границе двух земель собрались представители местных властей. Включили линию под напряжение и на глазах у присутствующих искусственным путем оборвали провод, который с яркой вспышкой упал на рельсы железной дороги. М.О. Доливо-Добровольский сейчас же подошел и поднял провод голыми руками — настолько он был уверен, что спроектированная им защита сработает надежно.

25 августа 1891 г. официальный пуск линии состоялся. Испытания электропередачи, которые проводились Международной комиссией, дали следующие результаты: минимальный КПД электропередачи (отношение мощности на вторичных зажимах трансформатора во Франкфурте к мощности на валу турбины в Лауфене) 68,5, максимальный 75,2%; линейное напряжение при испытаниях около 15 кВ, а при более высоком напряжении — 25,1 кВ максимальный КПД составил 78,9%.

Результаты испытаний электропередачи Лауфен — Франкфурт не только продемонстрировали возможности электрической передачи энергии, но и поставили точку в давнем споре. В борьбе «постоянный — переменный ток» победил переменный.

5.1.2. ВОЗНИКНОВЕНИЕ РАЙОННЫХ ЭЛЕКТРОСТАНЦИЙ И ЭНЕРГЕТИЧЕСКИХ СИСТЕМ

Создание трехфазной системы — важнейший этап в развитии электротехники и электрификации. После закрытия Франкфуртской выставки электростанция в Лауфене перешла в собственность г. Хейльбронна, расположенного в 12 км от Лауфена и была пущена в эксплуатацию в начале 1892 г. На ней работали два одинаковых трехфазных синхронных генератора. Напряжение (фазное) при помощи трансформаторов повышалось с 50 до 5000 В. Электроэнергия использовалась для питания всей городской осветительной сети, а также ряда небольших заводов и мастерских. Понижающие трансформаторы устанавливались непосредственно у потребителей.

В том же 1892 г. была сдана в эксплуатацию линия Бюлах — Эрликон (Швейцария). У водопада в г. Бюлахе построили гидроэлектростанцию с тремя трехфазными генераторами мощностью 150 кВт каждый. Электроэнергия передавалась на расстояние 23 км для электроснабжения завода. Вслед за этими первыми установками началось довольно быстрое строительство ряда электростанций, причем наибольшее их число находилось в Германии.

Известные трудности в развитии электрификации на базе трехфазных систем возникали в связи с тем, что уже раньше в городах были построены станции постоянного или однофазного тока, а иногда и двухфазного. Владельцы и акционеры этих станций и электрических сетей всячески препятствовали внедрению трехфазной системы. Некоторым выходом явилось сочетание трехфазной электропередачи с распределением энергии на постоянном токе.

В Америке первая трехфазная установка была сооружена в конце 1893 г. в Калифорнии. Гидроэлектростанция располагала двумя генераторами мощностью по 250 кВт. От электростанции провели две линии генераторного напряжения (2500 В). Первая из них длиной 12 км поставляла энергию для осветительных целей, а вторая длиной 7,5 км предназначалась для питания трехфазного асинхронного двигателя мощностью 150 кВт.

Темпы внедрения трехфазной системы в Америке вначале были заметно ниже, чем в Европе. Это объясняется тем, что одна из крупнейших американских фирм — компания «Вестингауз» настойчиво пыталась развернуть работы по сооружению электростанций и электрических сетей по системе Теслы. Высшим достижением двухфазной системы считалась грандиозная по тому времени электростанция на Ниагарском водопаде, пущенная в эксплуатацию в 1896 г. На ней были установлены три двухфазных генератора по 5000 л.с. каждый с напряжением 2400 В. Вскоре началось расширение станции, и к началу XX столетия число агрегатов было увеличено до восьми, а общая мощность возросла до 40 000 л.с.

Американская фирма «Дженерал электрик», основной оппонент фирмы «Вестингауз», быстро переориентировалась и в противовес конкурирующей фирме развила бурную деятельность по сооружению трехфазных установок. Фирма «Вестингауз» проиграла: Ниагарская гидроэлектростанция со временем была переоборудована в трехфазную.

Для переходного периода в любой области техники характерны попытки комбинирования устаревающих и новых технических решений. Так, в течение почти двух десятилетий начиная с 1891 г. делались попытки «примирить» трехфазные системы с другими системами. В эти годы существовали электростанции, на которых одновременно работали генераторы постоянного, переменного однофазного тока, двухфазные и трехфазные или любая их комбинация. Напряжения и частоты были различными, потребители питались по раздельным линиям. Попытки спасти устаревающие системы, а вместе с ними и освоенное заводами электрооборудование, приводили к созданию комбинированных систем.

Наиболее известной из комбинированных систем является схема, предложенная в 1894 г. Скоттом. В основе этой схемы лежит так называемый «трансформатор Скотта», предназначенный для взаимного преобразования токов двухфазной и трехфазной систем.

Однако судьба комбинированных систем, равно и систем электроснабжения постоянным и однофазным переменным токами, была предрешена, и уже с 1901–1905 гг. сооружаются трехфазные электростанции, которые вначале в основном были станциями фабрично-заводского типа.

Трехфазная техника позволяла строить крупные электростанции на месте добычи топлива, на водопаде или на подходящей реке, а вырабатываемую энергию транспортировать по линиям электропередачи в промышленные районы и города. Такие электростанции стали называть районными.

Первые районные электростанции были построены во второй половине 90-х годов XIX в., а в следующем столетии они составили основу развития электроэнергетики. Первой районной электростанцией считают Ниагарскую ГЭС.

Широкий размах строительство районных электростанций приобрело с начала XX в. Этому способствовал рост потребления электроэнергии, связанный с внедрением в промышленность электропривода, развитием электрического транспорта и электрического освещения городов.

Электрические станции становились крупными промышленными предприятиями по выработке электроэнергии; сети разных станций объединялись, создавались первые энергетические системы. Под энергетической системой стали понимать совокупность электростанций, линий электропередачи, подстанций и тепловых сетей, связанных общностью режима и непрерывностью процесса производства и распределения электрической и тепловой энергии.

До появления районных электростанций электрических систем практически не было. Электростанции работали изолированно, каждая имела свою нагрузку. При изолированной работе станций не было большой необходимости устанавливать стандартные частоты и напряжения, и последние принимались в зависимости от конкретных условий данной станции. Последствия этого еще долго сказывались в некоторых странах, например, в США и Японии приходилось подключать на параллельную работу электростанции, работавшие при различных частотах (50 и 60 Гц). Потребность объединить работу нескольких электростанций в общую сеть стала проявляться уже в 90-х годах XIX в. Было выяснено, что при совместной работе уменьшается необходимый резерв на каждой станции в отдельности, появляется возможность ремонта оборудования без отключения основных потребителей, создаются условия для выравнивания графика нагрузки базисных станций, для более эффективного использования энергетических ресурсов.

Первое известное объединение двух трехфазных электростанций было осуществлено в 1892 г. в Швейцарии. Две небольшие электростанции — в г. Глэдфельдене (120 кВ?А) и г. Гохфельдене (360 кВ?А) — соединялись двухкилометровой линией напряжением 5 кВ и питали распределительную сеть завода фирмы «Эрликон» по линии передачи протяженностью 24 км при напряжении 13 кВ. Возбуждение генераторов первой станции регулировалось со щита управления второй.

Русские электротехники сумели быстро оценить достоинства трехфазной системы. Уже в январе 1892 г. на 4-й Петербургской электротехнической выставке демонстрировались две трехфазные машины системы Доливо-Добровольского мощностью по 15 кВт.

В России первым предприятием с трехфазным электроснабжением был Новороссийский элеватор. Он представлял собой грандиозное сооружение, и задача распределения энергии по его этажам и различным зданиям могла быть решена наилучшим образом только с помощью электричества. Строитель элеватора инженер А.Н. Щенснович решил применить только что ставшую известной трехфазную систему. Летом 1892 г. швейцарскому заводу фирмы «Броун-Бовери» были заказаны чертежи трехфазных машин. В следующем 1893 г. элеватор был электрифицирован. Интересно, что все машины по разработанным за границей проектам изготовлялись в собственных мастерских элеватора.

На электростанции, построенной рядом с элеватором, были установлены четыре синхронных генератора мощностью 300 кВ?А каждый. Таким образом, общая мощность электростанции составляла 1200 кВ?А, т.е. это была в то время самая мощная в мире трехфазная электростанция. В помещениях элеватора работали трехфазные двигатели мощностью 3,5–15 кВт, которые приводили в действие различные машины и механизмы. Часть энергии использовалась для освещения.

Представляет интерес электрификация Охтинского порохового завода в Петербурге (середина 90-х годов). Ее организаторы — В.Н. Чиколев и Р.Э. Классон (1868–1926 гг.) осуществили передачу и распределение энергии с помощью трехфазных цепей. На гидростанции работали два генератора мощностью 120 и 175 кВт. Оба генератора могли работать независимо друг от друга, но могли включаться также и на параллельную работу. Наибольшая длина передачи составляла 2,66 км. Нагрузку составляли девять электродвигателей, из которых один имел мощность 65 л.с., три — по 20 л.с. и пять — по 10 л.с. Кроме того, два двигателя по 1,5 л.с. были установлены на гидростанции для привода щитовых затворов. Часть энергии для питания дуговых ламп преобразовывались в энергию постоянного тока. Охтинская установка представляла собой в то время наиболее прогрессивное инженерное решение задачи централизованного электроснабжения промышленного предприятия.

Первой в России электропередачей значительной протяженности была установка на Павловском прииске Ленского золотопромышленного района в Сибири. Электростанция была построена в 1896 г. на р. Ныгра. Здесь были установлены трехфазный генератор (98 кВт, 600 об/мин, 140 В) и трансформатор соответствующей мощности, повышающий напряжение до 10 кВ. Электроэнергия передавалась на прииск, удаленный от станции на 21 км. На прииске для привода водоотливных устройств использовались трехфазные асинхронные двигатели мощностью 6,5–25 л.с. (напряжение 260 В). Так постепенно расширялось в России строительство трехфазных электростанций.

С 1897 г. началась электрификация крупных городов: Москвы, Петербурга, Самары, Киева, Риги, Харькова и др.

Логическим завершением огромного вклада в развитие электротехники, сделанного М.О. Доливо-Добровольским, явилось его прозорливое утверждение в докладе «О границах применения переменных токов для передачи энергии на большие расстояния». В те годы, когда во всем мире широко применялись мощные трехфазные электропередачи высокого напряжения (до 150 кВ), он на основе технико-экономических расчетов пришел к выводу о том, что при передаче энергии на несколько сотен километров при напряжении свыше 200 кВ целесообразно генерирование и распределение энергии осуществлять переменным током, а передачу — постоянным высокого напряжения. Линия постоянного тока в начале и в конце должна подсоединяться к преобразовательным подстанциям, на которых устанавливаются ртутные выпрямители. С современной точки зрения параметры, указанные М.О. Доливо-Добровольским, были естественно, заниженными. Ему в то время, конечно, был неизвестен, например, такой факт, как устойчивость электропередачи переменного тока. В наши дни его предсказание оправдалось, и во многих странах успешно действуют линии электропередачи постоянного тока сверхвысокого напряжения.

5.1.3. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ЭЛЕКТРОЭНЕРГЕТИКИ В НАШЕЙ СТРАНЕ

В развитии электроэнергетики можно выделить следующие основные этапы:

соединение электростанций на параллельную работу и образование первых энергосистем;

образование территориальных объединений энергосистем (ОЭС);

создание Единой энергетической системы (ЕЭС);

функционирование электроэнергетики после образования независимых государств на территории бывшего СССР.

Основа создания энергетических систем в нашей стране была заложена Государственным планом электрификации России (ГОЭЛРО), утвержденным в 1920 г. Этот план предусматривал централизацию электроснабжения путем строительства крупных электростанций и электрических сетей с последовательным объединением их в энергетические системы. Планом ГОЭЛРО предусматривалось также всемерное развитие отечественной электротехнической промышленности, освобождение ее от засилья иностранного капитала, удельный вес которого составлял в ней в начале 20-х годов 70%. Для решения всех вопросов электротехники и подготовки высококвалифицированных специалистов в октябре 1921 г. был создан Государственный экспериментальный электротехнический институт, переименованный впоследствии во Всесоюзный электротехнический институт (ВЭИ).

Ведущие члены комиссии ГОЭЛРО (руководитель Г.М. Кржижановский) возглавили проектирование и строительство электростанций и линий электропередачи. Шатурская Государственная районная электростанция (ГРЭС) мощностью 48 тыс. кВт спроектирована и построена (1925 г.) под руководством А.В. Винтера; Волховская (66 тыс. кВт, 1926 г.) и Нижнесвирская ГЭС (90 тыс. кВт, 1927–1933 гг.) — под руководством Г. О. Графтио; Днепровская ГЭС (580 тыс. кВт, 1927–1932 гг.) — под руководством И.Г. Александрова (проект) и А.В. Винтера (строительство). Днепровская ГЭС была в то время наиболее крупной в Европе [5.2; 5.3].

Первые энергосистемы — Московская и Петроградская — были созданы в 1921 г. В 1922 г. в Московской энергосистеме вошла в строй первая линия электропередачи напряжением ПО кВ Каширская ГРЭС — Москва длиной 120 км (строители линии Н.И. Сушкин и А.А. Глазунов), а в 1933 г. была пущена линия электропередачи напряжением 220 кВ Нижнесвирская ГЭС — Ленинград. (Первая линия 220 кВ во Франции была построена всего на полгода раньше.) Были образованы новые энергосистемы: Донбасская (1926 г.), Ивановская (1928 г.), Ростовская (1929 г.) и др. [5.4–5.6].

С созданием первых энергосистем возникли серьезные проблемы, и в первую очередь проблема устойчивости. Случаи нарушения устойчивости наблюдались в США еще в 1921 г. В нашей стране они произошли несколько позже — в конце 20-х годов в «Мосэнерго». В следующем десятилетии случаи нарушения устойчивости учащаются и превращаются в бич энергоснабжения. Часто причинами нарушений устойчивости был дефицит активных и реактивных мощностей и недопустимо низкие уровни частоты и напряжения, приводящие к авариям типа «лавины частоты» и «лавины напряжения».

Работы американских ученых были посвящены в основном исследованию динамической устойчивости. В отечественных энергосистемах наряду с нарушениями динамической устойчивости имели место многочисленные случаи нарушения статической устойчивости. Решению этих проблем посвящены многие оригинальные исследования, среди которых в первую очередь надо отметить работы выдающихся ученых П.С. Жданова, С.А. Лебедева и А.А. Горева [5.7–5.9].

В 30-е годы были выполнены первые экспериментальные исследования устойчивости и аварийного регулирования мощности паровых турбин, внедрялись новые средства релейной защиты и автоматики, устройства автоматического повторного включения линий. В 1937 г. на Свирской ГЭС был установлен первый регулятор частоты, началось внедрение быстродействующих автоматических регуляторов возбуждения синхронных машин и автоматической разгрузки по частоте.

За 15-летний срок план ГОЭЛРО был значительно перевыполнен. Установленная мощность электростанций страны в 1935 г. составила 6,9 млн. кВт, годовая выработка электроэнергии достигла 26,8 млрд. кВт?ч. По производству электроэнергии Советский Союз занял второе место в Европе и третье в мире.

Процесс объединения энергосистем начался еще в первой половине 30-х годов с создания сетей 110 кВ энергосистем в районах Центра и Донбасса. В 1940 г. для руководства параллельной работой Верхневолжских (Горьковской, Ивановской и Ярославской) энергосистем была создана объединенная диспетчерская служба. В связи с намечавшимся объединением энергосистем Юга в 1938 г. было создано Бюро Южной энергосистемы, которое затем было преобразовано в Оперативно-диспетчерское управление Юга; в 1940 г. была введена в эксплуатацию первая межсистемная связь напряжением 220 кВ Днепр — Донбасс [5.10].

Мощность всех электростанций страны в 1940 г. достигла 11,2 млн. кВт, выработка электроэнергии составила 48,3 млрд. кВт?ч. Суммарная мощность четырех наиболее крупных энергосистем — Московской, Ленинградской, Уральской и Южной составила 43% мощности всех электростанций страны, выработка электроэнергии — 68% производства электроэнергии в стране. Наибольшая мощность тепловой электростанции (ТЭС) в 1940 г. достигла 350 МВт, максимальная единичная мощность агрегата ТЭС — 100 МВт.

Интенсивное плановое развитие электроэнергетики было прервано Великой Отечественной войной. Перебазирование промышленности западных районов на Урал и в восточные районы страны потребовало форсированного развития энергетики Урала, Казахстана, Центральной Сибири, Средней Азии, Поволжья, Закавказья и Дальнего Востока. Особенно большое развитие получила электроэнергетика Урала, где выработка электроэнергии с 1940 по 1945 г. увеличилась в 2,5 раза.

В ходе войны электроэнергетике был нанесен громадный ущерб: взорваны, сожжены или частично разрушены 61 крупная электростанция и большое число мелких общей мощностью 5 млн. кВт, т.е. почти половина установленных к тому времени мощностей. Разрушено 10 тыс. км магистральных линий электропередачи высокого напряжения, большое количество подстанций.

Восстановление разрушенного энергетического хозяйства началось уже с конца 1941 г., в 1942 г. восстановительные работы велись в центральных районах европейской части СССР, а к 1945 г. эти работы распространились на всю освобожденную территорию страны.

В 1946 г. суммарная мощность электростанций СССР достигла довоенного уровня: в 1947 г. страна по производству электроэнергии вышла на первое место в Европе и на второе в мире. Наибольшая мощность ТЭС в 1950 г. составила 400 МВт, турбоагрегат мощностью 100 МВт стал типовым агрегатом, вводимым на ТЭС. В 1953 г. на Черепетской ГРЭС были введены энергоблоки по 150 МВт, восстановлен Днепрогэс. В 1954 г. в г. Обнинске была введена в эксплуатацию первая в мире атомная электростанция мощностью 5 МВт.

Суммарная мощность электростанций в 1955 г. достигла 37,2 млн. кВт, выработка электроэнергии составила 170,2 млрд. кВт-ч. Значительное развитие получили три работающие раздельно ОЭС европейской части страны: Центра, Урала и Юга; суммарная выработка этих ОЭС составила около половины всей производимой в стране электроэнергии.

Переход к следующему, качественно новому этапу развития электроэнергетики был связан с вводом в эксплуатацию мощных Волжских ГЭС и дальних линий электропередачи 400–500 кВ. В 1956 г. была введена в работу первая электропередача 400 кВ Куйбышев (ныне Самара) — Москва. Ее высокие технико-экономические показатели были достигнуты благодаря разработке и реализации ряда мероприятий по повышению устойчивости и пропускной способности: расщепление фазы на три провода, сооружение переключательных пунктов, ускорение срабатывания выключателей и релейных защит, применение продольной емкостной компенсации индуктивности и поперечной компенсации емкости линии с помощью батарей конденсаторов шунтирующих реакторов, внедрение автоматических регуляторов возбуждения (АРВ) генераторов гидростанции и мощных синхронных компенсаторов приемных подстанций и др.

Электропередача 400 кВ Куйбышев — Москва объединила энергосистемы Центра с энергосистемами Средней Волги, линия Куйбышев — Урал — с энергосистемами Предуралья и Урала. Этим было положено начало объединению энергосистем различных регионов и созданию ЕЭС европейской части СССР.

В последующем электропередачи Куйбышев — Москва и Куйбышев — Урал были переведены на напряжение 500 кВ. В 1959 г. вошла в эксплуатацию первая цепь электропередачи 500 кВ Волгоград — Москва, и в состав ОЭС Центра вошла Волгоградская энергосистема.

Во второй половине 50-х годов завершилось объединение энергосистем Закавказья; шел процесс объединения энергосистем Северо-запада, Средней Волги и Северного Кавказа. С 1960 г. началось формирование ОЭС Сибири и Средней Азии. В конце 50-х — начале 60-х годов образованы объединенные диспетчерские управления (ОДУ) Северо-запада, Средней Волги, Северного Кавказа, Сибири и Средней Азии, а в 1962 г. было заключено межгосударственное соглашение об организации в Праге Центрального диспетчерского управления (ЦДУ) для руководства параллельной работой объединенных энергосистем стран — членов СЭВ, в состав которых вошла Львовская энергосистема ОЭС Юга.

Велось широкое строительство электрических сетей. Наряду с развитием сети напряжением 500 кВ с конца 50-х годов началось внедрение сети напряжением 330 кВ; сети этого напряжения получили большое развитие в южной и северо-западной зонах европейской части СССР. В начале 60-х годов была создана единая сеть напряжением 500 кВ, участки которой стали основными системообразующими связями ЕЭС европейской части СССР; в дальнейшем и в ОЭС восточной части страны функции системообразующей сети стали переходить к сети 500 кВ, наложенной на развитую сеть 220 кВ.

В 60-х годах нарастали темпы ввода генерирующих мощностей и строительства электрических сетей. Ввод мощности в 1965 г. достиг 10,6 млн. кВт, а в 1970 г. превысил 12 млн. кВт. Протяженность электрических сетей Минэнерго СССР напряжением 110 кВ и выше возросла с 1960 по 1970 г. с 87,7 до 269,9 тыс. км.

Характерной особенностью энергетики, начиная с 60-х годов, стало последовательное увеличение мощности энергоблоков в составе вводимых мощностей ТЭС. В 1963 г. на Черепетской и Приднепровской ГРЭС были введены в эксплуатацию энергоблоки мощностью 300 МВт, в 1968 г. пущены энергоблок 500 МВт на Назаровской ГРЭС и энергоблок 800 МВт на Славянской ГРЭС.

Интенсивно развивалось строительство ГЭС: в 1961 г. на Братской ГЭС был введен гидроагрегат 225 МВт, в 1967 г. на Красноярской ГЭС — гидроагрегаты по 500 МВт. В течение 60-х годов завершилось сооружение Братской, Боткинской и ряда других ГЭС.

В западной части страны развернулось строительство АЭС. В 1964 г. вошли в эксплуатацию энергоблок 100 МВт на Белоярской АЭС и энергоблок 200 МВт на Нововоронежской АЭС; во второй половине 60-х годов были введены вторые энергоблоки на этих АЭС: 200 МВт на Белоярской и 365 МВт на Нововоронежской АЭС.

В течение 60-х годов завершилось формирование ЕЭС европейской части СССР, и в 1970 г. начался следующий этап развития электроэнергетики страны — формирование ЕЭС СССР. В составе ЕЭС в 1970 г. работали параллельно ОЭС Центра, Урала, Средней Волги, Северо-запада, Юга, Северного Кавказа и Закавказья, включавшие 63 энергосистемы. Три территориальные ОЭС — Казахстана, Сибири и Средней Азии — работали раздельно; ОЭС Дальнего Востока находилась в стадии формирования. Суммарная мощность электростанций ЕЭС в 1970 г. составила 104,9 млн. кВт, всех ОЭС — 142,9 млн. кВт, годовая выработка электроэнергии всеми электростанциями ЕЭС достигла 529,6 млрд. кВт?ч, всех ОЭС — 692,5 млрд. кВт?ч.

Переход к формированию ЕЭС в масштабе всей страны обусловил необходимость организации высшей ступени иерархии диспетчерского управления — создания ЦДУ ЕЭС СССР, которое было образовано в 1969 г.

В 1972 г. в состав ЕЭС СССР вошла ОЭС Казахстана. В 1973 г. энергосистема Болгарии присоединена на параллельную работу с ЕЭС СССР по межгосударственной связи 400 кВ Молдавская ГРЭС — Вулканешты — Добруджа.

В 1978 г. с завершением строительства транзитной связи 500 кВ Сибирь — Казахстан — Урал присоединилась на параллельную работу ОЭС Сибири. В том же году было закончено строительство межгосударственной связи 750 кВ Западная Украина — Альбертирша (Венгрия), и с 1979 г. началась параллельная работа ЕЭС СССР и ОЭС стран — членов СЭВ.

От сетей ЕЭС СССР осуществлялся экспорт электроэнергии в МНР, Финляндию, Турцию и Афганистан; через преобразовательную подстанцию постоянного тока в районе Выборга ЕЭС СССР соединялась с энергообъединением Скандинавских стран NORDEL.

Динамика структуры генерирующих мощностей в 70-х и 80-х годах характеризуется нарастающим вводом мощностей на АЭС в западной части страны и дальнейшим вводом мощностей на высокоэффективных ГЭС в основном в восточной части страны, началом работ по первому этапу создания Экибастузского энергетического комплекса, общим ростом концентрации генерирующих мощностей и увеличением единичной мощности агрегатов.

Мощность наиболее крупных электростанций России в настоящее время составляет: ТЭС — 4800 МВт (Сургутская ГРЭС-2), АЭС — 4000 МВт (Балаковская, Ленинградская, Курская), ГЭС — 6400 МВт (Саяно-Шушенская).

Технический прогресс в развитии системообразующих сетей характеризовался последовательным переходом к более высоким ступеням напряжения. Освоение напряжения 750 кВ началось с ввода в эксплуатацию в 1967 г. опытно-промышленной электропередачи 750 кВ Конаковская ГРЭС — Москва. В течение 1971–1975 гг. в ОЭС Юга была сооружена широтная магистраль 750 кВ Донбасс — Днепр — Винница — Западная Украина. В 1975 г. была сооружена межсистемная связь 750 кВ Ленинград — Конаково, позволившая передать в ОЭС Центра избыточную мощность ОЭС Северо-запада. Для создания мощных связей с восточной частью ЕЭС сооружалась магистральная линия электропередачи 1150 кВ Сибирь — Казахстан — Урал. Было начато также строительство электропередачи постоянного тока напряжением 1500 кВ Экибастуз — Центр.

В табл. 5.1 приведены данные по установленной мощности электростанций и протяженности электрических сетей 220–1150 кВ ЕЭС СССР за период 1960–1991 гг.

Формирование ЕЭС осуществлялось в основном с использованием двух систем напряжений: основной системы ПО — 220–500 кВ с последующим внедрением более высокой ступени напряжения 1150 кВ и системы — ПО — 150–330–750 кВ.

Создание мощных территориальных энергообъединений и организация их параллельной работы в составе ЕЭС СССР дали возможность повысить темпы роста энергетических мощностей за счет укрупнения электростанций и увеличения единичной мощности агрегатов, снизить стоимость 1 кВт установленной мощности, повысить производительность труда. Удельная численность промышленно-производственного персонала, занятого на электростанциях, на 1 МВт установленной мощности в электрических сетях и других подсобных предприятиях отрасли снизилась с 11 в 1950 г. до 2,8 чел. в 1990 г., а удельные расходы топлива на производство электроэнергии — с 590 до 325,8 г/(кВт?ч). Последовательно происходило уменьшение относительных потерь на транспорт электрической энергии, хотя и не в такой степени, как указанных выше показателей. В 1990 г. потери электроэнергии в электрических сетях на ее транспорт составили 8,65%.

Таблица 5.1.
Рост установленной мощности электростанций и протяженности электрических сетей 220–1150 кВ ЕЭС СССР
Показатель Годы
1960 1965 1970 1975 1980 1985 1991
Установленная мощность электростанций, млн., кВт 29,1 53,9 104,9 153,1 223,4 265,3 288,2
Высшее напряжение, кВ[4] 500 500 750 750 750 750 1150
Протяженность электрических сетей, тыс. км:
220 кВ 9,68 17,27 30,11 44,55 72,63 90,29 196,52
330 кВ 0,66 4,58 12,86 18,79 23,63 27,66 31,93
500 кВ 4,40 5,90 9,77 14,67 23,75 30,85 43,93
750 кВ 0,09 1,68 2,86 4,35 7,11
1150 кВ 0,89 1,9

В послевоенные годы электрификация явилась основой научно-технического прогресса страны. На ее базе происходило непрерывное совершенствование технологий в промышленности, транспорте, связи, сельском хозяйстве и строительстве, осуществлялась механизация и автоматизация производственных процессов. Рост производства электроэнергии в эти годы опережал рост произведенного национального дохода в 1,6 раза.

Общий экономический эффект за счет создания ЕЭС в сравнении с изолированной работой энергосистем оценивался снижением капитальных вложений в электроэнергетику на 2 млрд. руб. в ценах 1984 г. и уменьшением ежегодных эксплуатационных расходов на сумму 1 млрд. руб. Выигрыш в снижении суммарной установленной мощности электростанций ЕЭС оценивался цифрой порядка 15 млн. кВт. Несмотря на то что требования в отношении резервов мощности и надежности к основным электрическим сетям в ЕЭС СССР были несколько ниже аналогичных требований в энергообъединениях Западных стран, благодаря хорошо организованному управлению обеспечивалась высокая надежность электроснабжения потребителей, не было системных аварий, затрагивающих большое число потребителей, какие имели место в США (1965, 1977, 1996 гг.), Франции (1978 г.), Швеции (1979, 1983 гг.), Бельгии (1982 г.), Канаде (1982 г.).

Следующий этап в развитии электроэнергетики на территории бывшего СССР связан с происшедшими политическими изменениями в независимых государствах бывших республиках СССР.

Раздел электроэнергетической собственности между независимыми государствами — бывшими республиками СССР — обусловил необходимость перехода от централизованного планирования развития и управления функционированием ЕЭС бывшего СССР к скоординированному планированию развития и управлению функционированием объединенных энергосистем независимых государств.

В 1992 г. было заключено соглашение «О координации межгосударственных отношений в области электроэнергетики Содружества Независимых Государств». В соответствии с ним был создан электроэнергетический Совет из числа первых руководителей электроэнергетических отраслей СНГ и его постоянно работающий орган — Исполнительный комитет. Позднее к этому соглашению присоединилась Грузия.

В настоящее время внутри стран СНГ проводятся различные преобразования электроэнергетического сектора. Наиболее существенные изменения в этой области произошли в Российской Федерации. В декабре 1992 г. было организовано Российское акционерное общество энергетики и электрификации (РАО «ЕЭС России»), в уставной капитал которого переданы из районных энергосистем крупные электростанции мощностью: тепловые — 1000 МВт и более, гидравлические — 300 МВт и более, магистральные линии электропередачи высокого напряжения, формирующие Единую энергосистему Российской Федерации, ЦДУ Единой энергосистемы России, диспетчерские управления ОЭС, научно-исследовательские и проектные организации. На базе крупных электростанций организованы дочерние акционерные общества РАО «ЕЭС России», а на базе региональных энергосистем — региональные акционерные общества АОэнерго. Создан федеральный оптовый рынок электрической энергии и мощности. Проведенные в России преобразования в электроэнергетике способствовали обеспечению устойчивой работы отрасли в тяжелых условиях экономического и финансового кризиса в стране.

В других странах СНГ процесс реформирования структур управления в электроэнергетике находится в разных стадиях развития. Наиболее продвинулась в вопросах реформирования структуры управления в электроэнергетике вслед за Российской Федерацией Украина. Существенные изменения в управлении электроэнергетикой произошли в Армении, Грузии, Казахстане и Киргизии. Ведется подготовка к структурной перестройке и в других странах СНГ.

К концу 1995 г. установленная мощность электростанций государств Содружества составила около 315 млн. кВт. Производство электроэнергии в 1995 г. составило 1260 млрд. кВт?ч и снизилось по сравнению с 1990 г. на 27%. В структуре генерирующих мощностей доля ТЭС составляет 69%, доля ГЭС и АЭС — соответственно 20 и 11%.

Наиболее важными задачами, стоящими перед странами СНГ в области электроэнергетики, становятся: повышение эффективности производства и использования энергии; коренное совершенствование системы формирования тарифов; обеспечение надежности электроснабжения потребителей; улучшение защиты окружающей среды; обеспечение необходимых вводов и модернизация существующих электростанций и сетей с использованием новых технологий; коренное повышение технического уровня оборудования и показателей качества электрической энергии, приведение их в соответствие с мировым уровнем; создание нормативной и законодательной базы, обеспечивающей устойчивое развитие электроэнергетики государств Содружества.

Важнейшее значение приобретают углубление интеграции стран СНГ в области электроэнергетики и организация эффективного оперативно-технологического взаимодействия объединенных энергосистем государств Содружества. Это позволит оптимальным образом развивать электроэнергетику, уменьшить объем необходимых инвестиций, повысить надежность электроснабжения потребителей, улучшить использование первичных энергоресурсов, осуществлять взаимовыгодные обмены электроэнергией, уменьшить затраты на топливо для электростанций и оказать в целом положительное влияние на экономику стран СНГ, повысить ее конкурентоспособность на мировом рынке.


5.1.4. ИНТЕГРАЦИОННЫЕ ПРОЦЕССЫ В МИРОВОЙ ЭЛЕКТРОЭНЕРГЕТИКЕ

Развитие электроэнергетики в последнее десятилетие характеризуется созданием крупных государственных и межгосударственных энергообъединений. Накоплен положительный опыт создания и функционирования крупных энергообъединений в Западной Европе, Северной Америке, на территории бывшего СССР и стран Восточной Европы.

Изменение политических условий в странах Восточной Европы и в новых независимых государствах — бывших республиках СССР создало экономические предпосылки для интеграции энергосистем. Вопросы интеграции энергосистем стали предметом обсуждения на крупных международных конгрессах и конференциях.

В формировании единого электроэнергетического пространства Евразиатского континента особую роль играет Россия, обладающая большими топливно-энергетическими ресурсами: на ее территории, составляющей около 10% территории Земли, сосредоточено 45% мировых запасов газа, 13% нефти, 23% угля, 14% урана и создано крупнейшее в мире централизованное управляемое энергообъединение РАО «ЕЭС России».

До разделения СССР на независимые государства на Европейском континенте было три крупных энергообъединения: энергообъединение 12 стран Западной Европы (Бельгии, ФРГ, Испании, Франции, Греции, Италии, Югославии, Люксембурга, Нидерландов, Австрии, Швейцарии, Португалии) UCPTE; энергообъединение четырех стран Северной Европы (Норвегии, Дании, Финляндии, Швеции) Nordel System и энергообъединение «Мир» (стран — бывших членов Совета Экономической Взаимопомощи). Асинхронно с UCPTE через кабель постоянного тока работает энергосистема Великобритании.

Установленная мощность электростанций, входящих в UCPTE, составляет более 390 млн. кВт, в Nordel System — 85 млн. кВт, в «Мир» — более 400 млн. кВт. Энергообъединение «Мир» было связано с UCPTE тремя вставками постоянного тока суммарной мощностью 1750 МВт и с Nordel System — вставкой постоянного тока мощностью 1100 МВт. Электрические связи между энергосистемами стран Восточной Европы и ЕЭС бывшего СССР включали три воздушные линии электропередачи (ВЛ) напряжением 750 кВ, четыре ВЛ напряжением 400 кВ и четыре ВЛ напряжением 220 кВ, по которым осуществлялись значительные поставки электроэнергии из СССР в страны Восточной Европы. В отдельные годы они составляли около 40 млрд. кВт?ч.

В настоящее время в энергообъединениях UCPTE и Nordel System интеграционные процессы усиливаются. В течение 1994 г. была введена в коммерческую эксплуатацию кабельная линия электропередачи постоянного тока между Швецией и Германией длиной около 250 км, мощностью 600 МВт. Рассматриваются два проекта межсистемных связей между Норвегией и континентальной Европой. Одна из них соединит Норвегию и Германию, другая — Норвегию и Голландию. Выполнено технико-экономическое обоснование межсистемной линии электропередачи постоянного тока между Швецией и Польшей. В дальнейшем рассматривается возможность присоединения энергосистем Латвии, Литвы и Эстонии к Nordel System и UCPTE.

В 1994 г. объем обменов электроэнергией, включая третьи страны, в UCPTE составил 155,9 млрд. кВт?ч, или 10% производимой электроэнергии в странах UCPTE, а в Nordel System — 39,3 млрд. кВт?ч, или 11,2%.

Иная картина оказалась в энергообъединении «Мир», где после разделения СССР на независимые государства начались дезинтеграционные процессы, а взаимовыгодные обмены электроэнергией внутри энергообъединения стали сокращаться. В 1994 г. объем экспорта электроэнергии из стран СНГ в страны Восточной Европы составил всего 1,7 млрд. кВт-ч и уменьшился более чем в 20 раз по сравнению с концом 80-х годов.

В октябре 1995 г. к UCPTE присоединилось энергообъединение CENTREL, включающее энергосистемы Венгрии, Чехии, Словакии и Польши и энергосистему восточной части Германии. При этом установленная мощность расширенного энергообъединения UCPTE стала составлять более 470 млн. кВт. Имеются планы присоединения к UCPTE энергосистем Болгарии и Румынии. В конце сентября — начале октября 1995 г. энергосистема Болгарии отключилась от ОЭС Украины и переключилась на синхронную работу с энергосистемами Румынии, Греции, Албании, бывшей СФРЮ. Этот эксперимент рассматривается как этап по подключению энергосистем стран южной части Европы к UCPTE. Следующий кандидат на подключение к UCPTE — Турция. Рассматривается развитие связей энергосистемы Турции с энергосистемами стран, входящих в экономическую зону Mashreq (от Египта до Сирии). После ввода в эксплуатацию в 1996 г. подводного кабеля переменного тока между Испанией и Марокко к UCPTE присоединятся энергосистемы Марокко, Алжира, Туниса и Ливии (страны зоны Maghreb). Проводятся исследования по развитию связей между энергосистемами стран Maghreb и Mashreq. Таким образом, стоит вопрос о создании большого энергообъединения стран бассейна Средиземного моря, которое будет работать параллельно с UCPTE. Намечается проведение исследований по оценке возможностей совместной работы энергосистемы Турции с энергосистемами Закавказских республик: Армении, Грузии и Азербайджана.

Вместе с тем продолжает функционировать ЕЭС России, которая работает синхронно с энергосистемами стран Балтии, Беларуси, Украины, Молдовы и Казахстана. Сохранили возможность параллельной работы с ЕЭС России энергосистемы Азербайджана, Армении и Грузии.

В этих условиях центральной проблемой сотрудничества стран на Европейском континенте в области электроэнергетики стало использование уже существующих 11 ВЛ между странами СНГ и Восточной Европы, в строительство которых были вложены значительные средства. Предполагаются различные варианты дальнейшего развития этих связей. Одним из вариантов предусматривается перенос вставок постоянного тока на границы стран СНГ и стран Восточной Европы.

Длительный период успешной работы объединенной энергосистемы «Мир» показал, что нет принципиальных технических ограничений на размеры синхронно работающего энергообъединения.

Могут также рассматриваться различные варианты развития в целом энергетического сотрудничества на Европейском континенте в рамках Европейской энергетической хартии. По первому варианту кооперация может состоять в строительстве тепловых электростанций большой мощности в местах расположения дешевых углей и использовании мощностей крупных ГЭС в Сибири с передачей электрической энергии и мощности по линиям электропередачи (ЛЭП) сверхвысокого напряжения в страны Восточной и Западной Европы. Согласно второму варианту кооперация может состоять в преимущественной поставке первичных энергоресурсов из стран СНГ в европейские страны, а электрические связи могут использоваться для взаимовыгодных обменов электроэнергией с учетом разновременности максимумов нагрузки и большего использования тепловых электростанций с меньшей стоимостью электроэнергии. Для повышения эффективности сотрудничества России с зарубежными странами в области энергетики необходимо, чтобы варианты развития электрических связей со странами ближнего и дальнего зарубежья рассматривались совместно с вариантами развития систем транспорта первичных энергоресурсов и чтобы в целом определялись наиболее рациональные соотношения между транспортом электроэнергии и первичных энергоресурсов, а выгоды от такого решения распределялись между различными субъектами хозяйствования.

Выбор наилучшего пути развития сотрудничества на Евразиатском континенте должен быть направлен на создание общего рынка электроэнергии и мощности как основы единого энергетического пространства. На решение этой задачи направлен ряд международных проектов.

Балтийское электроэнергетическое кольцо. Этот проект имеет целью создание мощной электрической сети, связывающей энергосистемы 11 стран региона Балтийского моря: Дании, Швеции, Норвегии, Финляндии, России, Эстонии, Латвии, Литвы, Беларуси, Польши, Германии. По существу, частью этого проекта является другой проект энергомоста Восток — Запад, предусматривающий сооружение электропередачи постоянного тока мощностью 4000 МВт, связывающей энергосистемы России, Беларуси, Польши и Германии.

Предполагается, что Балтийское кольцо позволит улучшить эффективность работы энергосистем участвующих стран и будет в целом способствовать экономическому развитию стран региона Балтийского моря.

В Копенгагене в 1996 г. состоялось совещание 17 электроэнергетических компаний из 11 стран региона, посвященное проблеме создания Балтийского электроэнергетического кольца. В соответствии с договоренностью, достигнутой на этом совещании, РАО «ЕЭС России» подготовлены проекты меморандума о сотрудничестве в реализации международного проекта «Балтийское электроэнергетическое кольцо» и положения о Балтийской электроэнергетической ассамблее.

В основу указанных документов положены следующие принципы:

направленность интеграции энергосистем 11 государств Балтийского региона на удовлетворение национальных интересов;

принцип ненарушения существующих структур энергообъединений;

выработка недискриминационной формы участия энергосистем региона в проведении исследований.

Меморандум о сотрудничестве уже парафирован руководителями ряда энергокомпаний. Координационный комитет консорциума, который будет проводить исследования по созданию Балтийского электроэнергетического кольца, взял на себя обязательства обратиться в электроэнергетические компании Балтийского региона с предложением подписать меморандум о сотрудничестве в реализации проекта.

Необходимо отметить, что к настоящему времени накоплен положительный опыт совместной работы ЕЭС России с энергообъединением Nordel System. Ведутся работы по увеличению мощности вставки постоянного тока с Финляндией до 1400, а в перспективе — до 2000 МВт. Рассматривается возможность создания новых связей Карельской и Кольской энергосистем со странами, входящими в Nordel System.

Черноморское энергообъединение. При активной поддержке большинства стран — участниц Черноморского экономического сообщества (ЧЭС), включая Украину, Румынию и Болгарию, начата проработка предложения РАО «ЕЭС России» по проблеме создания объединенной энергосистемы ЧЭС. Создание этой объединенной энергосистемы имеет целью объединение энергосистем региона в мощные электрические сети, часть из которых уже существует. Такое объединение могло бы позволить более оптимальным образом развивать электроэнергетику всего региона, рационально использовать энергоресурсы, повысить надежность электроснабжения потребителей, осуществлять взаимовыгодные обмены мощностью и электроэнергией и оказать в целом положительное влияние на экономику всех стран региона. Основу объединенной энергосистемы Черноморско-Каспийского региона должны составить электрические сети высших классов напряжения, созданные странами — членами Совета Экономической Взаимопомощи: на Юго-западе это сети напряжением 400 и 750 кВ, связывающие Россию, Украину, Молдову, Болгарию и Румынию; на Юго-востоке — сети напряжением 330 и 500 кВ, связывающие Россию, Грузию, Армению и Азербайджан, и ВЛ напряжением 220 кВ между странами Закавказья и Турцией. Первый вариант концепции создания Черноморского энергообъединения, разработанный при финансовой поддержке России, был обсужден на совещании экспертов рабочей группы в апреле 1996 г.

Другие электроэнергетические проекты. Рассматриваются варианты развития связей между объединенными энергосистемами Средней Азии и энергосистемами Ирана и Турции, прорабатываются вопросы развития связей между энергообъединениями России и Китая, Японии, Кореи, энергообъединениями России и США.

Электроэнергетика Китая развивается быстрыми темпами; производство электроэнергии увеличивается ежегодно на 7–9%. Общее ежегодное производство электроэнергии в Китае превысило 900 млрд. кВт?ч. Китайской стороной проявлен интерес к передаче электроэнергии из России. Потенциальные источники электроэнергии для экспорта могут находиться как в районах Сибири — Богучанская, Братская, Усть-Илимская ГЭС и Березовская ГРЭС, так и в районах Дальнего Востока — АЭС в Хабаровском крае, ГЭС и ТЭС в Амурской области и в Якутии, приливная электростанция на юге Охотского моря. В качестве вариантов передачи электроэнергии могут рассматриваться ВЛ напряжением 500 кВ переменного тока со вставками постоянного тока, передача постоянного тока пропускной способностью 1,5–2 млн. кВт. В ОЭС Востока в качестве передающих рассматриваются Амурская, Хабаровская, Дальневосточная энергосистемы. Для экспорта электроэнергии рассматриваются ВЛ разного класса напряжения — до 500 кВ включительно.

Главные предпосылки для импорта электроэнергии Японией состоят в отсутствии собственных топливно-энергетических ресурсов и чрезвычайно высокой плотности населения. Потенциальные источники электроэнергии в России для экспорта в Японию: тепловые электростанции на Сахалине, сжигающие шельфовый газ или южно-сахалинский уголь; ГЭС и АЭС в объединенной энергосистеме Дальнего Востока; приливная электростанция на юге Охотского моря. Электропередачи для экспорта электроэнергии в Японию могут быть сооружены либо через о. Сахалин с пересечением двух проливов небольшой ширины и глубины (Татарский и Лаперуза), либо через территории Китая и Кореи с пересечением Корейского пролива шириной 200 км.

Транспорт электроэнергии в США с учетом большой дальности линий электропередачи пока прогнозируется в небольшом объеме и при условии, что основная часть затрат на сооружение перехода ВЛ через Берингов пролив и освоение труднодоступных подходов к нему будет отнесена на строительство трансконтинентальной железной дороги через Берингов пролив.

Реализация рассмотренных международных проектов, а также намечаемых вариантов усиления межсистемных связей позволит сформировать мощную протяженную цепь: Япония — Китай — Сибирь — Казахстан — Европейская часть России — другие страны СНГ — Восточная Европа — Западная Европа и явится важным этапом в создании Единого энергообъединения на Евразиатском континенте, суммарная мощность которого составит порядка 60% мощности всех электростанций мира и в котором ЕЭС России в силу своего геополитического положения может стать центральным связующим звеном.

Необходимую пропускную способность межсистемных связей в этом энергообъединении можно приближенно оценить на основе рекомендаций, апробированных практикой создания ЕЭС бывшего СССР, согласно которым суммарная пропускная способность межсистемных связей в сечениях, делящих мощное энергообъединение на две части, должна составлять порядка 2–3% максимума нагрузки меньшей из рассматриваемых частей энергообъединения. С учетом этого условия необходимые пропускные способности межсистемных связей в Евразиатском энергообъединении на территории России и Казахстана составят более 10 ГВт. Достижение таких пропускных способностей возможно лишь с использованием линий электропередачи сверхвысокого напряжения (1150 кВ переменного и 1500 кВ постоянного тока).

Среди других рассматриваемых в настоящее время проектов, имеющих межгосударственное значение, необходимо отметить следующие:

электропередача от мощных ГЭС на р. Конго (Заир) в Египет и далее в Западную Европу длиной более 5000 км и пропускной способностью более 10 ГВт;

ряд электропередач, формирующих энергообъединение юга Африки от Заира и Танзании до ЮАР;

трансамазонская система электропередач в Бразилии от комплекса крупных ГЭС на р. Амазонке к развитым юго-восточным районам страны;

межгосударственная электропередача Колумбия — Панама — Коста-Рика — Никарагуа — Гондурас — Сальвадор — Гватемала — Мексика в Центральной Америке;

электропередача Китай — Индия и ряд других.


5.2. ЭЛЕКТРИЧЕСКАЯ ЧАСТЬ ЭЛЕКТРОСТАНЦИЙ

Концентрация производства электроэнергии. Первые электростанции (блок-станции) появились как установки для питания электроосветительной сети в конце 70-х годов XIX столетия.

Блок-станции вырабатывали исключительно постоянный ток и могли обеспечить электроэнергией районы, расположенные на расстоянии до 1 км. Поэтому постоянный ток в то время быстро исчерпал свои возможности.

Применение постоянного тока в большой энергетике в определенной мере нашло место в передаче электроэнергии на большие расстояния, но и в этой области вопрос не решен однозначно: на практике основные потоки электроэнергии передаются во всем мире именно переменным током. Весьма энергичные попытки выработки электроэнергии постоянного тока в больших количествах предпринимались на основе МГД-преобразования в 60–70-х годах XX в., но они не привели к успеху.

Трехфазная система как основа производства, передачи и распределения электроэнергии оказалась жизнеспособной не только потому, что синхронные генераторы допускают невиданный в технике рост мощностей от 10 кВт в начале развития до 1 ГВт к 80-м годам XX столетия. Целый ряд технических особенностей трехфазного переменного тока определил его широкое применение.

Это прежде всего преобразование с помощью трансформаторов электроэнергии, вырабатываемой генераторами, в электроэнергию более высокого напряжения для передачи ее на большие расстояния и электроэнергию более низкого напряжения для обеспечения местных потребителей и собственных нужд станции; создание простых, дешевых электродвигателей от самых малых до очень мощных 10 МВт и более; достаточно простое решение задачи коммутации больших токов; применение переменного тока в сочетании с управляемыми тиристорными установками для систем возбуждения синхронных машин (возбудители переменного тока и т.п.). Можно сказать, что трехфазный ток обладает исключительно высокими свойствами преобразуемости и управляемости.

Технические особенности переменного тока определили на все последнее столетие структуру электростанции:

выработка электроэнергии синхронными генераторами на напряжение 6–20 кВ (меньшее значение соответствует ранним маломощным

синхронным генераторам, большее — современным, сверхмощным);

распределение электроэнергии на генераторном напряжении для питания близко расположенных электроприемников;

трансформация электроэнергии на более низкое напряжение для питания электроприемников собственных нужд станции;

трансформация электроэнергии на более высокое напряжение для питания электроприемников, удаленных от станции.

Соответственно на электростанции сооружаются несколько распределительных устройств на разных ступенях напряжения. Тем самым станция на современном этапе развития в силу гигантской концентрации производства электроэнергии является мощным узлом распределения электроэнергии, основным звеном современных электроэнергетических систем. Открытие и внедрение трехфазной системы переменного тока было фундаментальным достижением европейской цивилизации.

Если первые электростанции сооружались на основе агрегатов мощностью порядка 100 кВт, то в 80-е годы XX столетия были освоены агрегаты мощностью 1,2 МВт — рост за столетие в 10 000 раз. Сам по себе рост мощностей вытекает из закона роста производительных сил общества. Поражает то, что такой рост был достигнут на основе применения синхронных генераторов и практически при неизменной структуры станции.

В силу изложенного основным законом развития электростанций, определяющим технические решения по оборудованию, системам контроля и управления, является рост мощностей агрегатов станции, повышение мощностей самих станций, концентрация производства электроэнергии.

В последнее время станция, по существу, срастается с энергосистемой. Это находит свое выражение, в частности, и в том, что главная схема станции на современном этапе уже не может проектироваться без учета структуры электрической сети энергосистемы, в которой она работает. Этот процесс, не осмысленный пока в полной мере, будет развиваться и дальше.

Перспективы дальнейшего роста мощностей синхронных генераторов, по крайней мере, в два-три раза, вполне реальны, но первичные источники энергии электростанций будущего — сложнейшая проблема современности, обсуждение которой выходит за рамки данной книги.

Последним достижением дореволюционной России было сооружение под руководством Р.Э. Классона в 1914 г. крупнейшей в то время электростанции на торфе вблизи г. Богородска и электропередачи напряжением 70 кВ до Москвы. На станции были установлены два турбогенератора мощностью 7500 л.с. частотой вращения 1500 об/мин напряжением 6600 кВ. В Москве линия приходила на Измайловскую подстанцию, где электроэнергия распределялась по городской кабельной сети. Эта электростанция сыграла большую роль в обеспечении электроэнергией Москвы во время первой мировой войны, революции и гражданской войны. После гражданской войны электроэнергетика стала основным стержнем восстановления и развития промышленности страны. Первые электростанции в России сооружались исключительно на зарубежном оборудовании. Но уже начиная с 1931 г. практически все станции оснащались отечественным оборудованием серийного производства, а в 1937 г. на заводе «Электросила» был построен турбогенератор мощностью 100 МВт Т2–100–2 — крупнейшая в то время электрическая машина с частотой вращения 3000 об/мин. Появление этой машины явилось для большинства зарубежных электротехников полной неожиданностью.

Головные блоки мощностью 800 МВт на электростанциях были освоены в СССР к началу 1968 г., а еще через 10 лет — блоки 1000 МВт.

Для того чтобы представить изменение уровня технологии на станциях с блоками 800 МВт, напомним, что номинальный ток статора турбогенератора ТГВ-800 составляет 22,65 кА, а номинальный ток возбуждения — 6720 А. При таких токах канализация, коммутация электроэнергии, управление режимами, контроль за состоянием и автоматика требуют решения совокупности сложнейших технических задач не только при создании соответствующего оборудования, но и при разработке схем выдачи энергии в систему.

Многообразие электрических станций. Закон концентрации производства электроэнергии был бы неполон без отражения всего многообразия видов электростанций. Рост этого многообразия в связи с развитием электроэнергетики имеет не только иллюстративное значение, но может служить и эвристическим принципом в дальнейших разработках проблемы.

Тепловые и гидравлические электростанции возникли одновременно. Но если ГЭС развивались в основном в направлении роста мощностей, то ТЭС почти сразу разделились на два подвида, заметно отличающиеся как по схемам электрических соединений, так и по тепловой части: конденсационные (КЭС) и теплоэлектроцентрали (ТЭЦ). Первые предназначены исключительно для выработки электроэнергии, вторые — для комбинированной выработки электроэнергии и теплоты. Экономическая целесообразность последних определяется тем, что при расположении ТЭС в непосредственной близости от потребителей теплоты весьма выгодно одновременно с отпуском потребителям электроэнергии поставлять им и пар для технологических нужд (а таких технологий много) и отопления зданий — теплофикации. В СССР началом теплофикации принято считать 25 декабря 1924 г. — пуск теплопровода от 3-й Ленинградской государственной районной электростанции. Этим было положено начало развитию ТЭЦ.

Следующий шаг в развитии электрификации был сделан через 30 лет. 27 июня 1954 г. в г. Обнинске (Российская Федерация) была пущена в опытную эксплуатацию первая в мире атомная станция (АЭС). Это рассматривалось в те времена как начало новой эры энергетики. И действительно, энергетика вступила на новый, неизведанный путь, и только 30 лет спустя по-настоящему было осознано, насколько сложным и труднопредсказуемым оказался этот путь.

А первые годы были полны исключительно оптимистических публикаций, докладов, монографий. Большое число ученых вплоть до 1986 г. связывали будущее энергетики с АЭС. До конца 60-х годов шли интенсивные поиски приемлемых форм использования энергии ядерного распада, и в этом большую роль сыграла Обнинская АЭС. К концу 60-х годов первый этап поиска рациональных решений по ядерному реактору был закончен и наступил период широкого строительства АЭС на тепловых нейтронах как в СССР, так и за рубежом. Так, к 1986 г. в 38 странах мира было построено 360 АЭС общей мощностью 260 тыс. МВт (для сравнения 267 тыс. МВт — установленная мощность всех электростанций Минэнерго СССР в 1980 г.). Погоня за удешевлением АЭС и недооценка неизученности процессов в ядерных реакторах в СССР привели к крупнейшей катастрофе XX в. — чернобыльской аварии 26 апреля 1986 г.

Несмотря на все ужасные последствия чернобыльской аварии, и в настоящее время полагают, что альтернативы атомной энергетике не существует. Наступает следующий период развития АЭС — разработка АЭС с реакторами нового типа, безопасных и конкурентоспособных с КЭС, а также с реакторами на быстрых нейтронах.

Концентрация производства электроэнергии на мощных агрегатах имеет и свои отрицательные стороны — прежде всего это малая маневренность мощных блоков, особенно на АЭС. К этому фактору добавилось и другое явление — рост неравномерности потребления электроэнергии в течение суток, недели, года. В связи с этим возникла в отдельных случаях острая необходимость создания агрегатов, обладающих высокой скоростью набора нагрузки — высокими маневренными свойствами. Такими в энергосистемах являются агрегаты ГЭС, если в водохранилищах имеется запас воды для снятия больших колебаний нагрузки. Но как раз в большинстве энергосистем таких запасов либо вообще нет, либо их явно недостаточно. Для решения задачи регулирования графика нагрузки в его переменной части появились газотурбинные агрегаты и гидроаккумулирующие электростанции, что расширило спектр энергоагрегатов в современной энергетике.

Рассматривая этапы развития электростанций, нельзя обойти стороной большой объем работ, выполненных как в России, так и за рубежом по внедрению в практическую энергетику МГД (магнитогидродинамического)-преобразования тепловой энергии в электрическую и соответственно созданию МГД-электростанций.

Привлекательность этого направления состоит прежде всего в том, что МГД-преобразование дает возможность, минуя стадию преобразования теплоты в механическую энергию, сразу получать электроэнергию — прямое преобразование теплоты в электричество. К тому же начальные температуры рабочего тела при МГД-преобразовании весьма высоки, откуда возникает надежда на достижение высокого КПД.

Основные схемы энергетических МГД-установок были запатентованы еще в начале века. Углубленное изучение их с проработкой проектов и создание опытных установок начинается в начале 60-х годов в ряде стран: США, СССР, Японии, Китае и др.

Разработано довольно большое количество разных типов МГД-генераторов. Всего в мире было построено около 20 опытных МГД-установок. Наиболее широкие исследования были проведены в СССР.

В 1964 г. в Институте высоких температур АН СССР (МВТ АН СССР) была построена первая в мире комплексная МГД-установка У-02 мощностью 200 кВт. На основе опыта ее работы, а также исследований, проведенных ИВТ, Энергетическим институтом им. Г.М. Кржижановского, Институтом электродинамики АН УССР и др., в 1971 г. была сооружена промышленная электростанция с опытным МГД-генератором мощностью 25 МВт. На основе опыта работы этой станции было принято решение о проектировании МГД-электростанции мощностью 500 МВт.

Однако дальнейшие работы были свернуты как по социально-экономическим условиям в стране, так и по ряду причин технического и технологического характера. Прежде всего ожидания высокого КПД не оправдались: снижение потерь теплоты в громадном канале оказалось технически сложным. Заметными были и потери теплового потенциала вследствие инжекции ионизирующих присадок. Главное, не удалось создать канал — основной элемент МГД-генератора с приемлемым сроком службы: несмотря на все усилия, срок службы канала до выхода из строя оказался не более 1100–1200 ч. Это примерно в 5 раз меньше, чем требуется для промышленной установки.

Поэтому некоторые специалисты считали возможным работу МГД-электростанций в пиковом режиме (для снятия пиковых нагрузок в энергосистеме), т.е. с числом часов работы в году примерно 1000. После года работы канал необходимо было бы демонтировать и ставить новый. Это, конечно, дорого и неудобно в эксплуатации.

Газотурбинные агрегаты, решают проблему снятия пиков нагрузки без указанных затруднений. А получившие в 80–90-х годах на Западе широкое развитие парогазовые установки показали возможность достижения КПД 60% и без МГД-электростанций. Проекту МГД-электростанций 500 МВт не дано было свершиться, хотя дальнейшие работы в этом направлении продолжаются, но не в прежних масштабах.

Вот уже более 40 лет будущее энергетики связывается с управляемым термоядерным синтезом (УТС) и электростанциями, главной частью которых по предполагаемым проектам будут реакторы, в которых протекает управляемая реакция синтеза ядер легких изотопов.

Начало исследований по управляемому термоядерному синтезу имело место в СССР еще до реализации неуправляемого синтеза — испытания водородной бомбы (начало 50-х годов XX столетия). Возглавлял исследования академик Л.А. Арцимович. Исследования по УТС интенсивно вели в то же время и американские ядерщики. Позже к таким исследованиям подключились и физики Западной Европы. Проблема чрезвычайно сложная и, как и в МГД-преобразовании, упирается в необходимость создания высоких плотностей энергии с применением сильных магнитных полей. Удержать же горячую плазму до возникновения реакции чрезвычайно трудно, хотя и можно. Какие воздействия требуются — грубо, но достаточно образно можно представить по взрыву водородной бомбы. Вся история работ по УТС состоит в погоне за повышением параметров плазмы и времени ее удержания.

Предложен довольно широкий набор различных реакторов (в которых возможна реакция синтеза), отличающихся способами создания плазмы, ее нагрева и удержания. Одним из наиболее перспективных реакторов представляется, по современным воззрениям, реактор с тороидальной магнитной камерой — ТОКАМАК, предложенный впервые в СССР в Институте атомной энергии им. И.В. Курчатова и детально разрабатывавшийся под руководством академика Л.А. Арцимовича. Этот тип реактора принят международным сообществом для совместной разработки.

На первых порах разработки по УТС в разных странах велись независимо, но уже к концу 70-х годов термоядерщики стали объединяться, так как была в полном масштабе осознана фундаментальность и сложность проблемы, невозможность ее решения в рамках отдельно взятой страны. Основой такого сотрудничества кроме широкой взаимной информации стала идея разработки интернационального концептуального проекта термоядерного реактора и всех сопряженных с ним научно-технических проблем.

Совокупность таких проблем получила название инженерных проблем термоядерного синтеза. Один из последних концептуальных проектов реактора УТС разработан странами Евроатома, США, России и Японии в 1989 г.

Наиболее сложная и дорогая часть сооружения — электромагнитная система. Доказано, что приемлемая система может быть создана только с применением сверхпроводников. Общая масса сверхпроводника в реакторе превышает 720 т. Однако, по мнению академика В.А. Глухих, проведенные в России исследования свидетельствуют о возможности создания электромагнитной системы реактора такого масштаба.

Рассмотренные выше новые виды электростанций (МГД-преобразование, УТС) имеют характерные особенности: широкое применение в них электромагнитных устройств, являющихся ключевыми для их функционирования. Это вполне соответствует современным представлениям об электромагнитной структуре материи и способах управления большими потоками энергий. По-видимому, в электростанциях будущего роль электрической части будет все больше и больше возрастать.

В заключение необходимо отметить, что в последней четверти XX столетия наряду с развитием электростанций мощностью в несколько гигаватт стала развиваться малая энергетика: ветровые, солнечные, геотермальные, приливные, волновые электростанции и др. Однако решающей роли они не играют и, по-видимому, никогда не будут играть, что не умаляет их практического значения как для улучшения экологии, так и для обеспечения электроэнергией удаленных мелких потребителей.

Главные схемы электростанций. Первые электростанции сооружались с малым числом генераторов и работали по схеме генератор — трансформатор — линия (Лауфенская электростанция) или по схеме с одной системой шин, секционированной выключателем. Известно, что такая схема не обладает достаточной надежностью. Поэтому с укрупнением электроагрегатов с целью повышения надежности выдачи мощности, а также облегчения коммутаций рабочих и аварийных токов развитие главной схемы шло в двух направлениях: секционирование системы рабочих шин и применение токоограничивающих устройств.

Секционирование одной системы шин вплоть до варианта подключения к одной секции одного присоединения естественным образом привело к созданию кольцевых схем, а недостатки схем с двумя рабочими системами шин — к наиболее эффективным схемам 3/2 и 4/3: с тремя выключателями на два присоединения и четырьмя выключателями на три присоединения. Логика такого развития рассматривается ниже.

Но прежде надо отметить следующее. При малых мощностях генераторов (до 100 МВт) электростанции сооружались, как правило, с наличием электрических связей между генераторами на генераторном напряжении. С ростом мощностей в силу роста рабочих токов, и особенно токов коротких замыканий, распределительное устройство генераторного напряжения становится чрезмерно громоздким. Технически обеспечить канализацию рабочих токов и надежное отключение токов короткого замыкания (КЗ) чрезвычайно трудно. Поэтому с ростом мощностей генераторов от распределительного устройства и соответственно от непосредственных электрических связей между генераторами пришлось отказаться. На рис. 5.1 приведена главная схема электрических соединений одной из ГРЭС, сооружавшихся в СССР в 30-х годах.

Рис. 5.1. Главная схема электрических соединений Зуевской ГРЭС Донбассэнерго 

Это в полной мере относится к современным мощным КЭС, ГЭС и АЭС. Но на ТЭЦ с агрегатами менее 100 МВт распредустройство генераторного напряжения сохранилось прежде всего потому, что от него питаются местная нагрузка и трансформаторы собственных нужд станции. При этом для ограничения токов КЗ широко применяются токоограничивающие реакторы, а шины генераторного напряжения многократно секционируются (в отдельных случаях замыкаются в кольцо). Надо отметить, что широко распространенные токоограничивающие реакторы были созданы еще в 30-е годы XX в. и до последнего времени служат основным средством, обеспечивающим устойчивую работу оборудования электростанций при КЗ.

Неоднократно предпринимались попытки внедрить токоограничивающие устройства иного вида (нелинейные, резонансные схемы и т.п.) или создать выключатели, способные отключать КЗ до достижения токами КЗ опасных значений

— в самом начале аварийного переходного процесса. Однако до сих пор такие устройства не нашли широкого применения либо по причине их недостаточной технической эффективности, либо из-за большой стоимости. В свою очередь токоограничивающие реакторы в последнее время вызвали в России интерес в связи с применением магнитного бетона — магнитного диэлектрика

— для повышения индуктивности реактора. Но внедрение таких реакторов пока находится в самом начале, и лишь практика покажет, насколько они эффективны.

На мощных электростанциях перспективной оказалась схема блока генератор — трансформатор с подключением на генераторном напряжении трансформатора собственных нужд блока.

Уже несколько десятилетий широко применяется подключение двух генераторов к одному трансформатору с расщепленными обмотками низшего напряжения, если это допускает мощность повышающего трансформатора (схема весьма распространенная на ГЭС).

Развитие схем распределительных устройств на повышенном напряжении определялось следующими факторами:

сохранение блока генератор — трансформатор при повреждении выключателя или системы шин;

возможность вывода в ремонт выключателя без потери блока;

надежность работы в ремонтных режимах;

возможность маневрировать выдачей мощности.

Наконец, далеко не последняя по значимости совместная структура электрической сети системы, в которую выдает мощность электростанция: число линий, их связь с разными потребителями и узловыми подстанциями и другие факторы, определяющие режимы системы, наличие в ней резервов мощности и способность обеспечить аварийное покрытие потребности как по мощности, так и по пропускной способности сети.

Для сохранения блока при повреждении выключателя в США на ранних этапах развивалась схема подключения трансформатора блока к двойной системе шин через развилку из двух выключателей (эту схему так и называют американской). Другое, хотя и не эквивалентное этому решение дает схема с двумя рабочими и третьей обходной системами шин и с одним обходным выключателем (рис. 5.2). Это решение оказалось весьма жизнеспособным. При повреждении выключателя блок отключается на короткий промежуток времени, необходимый для включения обходной электрической цепи через обходную систему шин.

Проблема кратковременной потери блоков при аварии на одной системе шин решается за счет резервирования по электрической сети: крупные потребители электроэнергии (в том числе и крупные распределительные подстанции) питаются по двум линиям электропередачи, подключенным к разным системам шин либо к разным секциям секционированной системы шин. Схема выдачи мощности через распредустройство с двумя рабочими и одной обходной системами шин нашла весьма широкое распространение в СССР.

Рис. 5.2. Схема с двумя рабочими и обходной системами шин
Рис. 5.3. Кольцевая схема 

Наличие двух систем рабочих шин придает станции повышенную маневренность: можно группировать присоединения линий и блоков в зависимости от режима работы, внешней схемы энергосистемы (в том числе ремонтных вариантов схем) и необходимого уровня надежности электроснабжения.

Однако эти решения не устранили существенного недостатка рассматриваемой схемы: при отказе одного из выключателей в действие запускается устройство резервирования отказа выключателя, которое отключает все выключатели, присоединенные к данной системе шин. На крупных станциях таких присоединений может быть много, и отказ выключателя приводит к весьма тяжелым последствиям. Ослабить этот фактор позволяет секционирование системы шин, хотя и оно не решает проблемы в полном объеме. Другой недостаток — сложности, возникающие при ремонте одной системы шин.

Избежать этих недостатков позволяют кольцевые схемы, в которых вообще нет сборных шин. При отказе одного выключателя работают только два смежных, возможен вывод выключателя в ремонт без перерыва работы блока. Однако здесь частота работы выключателей в два раза больше, так как каждое присоединение отключается двумя выключателями, а в ремонтных режимах возникают проблемы: при аварийных отключениях присоединений схема распадается на несвязные части, в которых могут возникнуть большие дисбалансы. Недостатком кольцевых схем по сравнению с двумя рабочими и обходной системами шин является отсутствие маневренности.

Кольцевые схемы нашли применение при числе узлов не более шести. Для большего числа узлов иногда применяют связные кольцевые схемы (рис. 5.3).

Рис. 5.4. Схема с тремя выключателями на два присоединения
Рис. 5.5. Схема с четырьмя выключателями на три присоединения 

Решением, объединяющим преимущества кольцевых схем и схем с двумя рабочими системами шин, явились схемы с тремя выключателями на два присоединения (схема 3/2) и с четырьмя выключателями на три присоединения (схема 4/3) (рис. 5.4, 5.5). Эти схемы имеют две рабочие системы шин, связанные цепочками из трех или четырех выключателей. Между выключателями подключаются трансформаторы блоков и линии электропередачи (автотрансформаторы связи с другими распредустройствами). Такие схемы могут работать даже при ремонте двух систем шин при соответствующей группировке присоединений. Эти схемы нашли применение на мощных электростанциях.

Однако в связи с внедрением сверхвысоких и ультравысоких напряжений четко выявилась тенденция к применению схем с одним выключателем на присоединение, в том числе и в США, что определяется очень высокой стоимостью выключателей сверхвысокого и ультравысокого напряжения.

Электрические системы западноевропейских стран имеют значительно более высокую плотность размещения электростанций, малую протяженность линий электропередачи, высокую плотность электрической нагрузки. При этом проблемы электромагнитной совместимости, в том числе и ограничения токов КЗ, оказываются особо сложными. Поэтому в Германии и других западноевропейских странах нашли применение схемы с тремя и более системами рабочих шин (рис. 5.6). Это дает простор для маневров с присоединением генерирующих блоков и линий электропередачи, для обеспечения требуемой надежности и снижения уровней токов КЗ. Такие схемы некоторые авторы называют продольным секционированием.

Рис. 5.6. Схемы соединений РУ 380 кВ АЭС (ФРГ)
а — Филиппсбург (1-я очередь); б — Брунсбюттель

5.3. ТЕХНИКА ПЕРЕДАЧИ И РАСПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

5.3.1. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ

Хронология развития линий электропередачи (ЛЭП) трехфазного переменного тока в Европе и США хорошо известна. На рис. 5.7 видно, как быстро был преодолен стартовый 10–15-ки-ловольтный рубеж: в 1898–1902 гг. были освоены ЛЭП 35–40 кВ, в 1903–1910 гг. — 50–70 кВ, в 1907–1921 гг. — 90–100 кВ, в 1912–1923 гг. — 150 кВ, в 1918–1927 гг. — 225 кВ, в 1934 г. — 287 кВ (США) и в 1954 г. — 345 кВ (США). Быстрому росту напряжения воздушных линий способствовал прогресс в разрешении проблем высоковольтной изоляции, в частности изобретение тарельчатых изоляторов (США, 1906 г.), заменивших штыревые.

В дореволюционной России было построено всего около 200 км ЛЭП 10, 35 и 70 кВ. Первая ЛЭП 110 кВ (Кашира — Москва) длиной 120 км была построена уже после Октябрьской революции по плану ГОЭЛРО в 1922 г., в 1932 г. была введена в работу ЛЭП 150 кВ от ГЭС на Днепре, с 1933 г. начала строиться ЛЭП 220 кВ (от Свир-ской ГЭС до Ленинграда и др.).

Рис. 5.7. Рост номинального напряжения (его максимального значения) воздушных линий электропередачи в США, Канаде и в европейских странах
1 — Франция; 2 — Швеция; 3 — США; 4 — Канада 

Выполнение плана ГОЭЛРО привело к модернизации многих заводов отечественной электротехнической промышленности: МЭЗ, «Электросила», «Электроаппарат», «Пролетарий», «Изолятор» и др., без развития которых этот план не мог быть осуществлен.

Еще до второй мировой войны в специальном бюро при Политехническом институте в Ленинграде под руководством проф. А.А. Горева были начаты исследования по ЛЭП 400–500 кВ длиной порядка 1000 км, которые предполагалось использовать для передачи электрической энергии от крупных ГЭС, планируемых на Волге, к району Москвы. После войны эти исследования были продолжены во многих институтах страны (ВЭИ, ЛПИ, НИИПТ и др.). Одновременно в институте «Теплоэлектропроект» были развернуты проектные работы по ЛЭП 400 кВ. В научно-исследовательских институтах и на предприятиях электротехнической промышленности разрабатывались силовые трансформаторы, шунтирующие реакторы, выключатели и другое оборудование напряжением 400 кВ. Усилия ученых, проектировщиков, строителей, монтажников и конструкторов оборудования завершились вводом в эксплуатацию в мае 1956 г. цепи ЛЭП 400 кВ протяженностью 815 км. В конце 50-х годов на этой же построенной цепи и на всех последующих ЛЭП аналогичной длины и пропускной способности после усовершенствования оборудования и средств для эффективного ограничения перенапряжений было решено впервые использовать напряжение 500 кВ. Первая такая линия от Волжских ГЭС к Москве начала эксплуатироваться в 1961 г. В тот же период в СССР были освоены ЛЭП 330 кВ [5.11].

Разработка ЛЭП 750 кВ в СССР была вызвана сооружением крупных тепловых станций и АЭС мощностью 2,4–4 ГВт в европейской части страны. Они были и остаются главными системообразующими связями в европейской части ЕЭС России и стран СНГ. Все без исключения оборудование для подстанций и распределительных устройств 750 кВ, как и для сетей 500 кВ, было разработано и изготовлено отечественной электропромышленностью. Важнейшими при создании и освоении ЛЭП 750 кВ были, во-первых, проблема глубокого ограничения перенапряжений (Ю.И. Лысков, С.С. Шур, С.В. Коваленко и др.) и, во-вторых, проблема надежной работы внутренней изоляции оборудования всех видов, в особенности трансформаторов и шунтирующих реакторов (А.К. Лоханин, С.Д. Лизунов, Г.С. Кучинский и др.). Оптимизация проектных решений по воздушным линиям (К.П. Крюков, А.И. Курносов, Б.И. Смирнов, И.А. Шляпин, Л.С. Перельман, Н.Н. Тиходеев и др.) способствовала расширению области эффективного применения этих ЛЭП [5.12; 5.13].

Первая ЛЭП 750 кВ под Москвой длиной около 100 км была введена в работу в ноябре 1967 г.

21 страна в Европе вслед за Швецией построила электрические сети 380–440 кВ. Не менее широкое применение в неевропейских странах получили сети 500–550 кВ; вслед за СССР, где была в 1961 г. введена в работу первая в мире линия 500 кВ, их строили и строят в США, Канаде, Японии, Бразилии, Австралии, Новой Зеландии, АРЕ, КНР и ряде других стран.

В шести странах: Канаде (с 1966 г.), СССР (с 1967 г.), США, Бразилии, Венесуэле и ЮАР были построены ЛЭП переменного тока 735–800 кВ. С помощью СССР эти линии были построены в Венгрии, Польше, Болгарии и Румынии. Общая протяженность таких линий превысила 16 тыс. км. В конце 90-х годов ЛЭП 800 кВ начали строить в Южной Корее.

В период энергетического кризиса 70-х годов предполагалось, что для транспортирования электроэнергии на дальние расстояния от ТЭС на угле и ГЭС уже в текущем столетии потребуются ЛЭП ультравысокого напряжения (УВН). В этом направлении наиболее интенсивно работали четыре страны: СССР, США, Италия и Япония. Последовавшее затем резкое падение цен на нефть и газ (значительно более дешевая, чем передача электроэнергии по ЛЭП УВН, транспортировке нефти и газа по трубам и танкерами) обусловило снижение экономического интереса к ЛЭП УВН за рубежом. Только Япония спроектировала и построила двухцепную ЛЭП 1100 кВ длиной 250 км с двухцепными опорами башенного типа высотой 106–120 м для передачи электроэнергии от крупной АЭС в район Токио. Основные цели этого проекта: использование для ВЛ предельно узкого коридора и отработка элегазового оборудования УВН. ЛЭП будет работать на пониженном напряжении (550 кВ) вплоть до 2000 г.

В СССР научно-исследовательские работы по ЛЭП 1150 кВ были начаты в 70-х годах. Тогда же начались проектирование и сооружение опытно-промышленной ЛЭП 1150 кВ Экибастуз — Кокчетав длиной около 500 км и первых очередей подстанций «Экибастузская» и «Кокчетавская» (теперь Казахстан). Их строительство было завершено в июне 1985 г. На этой линии были проведены испытания и исследования (В.В. Ильиничнин, Н.Н. Беляков, А.С. Сохранский и др.), накапливался опыт эксплуатации ВЛ (В.В. Бургсдорф, А.Н. Новикова и др.) и оборудования 1150 кВ. В 1988 г. завершены строительство и монтаж подстанции 1150 кВ в Кустанае, после чего вошла в строй и ЛЭП Кокчетав — Кустанай длиной 390 км (теперь Казахстан). Построены также линии Кустанай — Челябинск и Экибастуз — Барнаул, которые пока работают на напряжении 500 кВ. Ведется сооружение линии Барнаул — Итат.

На рис. 5.8 отмечены этапы освоения ЛЭП все более высокого напряжения в СССР и США (с учетом линий, соединяющих США с Канадой).

Рис. 5.8. Рост номинального напряжения воздушных линий электропередачи 110–1150 кВ в СССР (1) и в США совместно с Канадой (2) до 1990 г. 

На конец 1990 г. в СССР находились в эксплуатации примерно 431 тыс. км ЛЭП 110 кВ, 12,6 тыс. км — 150 кВ, 136,52 тыс. км — 220 кВ, 31,93 тыс. км — 330 кВ, 43,93 тыс. км — 500 кВ, 7,1 тыс. км — 750 кВ и 1,91 тыс. км — 1150 кВ. После распада СССР на территории России осталось свыше 440 тыс. км электрических сетей 110–1150 кВ, в том числе: ВЛ 110 кВ — 279 тыс. км, ВЛ 150 кВ — 2,6 тыс. км, ВЛ 220 кВ — 100 тыс. км, ВЛ 330 кВ — 9,4 тыс. км, ВЛ 500 кВ — 36,2 тыс. км, ВЛ 750 кВ — 2,7 тыс. км, ВЛ 1150 кВ — 0,5 тыс. км.

К 1990 г. СССР имел высокий международный рейтинг в области ЛЭП сверхвысокого (СВН) и ультравысокого (УВН) напряжения переменного тока.

В результате освоения в СССР ЛЭП 500 и 750 кВ в ОЭС сложились две шкалы номинальных напряжений электрических сетей: ПО — 150–330–750 кВ и 110–220–500–1150 кВ. Каждая последующая ступень в этих шкалах превышает предыдущую примерно в два раза, что позволяет повысить пропускную способность линий в два-четыре раза. Первая шкала напряжений получила распространение в северо-западных областях России, на Украине и на Северном Кавказе, вторая — в центральных областях и на всей территории России к востоку от Москвы. В настоящее время линии 110, 150 и 220 кВ используются главным образом в районных распределительных сетях для передачи электроэнергии к крупным узлам нагрузки. Электропередачи 330, 500, 750 и 1150 кВ, по которым может быть передана мощность от 350 до 4000–4500 МВт, решают задачи системного характера. Они используются для создания мощных межсистемных и внутрисистемных связей в ОЭС, передачи электроэнергии от удаленных электростанций, например атомных или ГЭС, в приемные системы.

В соответствии с установившейся терминологией Международной конференции по большим электрическим системам высокого напряжения (СИГРЭ) к линиям высокого напряжения относятся линии с наибольшим номинальным напряжением ниже 400 кВ, к линиям СВН — линии с наибольшим номинальным напряжением (линейным для линий переменного и межполюсным для линий постоянного тока) от 400 до 800–900 кВ, т.е. ниже 1000 кВ (400–550, 735–800 кВ переменного тока, 400–900 кВ постоянного тока), а к линиям УВН — линии с наибольшим номинальным напряжением 1000 кВ и выше.

В мировой практике в настоящее время значительное внимание уделяется электропередачам постоянного тока, где отсутствуют волновые процессы в линии, благодаря чему эти электропередачи приобретают новые свойства. В них снимается проблема устойчивости совместной работы связываемых систем, с их помощью можно соединять несинхронно работающие системы или системы с различной номинальной частотой и т.д.

Для передачи энергии на большие расстояния, как уже отмечалось, необходимо повышение напряжения линии. Поскольку постоянный ток не трансформируется, то повысить напряжение можно путем последовательного соединения нескольких источников. Такую схему предложил Рэне Тюри (Швейцария). По его схеме было сооружено около 15 электропередач. Главная из них — электропередача Мутье — Лион (Франция). Эта электропередача была введена в работу в 1906 г. и имела длину 180 км при напряжении 57 кВ, передаваемая мощность на первом этапе составляла 4,6 МВт.

На ГЭС Мутье несколько генераторов постоянного тока были включены последовательно, причем каждый из них был изолирован от земли, а с валом турбины они соединялись через изолирующие прокладки. На приемном конце, в Лионе, последовательно соединялись двигатели постоянного тока, которые вращали трехфазные генераторы переменного тока, включенные в сеть города.

Впоследствии мощность этой передачи была доведена до 20 МВт, а напряжение до 115 кВ. Только в 1937 г. эта электропередача была заменена трехфазной линией переменного тока.

В 30-х годах были созданы ртутные выпрямители, позволившие создать достаточно мощные преобразовательные подстанции, предназначенные для электрификации транспорта и технологических процессов в промышленности. Тогда же в США была построена первая электропередача постоянного тока на ртутных вентилях (15 кВ), предназначенная для связи энергосистем с разной частотой.

У нас в стране первая опытно-промышленная кабельная электропередача Кашира — Москва была пущена в 1950 г. Для ее создания были использованы ртутные вентили с током 50 А и напряжением 120 кВ. Длина этой электропередачи 120 км, напряжение ±100 кВ, передаваемая мощность 30 МВт. В 1954 г. была построена электропередача постоянного тока Швеция — о. Готланд (длина 100 км, мощность 20 МВт, напряжение 100 кВ).

Ртутными преобразователями в 50–60-х годах было оснащено несколько электропередач (Англия — Франция, Швеция — Дания, Тихоокеанская передача в США и др.).

Одной из важнейших проблем того периода было создание мощного высоковольтного ртутного вентиля, который мог быть использован для дальних мощных электропередач постоянного тока. Разработка такого вентиля велась во многих странах. В нашей стране в ВЭИ был создан вентиль типа ВР-9 (напряжение 130 кВ, ток 300 А). На этих вентилях в 1962–1965 гг. была сооружена электропередача Волгоградская ГЭС — Донбасс (400 км, 720 МВт, ±400 кВ), которая в течение ряда лет была крупнейшей в мире.

Опыт эксплуатации ртутных вентилей в различных странах выявил их недостаточную надежность в работе.

Положение изменилось в конце 60-х годов, когда были разработаны мощные полупроводниковые вентили — тиристоры.

Первые тиристоры имели напряжения 1–1,5 кВ и ток несколько сот ампер, что при разработке высоковольтных вентилей требовало их последовательно-параллельного соединения. В последующем успехи полупроводниковой техники привели к созданию тиристоров с током 2–3 кА и напряжением до 4 кВ. Это позволило отказаться от параллельного соединения тиристоров и уменьшило их число в последовательной цепочке.

В настоящее время сооружен ряд электропередач постоянного тока с использованием тиристорных вентилей. Крупнейшей является электропередача ГЭС Итайпу — Сан Пауло (Бразилия) (±600 кВ; 6300 МВт; 900 км), которая введена в работу в 1988 г.

В нашей стране разработано и испытано оборудование для электропередачи Экибастуз — Центр (2400 км; ±750 кВ; 6300 МВт).

В разработке проблем электропередач постоянного тока в нашей стране ведущая роль принадлежит коллективам Научно-исследовательского института постоянного тока (А.В. Поссе, В.И. Емельянов, Л.Р. Нейман) и ВЭИ (В.П. Фотин, А.В. Стукачев, И.П. Таратута). В решении этой задачи также принимали участие коллективы многих промышленных предприятий.

Помимо электропередач постоянного тока получили распространение так называемые вставки постоянного тока, где выпрямитель и инвертор расположены на одной подстанции, а линия отсутствует. Такие вставки служат для связи примыкающих друг к другу систем переменного тока, как межгосударственные связи.

Вставки постоянного тока сооружены в Канаде, Японии, США, Австрии. В России вставка введена в работу в 1981 г. и служит для связи энергосистем России и Финляндии.

5.3.2. СОЗДАНИЕ ЭЛЕКТРОПЕРЕДАЧ СВН И УВН — ВЫДАЮЩЕЕСЯ ДОСТИЖЕНИЕ РОССИЙСКИХ ЭЛЕКТРОЭНЕРГЕТИКОВ

В 30-е годы сложились две крупные научные электротехнические школы: ленинградская и московская.

В Ленинграде в ЛПИ под руководством чл.-корр. АН СССР М.А. Шателена над проблемами дальних электропередач работали крупные ученые — профессора А. А. Горев, Н.П. Виноградов, A.M. Залесский, Н.Н. Щедрин. Большой вклад в развитие техники передачи электрической энергии внесли работавшие в ЛЭТИ под руководством проф. А.А. Смурова профессора Г.Т. Третьяк, Л.Е. Машкиллейсон и др. Фундаментальные исследования, в том числе по электрической изоляции, проводились в Электрофизическом институте (выделившемся из Физико-технического института) выдающимися учеными А.П. Александровым, Н.Н. Семеновым, А.Ф. Вальтером, Б.М. Гохбергом и др.

В Москве исследования и разработки по широкому кругу вопросов, связанных с проблемами передачи электроэнергии, проводились в 30-е годы в основном в ВЭИ, МЭИ, «Мосэнерго». В центре этих проблем находился профессор-энциклопедист Л.И. Сиротинский, занимавший в то время посты начальника отдела высоких напряжений ВЭИ и одновременно заведующего кафедрой техники высоких напряжений МЭИ. Работы по электрическим сетям, включая вопросы их строительства, вели А.А. Глазунов, Н.И. Сушкин, А.Я. Рябков и др. Значительным вкладом в решение проблем устойчивости параллельной работы электростанций явились результаты исследований П.С. Жданова и С.А. Лебедева, затем Г.Р. Герценберга. Над вопросами электрической изоляции сетей и электрооборудования работали А.В. Александров, А.В. Ефимов, В.К. Кожухов, П.А. Флоренский и др. Коммутационную аппаратуру разрабатывали А.Я. Буйлов, Г.В. Буткевич, Е.М. Цейров, A.M. Бронштейн, М.А. Бабиков и др. Вопросами защиты от перенапряжений и разработкой защитной аппаратуры занимались А.А. Акопян, Л.И. Иванов, В.И. Пружинина, В.А. Карасев и др.

Все работы велись в тесном контакте с электротехническими заводами «Электроаппарат», «Пролетарий» (Ленинград), МЭЗ и «Изолятор» (Москва), «Уралэлектроап парат» — (Свердловск).

В Ленинграде как основном электротехническом центре в 30-е годы при ЛПИ под руководством А.А. Горева создается «Бюро куйбышевских работ» (БКР), где были начаты конкретные исследования и предпроектные проработки по ЛЭП 400–500 кВ. Быстро был построен высоковольтный корпус, в котором была создана, в частности, крупная электродинамическая модель для воспроизведения переходных процессов в ЛЭП и примыкающих энергосистемах (Л.Е. Машкиллейсон, Н.Н. Миролюбов). По проекту Н.П. Виноградова и его ученика К.П. Крюкова сооружается однопролетная опытная линия напряжением 500 кВ, на которой изучались механика опор и проводов, нагрев током проводов, проводились первые измерения потерь на корону. Исследование фарфоровых изоляторов и их характеристик вел К.С. Архангельский, внутренней изоляции — А.С. Зингерман.

Одной из серьезных задач, которая была успешно решена, явилась проблема устойчивости параллельной работы электростанций и ОЭС. Опираясь на основополагающие работы по анализу статической и динамической устойчивости А.А. Горева, П.С. Жданова, С.А. Лебедева и др., удалось найти ряд методов повышения устойчивости: регулирование турбин и возбуждения генераторов, быстродействие защит и выключателей, компенсация параметров линий и др. (В.А. Веников, М.П. Костенко, И.А. Глебов, И.А. Груздев, М.Л. Левинштейн, О.В. Щербачев, Д.И. Азарьев, С.А. Совалов, Л.А. Жуков и др.).

В результате исследований и разработок ВЭИ (Г.Р. Герценберг) было установлено, что перевод генераторов в зону «искусственной устойчивости» позволяет существенно повысить предел статической устойчивости. Для этого необходимо иметь электронные регуляторы возбуждения без зоны нечувствительности. Они были созданы в 1939 г. В послевоенные годы эти регуляторы были усовершенствованы за счет введения в закон регулирования производных от параметров режима, что позволило еще выше поднять предел статической устойчивости.

После Великой Отечественной войны исследования по ЛЭП СВН были развернуты под руководством института «Теплоэлектропроект» (и в выделившемся затем из него институте «Энергосетьпроект») во многих институтах страны (МЭИ, НИИПТ, ВЭИ, ВНИИЭ, ЭНИН, ЛПИ и др.). Наиболее ответственные технические решения принимались большой группой ученых и инженеров, среди которых были С.С. Рокотян (главный инженер института «Энергосетьпроект»), А.И. Колпакова, A.M. Федосеев, Н.Н. Соколов, Д.И. Азарьев, Г.А. Славин и др. Одновременно под руководством ВЭИ (Л.И. Сиротинский, Г.В. Буткевич, Е.М. Цейров и др.) в НИИ, КБ и на заводах электротехнической промышленности (ВЭИ, ВИТ, ЗТЗ, МЭЗ, «Электроаппарат», «Пролетарий», «Уралэлектроаппарат» и многих других) велись разработки силовых трансформаторов, шунтирующих реакторов, выключателей и другого оборудования на напряжение 400 кВ.

Помимо методов аналитического исследования большую роль сыграли методы физического моделирования [5.14]. В начале 50-х годов в МЭИ (В.А. Веников, Т.Л. Золотарев) была создана физическая модель электропередачи Волжская ГЭС — Москва, на которой отрабатывались методики расчета переходных процессов и натурные образцы регуляторов и релейной защиты. В последующие годы физические модели были созданы в ряде исследовательских центров в нашей стране и за рубежом.

В ЛПИ на кафедрах ТВН и электрических систем и сетей под руководством А.А. Горева и в теснейшем контакте со специалистами «Теплоэлектропроекта» проводили исследования режимов дальних ЛЭП О.В. Щербачев, И.А. Груздев, М.Л. Левинштейн, К.П. Кадомская и др.

Усилия ученых, проектировщиков, конструкторов оборудования и монтажников завершились вводом в эксплуатацию в мае 1956 г. первой цепи ЛЭП 400 кВ от Куйбышева к Москве протяженностью 815 км. На этой ЛЭП был проведен большой комплекс пусконаладочных работ и исследований. Их результаты и накопленный за два первых года опыт эксплуатации ЛЭП, быстрое развитие экономики и электроэнергетики страны поставили в повестку дня повышение пропускной способности ЛЭП 400 кВ. Первым смелым экспериментом в этом направлении был перевод кольцевой линии 400 кВ (длиной 78 км) на рабочее напряжение 500 кВ за счет переключения трансформаторной группы по схеме 500/115/11 кВ. Целеустремленная работа ученых, эксплуатационников (В.А. Вершков) и проектировщиков, поддержанная руководством Министерства электростанций и Госплана СССР, позволила сделать заключение о том, что при сравнительно небольшом усовершенствовании основного высоковольтного оборудования на 400 кВ построенная и строящиеся ВЛ смогут работать при напряжении 500 кВ. Такое решение в 1957 г. было актуально для нашей страны с ее

огромной территорией и перспективой быстрого объединения динамично развивающихся энергосистем в Единую электроэнергетическую систему. Одна цепь ЛЭП от Волгограда до Москвы была перепроектирована на 500 кВ без замены проводов, линейной изоляции, опор и без увеличения габаритов подстанций 400 кВ. Она была введена в эксплуатацию 27 декабря 1959 г., а в сентябре 1961 г. вошла в строй действующих и вторая цепь 500 кВ той же передачи. Эти две ЛЭП 500 кВ стали первыми в мире передачами нового класса номинального напряжения.

Два технических обстоятельства способствовали успеху всего проекта. Это, во-первых, правильный выбор расщепленных проводов (ЗхАС-480/59,7) на двух первых двухцепных ВЛ от Волги до Москвы, что позволило сохранить ранее выбранные расщепленные провода на перепроектированных ВЛ 500 кВ при умеренном росте потерь на корону (В.И. Попков, Л.В. Егорова, Н.Н. Тиходеев, Н.П. Емельянов), во-вторых, в 50-е годы считалось, что линейная, внутренняя и внешняя изоляция трансформаторов и аппаратов определяется прежде всего внутренними перенапряжениями. Эта предпосылка привела к созданию новой системы защитных аппаратов для более глубокого, чем на ЛЭП 400 кВ, ограничения этих перенапряжений в сетях 500 кВ до уровня 2,5 наибольшего фазного напряжения с тем, чтобы абсолютные значения перенапряжений в сетях 400 и 500 кВ оказались практически одинаковыми (Ю.И. Лысков, Н.И. Соколов, В.П. Фотин, А.А. Акопян, В.П. Савельев, С.С. Шур и др.). Выбранная система защиты от внутренних перенапряжений включала в себя комбинированные разрядники РВМК-500, шунтирующие реакторы и другое оборудование.

Кроме первых ЛЭП 500 кВ следующими электропередачами этого номинального напряжения стали: Бугульма — Златоуст, Златоуст — Челябинск, Куйбышев — Урал, Челябинск — Свердловск, Братск — Иркутск, Воткинск — Свердловск, Назарове — Абакан, Назарове — Анжерка, Троицкая ГРЭС — Челябинск, Заинская ГРЭС — Бугульма и др. К концу 1965 г. общая протяженность ЛЭП 500 кВ достигла 8,3 тыс. км, что позволило создать «костяк» ЕЭС. Это был огромный технический прогресс в отечественной и мировой технике передачи электрической энергии. В сентябре 1967 г. было образовано Центральное диспетчерское управление (ЦДУ) ЕЭС СССР. К 1991 г. протяженность ЛЭП 500 кВ увеличилась до 45 тыс. км, по этим линиям распределялось до 40% всей электрической энергии в ЕЭС. Над созданием ЛЭП 500 кВ по единому плану работали десятки проектных, научно-исследовательских институтов, заводов, тысячи людей. Многие из них навсегда вошли в историю отечественной электроэнергетики и электротехники. За создание ЛЭП 500 кВ и комплекса электротехнического оборудования к ним две группы специалистов были удостоены Ленинских премий за 1962 г. в области науки и техники. В список лауреатов премии за создание ВЛ 500 кВ вошли (по алфавиту): Д.И. Азарьев, В.В. Бургсдорф, В.А. Вершков, Д.И. Очкасов, С.С. Рокотян, Л.И. Сиротинский, И.И. Филимончук и др. Много сделали для освоения ЛЭП 500 кВ: A.M. Некрасов, И.А. Сыромятников, А.И. Колпакова, К.П. Крюков, А.И. Курносов, С.А. Совалов и многие другие. За создание комплекса оборудования 500 кВ лауреатами Ленинской премии стали: А.А. Акопян, В.В. Афанасьев, И.Д. Воеводин, И.С. Калиниченко, С.И. Рабинович, В.Ю. Френкель, Б.В. Белков, Е.М. Цейров, В.Г. Бирюков, Г.В. Буткевич, А.В. Панов, А.В. Сапожников и Л.И. Федоров. Важно отметить, что весь комплекс уникального оборудования на напряжение 500 кВ был разработан и изготовлен отечественными НИИ, конструкторскими бюро и заводами.

В 1967 г. в нашей стране была введена в работу первая линия 750 кВ Конаковская ГРЭС — Москва. В 70-х годах началось сооружение ряда электропередач этого класса напряжения. В том числе мощных магистральных связей, таких как Конаково — Ленинград, Донбасс — Винница — Альбертирша (Венгрия). На них также использовалось только отечественное оборудование.

В 1980 г. Государственная премия СССР за создание и внедрение электропередач СВН 750 кВ была присуждена группе специалистов, в том числе Н.Н. Тиходееву, В.П. Фотину, С.Д. Лизунову, В.К. Тарасову, Н.М. Чернышеву и др.

Практически одновременно линии этого класса напряжения (765 кВ) появились в США и Канаде.

В 70-х годах в ряде стран развернулись работы по созданию оборудования для линий класса напряжения 1000 кВ. В середине 80-х годов в нашей стране была введена первая и пока единственная в мире линия 1150 кВ Экибастуз — Челябинск.

Принципиальные достижения, обеспечившие создание ЛЭП СВН и УВН переменного тока следующие. Это, во-первых, применение на ЛЭП устройств, компенсирующих зарядную мощность линии. Степень компенсации заряд-

ной мощности растет с ростом номинального напряжения и находится обычно в диапазоне от 15 (у ЛЭП 380–550 кВ) до 100% (на ЛЭП 1150 кВ). Во-вторых, применение шунтирующих реакторов, без которых не удалось бы создать экономичные ЛЭП 380–550 кВ и большего напряжения при длине линии 350–500 км, уменьшить сток зарядной мощности от линии в примыкающие энергосистемы. Применение шунтирующих реакторов существенно облегчило разрешение ключевой проблемы для ЛЭП СВН и УВН — глубокого ограничения коммутационных и резонансных перенапряжений. При соответствующем размещении групп реакторов по концам линии передачи и рациональном значении компенсации зарядной мощности удается снизить вынужденную составляющую перенапряжений (т.е. установившееся после затухания переходного процесса напряжение 50 Гц на конце односторонне питаемой линии) в плановых и после-аварийных коммутациях до значений, мало отличающихся, от единицы (в передачах 1150 кВ до 1,1–1,2).

Как свидетельствует отечественный, канадский и американский опыт эксплуатации электрических сетей 750 кВ, доля однофазных коротких замыканий (КЗ) в общем их числе составляет не менее 99%. В таких условиях целесообразно применять в качестве главного противоаварийного устройства однофазное АПВ, переход к которому является радикальной мерой сохранения динамической устойчивости примыкающих к передачам 750 и 1150 кВ энергосистем. Главная трудность, стоящая на пути широкого применения однофазного АПВ в сетях 750 и 1150 кВ — обеспечение условий для самопогасания дуги подпитки, возникающей на поврежденной фазе линии после ее отключения с двух сторон. Проведенные в СССР (Б.Т. Шперлинг, Н.Н. Беляков, ГА. Славин и др.), а также в Швеции и США, исследования привели к важному практическому выводу: использование на хорошо транспонированной линии специально подобранных по параметрам и спроектированных компенсирующих реакторов, включенных между нейтралью каждой группы шунтирующих реакторов и землей, на порядок снижает ток подпитки дуги в точке КЗ. Заземление нейтрали через компенсирующий реактор со специально подобранным сопротивлением расстраивает резонанс на частоте 50 Гц, что снижает кратность коммутационных перенапряжений и резко уменьшает восстанавливающееся напряжение на поврежденной фазе, при этом сам переходный процесс теряет характер биений.

Комплекс современных мер, обеспечивающих глубокое снижение коммутационных перенапряжений в ЛЭП 1150 кВ, включает в себя: шунтирующие реакторы, обеспечивающие компенсацию зарядной мощности линии; компенсирующие реакторы, включенные между нейтралью каждой группы основных реакторов и землей и облегчающие самопогасание тока подпитки КЗ емкостными токами от неповрежденных фаз; оснащение выключателей предвключаемыми шунтирующими резисторами, вводимыми в цикле включения (Ю.И. Лысков, С.С. Шур, В.П. Фотин, М.Л. Левинштейн, К.П. Кадомская и др.).

При переходе к ЛЭП СВН и УВН на первый план выдвинулись многие проблемы, связанные с изоляцией воздушных линий, подстанций и оборудования. Прогресс в понимании переходных процессов, возможностей вмешательства в них с целью подавления наиболее опасных и, наконец, создание ограничителей перенапряжений с резисторами на базе оксида цинка обеспечили в настоящее время столь существенное ограничение перенапряжений в сетях СВН и УВН, что внешняя и особенно внутренняя изоляция оборудования, подстанций и линий выбирается не по перенапряжениям, а по рабочему напряжению (Н.Н. Тиходеев).

В третьих, существенное ограничение перенапряжений с ростом номинального напряжения в диапазоне 750–1150 кВ позволило обеспечить приблизительную пропорциональность между расчетной кратностью коммутационных перенапряжений (Ю.И. Лысков, Г.Н. Александров, В.Л. Иванов, А.А. Филиппов, Ю.М. Гутман и др.) и размерами основных воздушных промежутков на линии и подстанции, а также внешней изоляцией оборудования, несмотря на сильное снижение удельных разрядных напряжений для очень длинных воздушных промежутков при коммутационных перенапряжениях с фронтом 2 мс.

В четвертых, принципиально новые перспективы появились для создания современного оборудования ВН, СВН и УВН для комплектных и гибридных подстанций в связи с широким использованием в 60-х годах элегаза в качестве изолирующей среды, хотя высокая электрическая прочность и другие отличительные свойства, а также технология его промышленного получения были изучены еще накануне второй мировой войны и сразу после нее (Б.М. Гохберг). Применение элегаза позволило в несколько раз уменьшить размеры подстанций, вытеснить горючие жидкие диэлектрики во многих аппаратах, радикально уменьшить их основные габариты и использовать элегаз в качестве отличной дугогасящей среды.

В пятых, принципиально важным техническим решением для усовершенствования воздушных линий электропередачи СВН и УВН стала идея расщепления проводов. Классические эксперименты Ф. Пика с короной на проводах, выполненные еще в начале века в США, показали, что на ЛЭП с напряжением вплоть до 300 кВ могут использоваться одиночные провода, но для создания воздушных линий 500 кВ требуется провод диаметром 6–7 см, 750 кВ — 10–12 см. Такой рост диаметра обусловливает трудно разрешимое противоречие, связанное с поперечным сечением провода, выбранного по короне и оптимальной плотности тока в нем. Кроме того, из-за большого погонного индуктивного сопротивления линии с такими проводами трудно обеспечить высокую пропускную способность передачи электроэнергии на дальние расстояния. Поэтому при создании ЛЭП СВН и УВН широко использовались расщепленные провода, идея применения которых была выдвинута В.Ф. Миткевичем в 1910 г. в России и Ван-Антверпеном в США. На линиях 380–420 кВ появились провода с двумя, тремя и четырьмя составляющими, на линиях 500–550 кВ — с тремя и четырьмя, на линиях 735–800 кВ — с четырьмя и пятью, на линиях УВН — с восемью составляющими. Расщепление провода позволило легко сбалансировать требования к нему, диктуемые оптимальной плотностью тока и короной на проводах (радио- и акустическими помехами, потерями на корону). Это обеспечило также значительное улучшение электрических параметров воздушной линии.

5.3.3. ЭЛЕКТРОПЕРЕДАЧИ ПОСТОЯННОГО ТОКА

Электропередачи и вставки постоянного тока обладают рядом экономически выгодных преимуществ по сравнению с передачами переменного тока. Так как на нормальный режим работы линии постоянного тока не оказывают влияния ее реактивные параметры, то при реальных соотношениях между активными и реактивными сопротивлениями линии электропередачи падение напряжения на ней во много раз меньше, чем на линии переменного тока. А это, в свою очередь, создает предпосылки для радикального увеличения радиуса действия линий постоянного тока по сравнению с линиями электропередачи переменного тока; при этом при любой длине не возникает ограничений передаваемой мощности по условиям устойчивости параллельной работы. Воздушные линии постоянного тока, как правило, существенно дешевле линий переменного тока. Существенны выгоды постоянного тока для кабельных линий, поскольку условия работы изоляции кабелей при постоянном напряжении несравненно легче, чем при переменном. Благодаря этому при одной и той же толщине изоляции пропускная способность кабеля, работающего при постоянном напряжении, в 2–4 раза выше чем у того же кабеля, но работающего при переменном напряжении, за счет более высокого номинального напряжения. При сооружении линии электропередачи постоянного тока между двумя несвязанными энергосистемами последние могут работать несинхронно как с разными частотами (50 и 60 Гц), так и с одинаковой частотой, но с различными требованиями к точности ее поддержания. Целый ряд преимуществ может быть получен за счет способности вентильных преобразователей выполнять функции быстродействующего выключателя и очень совершенного регулятора передаваемой мощности. Здесь следует отметить, что при связи двух энергосистем на постоянном токе аварийные режимы в одной из энергосистем не отражаются на работе другой энергосистемы столь непосредственно, как это происходит при связи на переменном токе; кроме того, исключается подпитка места КЗ в одной энергосистеме со стороны другой. Поэтому объединение энергосистем или ввод дополнительной мощности в энергосистему через электропередачу постоянного тока не приводит к увеличению токов КЗ и не требует соответствующей замены всего оборудования и, прежде всего, выключателей. Благодаря практически безынерционному регулированию преобразователей межсистемная связь по линиям электропередачи постоянного тока может осуществляться по строго заданной программе, например с целью поддержания частоты, баланса активной мощности, демпфирования низкочастотных колебаний и т.д.

Исследования преобразователей для электропередач постоянного тока начались в нашей стране в 1947 г. в организованной тогда в ЭНИН лаборатории передач постоянного тока, возглавлявшейся проф. К.А. Кругом, и в образованном в том же году НИИ постоянного тока (НИИПТ). Одновременно аналогичные работы начали проводиться в ВЭИ. В дальнейшем к работам по постоянному току подключился «Энергосетьпроект».

Большая работа по изучению режимов работы и проектированию первых передач постоянного тока проведена в НИИПТ его сотрудниками: А.В. Поссе, В.И. Емельяновым, М.Г. Шехтманом, А.В. Пинцовым, К.А. Герциком, Л.Л. Балыбердиным, Ю.С. Крайчиком и др. В НИИПТ также проведена разработка алгоритмов систем управления передачами постоянного тока, исследованы перенапряжения в передачах постоянного тока, выполнено физическое моделирование передач постоянного тока.

Усилиями сотрудников НИИПТ, Московского отделения НИИПТ и ВЭИ была введена в эксплуатацию в 1950 г. первая в мире кабельная электропередача постоянного тока напряжением 200 кВ и мощностью 30 МВт Кашира — Москва длиной 120 км, которая явилась школой для разработки других электропередач постоянного тока.

ВЭИ являлся разработчиком всего высоковольтного преобразовательного оборудования для передачи постоянного тока Волгоград — Донбасс. Большая работа была проведена сотрудниками ВЭИ по разработке, серийному изготовлению, испытаниям и эксплуатации главного аппарата этой электропередачи — откачного экситрона — высоковольтного ртутного вентиля типа ВР-9. Его разработке предшествовали обширные исследования физических процессов газового разряда при низком давлении, проводившиеся под руководством Б.Н. Клярфельда, В.Л. Грановского, И.Н. Кесаева и др. Разработкой вентиля ВР-9 руководил главный конструктор Ф.И. Бутаев, разработку испытательных установок осуществлял Н.С. Климов, разработку технологии производства и кондиционирования вентилей проводили А.А. Перцев, Н.П. Степанов, А.Е. Шварц и др.

Коллективом отдела автоматического регулирования ВЭИ (Е.К. Булахов, В.Д. Ковалев, А.К. Мазуренко, М.В. Ольшванг, А.И. Ступель, Г.М. Цфасман и др.) были разработаны системы автоматического регулирования и защиты электропередач и вставки постоянного тока, а также статических компенсаторов.

Большая роль в проектировании передач постоянного тока Волгоград — Донбасс и Экибастуз — Центр, вставки постоянного тока СССР — Финляндия в Выборге принадлежит институту «Энергосетьпроект» и его главному инженеру С.С. Рокотяну. Институт «Энергосетьпроект» выступал как головной институт по проектированию электропередач постоянного тока и объединял усилия остальных организаций.

Сотрудники ВЭИ участвовали в испытаниях оборудования как на заводах-изготовителях, так и на мощном испытательном стенде в г. Тольятти, спроектированном и сооруженном коллективом ВЭИ. Большую роль в этой работе играли сотрудники ВЭИ А.Г. Викулин, В.П. Кулаков. Кроме того, сотрудники ВЭИ участвовали в шеф-монтаже, наладке и опытной эксплуатации оборудования на электропередачах и вставке постоянного тока.

Приведем основные параметры электропередач постоянного тока и вставки, спроектированных и построенных российскими специалистами.

Электропередача постоянного тока Волгоград — Донбасс была введена в эксплуатацию в 1962 г. и в течение ряда лет была крупнейшей передачей постоянного тока в мире.

Передача выполнена по схеме два полюса — земля и связывает шины 220 кВ энергосистем «Волгоградэнерго» (Волжская подстанция) и «Донбассэнерго» (Михайловская подстанция) через двухполюсную воздушную линию передачи постоянного тока с проводами 2хАСО-600 в полюсе. Параметры передачи: напряжение ± 400 кВ, мощность 720 МВт, выпрямленный ток 900 А, длина линии 473 км.

На каждой преобразовательной подстанции включены последовательно восемь шестифазных преобразовательных мостов, каждый из которых состоит из 14 высоковольтных ртутных вентилей типа ВР-9. Вентили включены последовательно по два в каждое плечо моста. Кроме того, имеются два шунтирующих вентиля.

Для получения 12-фазного режима преобразования каждые два моста питаются от группы из трех однофазных трансформаторов мощностью 3x90 MB?А, имеющих каждый шесть обмоток: две сетевые (220 кВ), две третичные (13,8 кВ) и две вентильные (89 кВ)[5]. Сетевые и третичные обмотки включены параллельно, вентильные включены: одна в треугольник, другая в звезду и работают каждая на свой мост. В нейтраль сетевой обмотки трансформатора включен регулировочный трансформатор, позволяющий изменять коэффициент трансформации в пределах 15%. Волжская преобразовательная подстанция совмещена с Волжской ГЭС, и зал вентилей находится в теле плотины ГЭС, рядом с машинным залом. Преобразовательный блок Волжской подстанции состоит из двух генераторов, группы однофазных трансформаторов и двух шестифазных вентильных мостов. Фильтры высших гармоник на подстанции не предусмотрены.

На Михайловской подстанции вентили размещены в вентильном зале. Компенсация реактивной мощности и высших гармоник осуществляется фильтрами (5, 7, 11-й гармоник), включенными на шины 220 кВ. Передача работает в реверсивном режиме и обеспечивает обмен мощностью между двумя самобалансирующимися энергосистемами Средней Волги и Юга. Возможна работа одной полуцепью с возвратом тока через землю.

Электропередача постоянного тока ЭкибастузЦентр. Предполагалось, что крупнейшая в мире электропередача мощностью 6000 МВт, напряжением ± 750 кВ по схеме два полюса — земля и протяженностью более 2400 км свяжет восточные районы страны с европейской частью России. Ввод в эксплуатацию ее планировалось осуществить в 1992–1995 гг.

В состав электропередачи Экибастуз — Центр входили биполярная воздушная линия с проводами 5хАСО-1200 в полюсе и две концевые преобразовательные подстанции: одна в районе Экибастузских ГРЭС, другая в узле нагрузок Объединенной энергосистемы Центра в районе г. Тамбова.

Главное назначение электропередачи — транспорт энергии Экибастузских ГРЭС в энергосистему Центра. Предусмотрен реверс потока мощности. На зажимах отправной подстанции в Экибастузе в полюсе ВЛ обеспечивался рабочий ток 4000 А и напряжение 750 кВ по отношению к земле. Средняя точка преобразователей обеих подстанций глухо заземлялась на выносное рабочее заземление.

Важнейшая особенность главной схемы электропередачи — параллельное соединение ветвей преобразователей: каждая ветвь, состоящая из двух каскадно включенных шестифазных мостов (по 750 МВт, 375 кВ и 2000 А), соединенных каждый со своим трансформатором, представляет собой единичный агрегат, все оборудование которого включается или отключается одновременно.

Основной агрегат подстанции — двухмостовой преобразователь, оснащенный высоковольтными тиристорными вентилями (ВТВ) (Р.А. Лытаев и др., ВЭИ), устройствами демпфирования, высокочастотными реакторами, разрядниками. Вентиль ВТВ имеет модульную конструкцию, световую систему управления, водяное охлаждение. Он содержит 128 модулей, в каждом модуле включено последовательно четыре тиристора таблеточного типа, имеющих двустороннее охлаждение деионизованной водой. Световые импульсы управления поступают к тиристорам по световодам.

После распада Советского Союза сооружение электропередачи Экибастуз — Центр было прекращено.

Вставка постоянного тока РоссияФинляндия в г. Выборге введена в эксплуатацию в 1981 г. Через эту вставку из России в Финляндию передается энергия 4 ТВТ?ч в год, что составляет 10% от выработки электроэнергии в Финляндии. Вставка представляет собой преобразовательную подстанцию в г. Выборге, которая присоединена с нашей стороны через двухцепную линию переменного тока 330 кВ к системе Ленэнерго (подстанция Восточная) и с финской стороны через двухцепную линию переменного тока 400 кВ к системе Иматран Войма (подстанция Юлликкяля), которая входит в энергообъединение скандинавских стран Nordel. С сооружением вставки постоянного тока Россия — Финляндия ЕЭС России оказалась соединенной с энергосистемами стран Западной Европы.

Главная схема Выборгской преобразовательной подстанции состоит из трех одинаковых 12-фазных комплектных высоковольтных преобразовательных устройств, каждое из которых состоит из четырех мостов на 2100 А, 170 кВ, 355 МВт. В преобразовательных мостах в настоящее время используются тиристоры типа Т173–125 с диаметром шайбы 80 мм. В плече вентиля ВТВ включены 64 тиристора последовательно. В одном модуле четыре тиристора. Мощность одного тиристора 470 кВт.

Преобразовательные мосты питаются от однофазных четырехобмоточных трансформаторов, вентильные обмотки которых соединены в звезду и треугольник, а обмотка НН 35 кВ служит для подсоединения фильтров высших гармоник.

Гибкие электропередачи переменного тока. Гибкими называют электропередачи, содержащие управляемые устройства силовой электроники. В энергосистемах уже давно применяются электронные устройства автоматического управления, защиты и противоаварийной автоматики энергосистем. Однако современные электронные устройства управления энергосистемой вступают в противоречие с механическими и инерционными объектами управления. Поэтому давно родилась мысль ввести силовые электронные устройства в энергосистему. В этом случае электронные устройства будут управлять быстродействующими электронными силовыми объектами, и противоречие, упомянутое выше, исчезнет.

Идея использования преобразовательной техники для регулирования реактивной мощности принадлежит проф. МЭИ В.А. Веникову, который высказал ее 40 лет назад. В результате развития этой идеи были разработаны схемы статических компенсаторов прямой и косвенной компенсации (СТК), в которых реактивная мощность изменялась за счет изменения тока, проходящего через реактивный элемент, регулируемый с помощью тиристоров.

К первому поколению гибких электропередач можно отнести электропередачи и вставки постоянного тока, которые являются регулируемыми элементами энергосистемы, позволяют демпфировать качания мощности и повышают устойчивость параллельных электропередач переменного тока.

В 1984 г. вице-президент американского НИИэлектроэнергетики (ЭПРИ) г-н Хингорани высказал мысль, являющуюся развитием предложения проф. В.А. Веникова: использовать современную высоковольтную преобразовательную технику для электропередач переменного тока с целью коренного улучшения их характеристик так, чтобы вместо воздействия на электромеханические процессы в синхронных машинах воздействовать на электронные устройства, включенные непосредственно в линию передачи. Это предложение послужило основой развития техники гибких электропередач.

Исследования показали, что с помощью электронных устройств гибких электропередач можно решить следующие задачи:

1) увеличить пропускную способность линий;

2) обеспечить принудительное распределение мощности по замкнутой сети в соответствии с требованиями диспетчера;

3) повысить устойчивость электропередач за счет плавного продольного и поперечного регулирования реактивной мощности и реактивного сопротивления линии.

Проф. О.А. Маевским (1978 г.) показано, что, используя запираемые тиристоры вместо СТК, можно получить новое качество преобразовательных схем: способность не только потреблять, но и выдавать реактивную мощность в сеть.

5.3.4. РАСПРЕДЕЛИТЕЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ СЕТИ

Назначение этих сетей — распределение электрической энергии, получаемой от источников питания (электрических станций и понижающих напряжение подстанций), по территории электроснабжаемого района и непосредственная ее подача к приемникам и потребителям. В современной электроэнергетике такую роль выполняют разветвленные электрические сети большого диапазона номинальных напряжений: сети до 1000 В — в пределах кварталов городов или некрупных поселков, цехов промышленных предприятий, производственных объектов сельского хозяйства, жилых и общественных зданий и т.п.; сети 6 и 10 кВ — в пределах микрорайонов городов, крупных поселков, промышленных предприятий, сельскохозяйственных районов, узлов железнодорожного транспорта; сети 35 и 110 кВ — на расстояния от единиц до нескольких десятков километров.

Характерными качествами распределительных электрических сетей (РЭС) является их массовость (в СССР — более 4 млн. км). На РЭС расходуется более 50% проводниковых материалов, используемых для передачи и распределения электроэнергии в энергосистемах; в них происходит более 50% суммарных потерь электроэнергии.

Развитие РЭС характеризуется ускоряющимся повышением их количественных показателей: протяженностью линий, численностью подстанций, схемными и структурными решениями, ростом требований к надежности электроснабжения и качеству электроэнергии у ее потребителей. Динамика характеристик РЭС определяется быстрым ростом численности городского населения, количества городов, поселков, промышленных предприятий, электрификацией транспорта и сельскохозяйственного производства — в конечном счете ростом электрических нагрузок всех элементов электросетей и потребления электроэнергии. Яркой иллюстрацией является развитие РЭС Москвы, где их протяженность в конце XIX в. была около 60 км, в 1913 г. — 1400, в 70-х годах — более 20 тыс. и в настоящее время — более 42 тыс. км; в этой сети в 90-х годах работает более 12 тыс. двухтрансформаторных подстанций напряжением 6 и 10 кВ (ТП) и 2 тыс. распределительных пунктов этих же напряжений.

Протяженность единичных линий на начальной стадии образования РЭС городов (сети постоянного тока 110 — 127 В) составляла десятки и сотни метров. Линии 6 кВ в начале XX в. и до 20-х годов имели длину по 3–4 км, но в последующий период удлинились в городах до 6–8, а в сельских местностях до 10–20 км. С развитием электрических нагрузок прослеживается тенденция снижения протяженности единичных линий 380 В до 100–200 м в крупных городах и на промышленных предприятиях, линий 6 и 10 кВ до 1,5–3 км.

До 30-х годов РЭС низшего напряжения выполнялись при номинальных напряжениях 127 и 220/127 В. Следующей ступенью стало напряжение 6 кВ, при котором хорошие экономические показатели реализовались для электростанций мощностью до 50 МВт, при электроснабжении промышленности с наиболее крупными двигателями мощностью до 1 МВт, а также при передаче и распределении электроэнергии в городах и сельских районах. Последующее углубление электрификации промышленности, коммунально-бытового и сельского хозяйства обусловило необходимость замены напряжений 220/127 В на 380/220 В, напряжения 6 кВ на 10 кВ, а также применения в некоторых отраслях промышленности (при двигателях 150–800 кВт) напряжений 660/380 Вив отдельных случаях — 1150/660 В. В ряде РЭС (в первую очередь, городских и промышленных) пришлось осуществить перевод действующих электросетей напряжением 220/127 В на работу при напряжении 380/220 В и 6 кВ на работу при 10 кВ (В.А. Козлов, В.Д. Лордкипанидзе и др.) без замены основной части кабельных и воздушных линий при минимальной реконструкции распределительных устройств, но с соответствующей заменой трансформаторов.

Развитие РЭС связано с выполнением сетей по различным схемным принципам. Здесь различается применение трех основных типов схем:

1. Разомкнутые разветвленные сети без взаимного резервирования линий и подстанций. Такие схемы пригодны для электроснабжения потребителей, допускающих аварийные перерывы питания длительностью до 1 сут. Данный тип схем был характерен для начальных стадий развития РЭС, но применяется и в настоящее время для питания некрупных помещений и хозяйств в сельской местности и при малоэтажной застройке периферийных районов малых городов, допускающих указанные перерывы электроснабжения (И.А. Будзко, М.С. Левин, В.А. Козлов, В.В. Зорин и др.).

2. Петлевые (или кольцевые) сети с взаимным резервированием линий при однотрансформаторных подстанциях (6)10/0,38 кВ. Резервирование линий делает возможным сократить аварийные перерывы электроснабжения до 1–3 ч; при аварийных повреждениях трансформаторов (это наиболее редкие аварии в РЭС) электроснабжение части потребителей восстанавливается по резервирующим линиям низшего напряжения, а замена поврежденного трансформатора в большинстве случаев может быть осуществлена в течение одной рабочей смены. Этот тип схемы применяется достаточно давно и является наиболее распространенным в электроснабжении жилых районов городов России и ряда европейских стран, сельскохозяйственных производств и крупных населенных пунктов, а также на промышленных предприятиях, если технологические процессы цехов допускают кратковременные перерывы питания (И.С. Бессмертный, В.А. Козлов, Ю.Л. Мукосеев, В.Д. Лордкипанидзе и др.).

3. Разветвленные радиально-магистральные электросети с взаимным автоматизированным резервированием линий и трансформаторов подстанций. При этом типе схем применяются, как правило, кабельные двухцепные линии и двухтрансформаторные понижающие подстанции; при повреждении любого элемента сети напряжением 6–10 кВ потребители испытывают перерывы подачи напряжения только на время отключения повреждения и включения резервного электрооборудования (0,1–2 с); такие сети пригодны для питания наиболее ответственных потребителей (по условиям надежности электроснабжения). Их применение получило распространение в современных условиях при появлении значительной группы промышленных потребителей, многоэтажных жилых и общественных зданий в городах, а также сельскохозяйственных производств, не допускающих перерывов электроснабжения (Ю.Л. Мукосеев, Г.В. Сербиновский, Г.С. Короткое и др.).

С 1940–1950 гг. в системах электроснабжения крупных городов и промышленных предприятий применяются глубокие вводы высокого напряжения — питающие ЛЭП и подстанции напряжением 110 и 220 кВ, подающие мощность до 150 МВт непосредственно в центры зоны крупных нагрузок; аналогичное техническое решение при напряжениях 35 и 110 кВ применяется в сельскохозяйственных районах (Г.В. Сербиновский, В.А. Козлов, А.А. Глазунов, Ю.Л. Мукосеев, И.А. Будзко и др.).

По техническому назначению в структурах схем РЭС следует указать на два основных типа решения задачи передачи и распределения электроэнергии:

1. От источников питания (электростанция, понижающие подстанции 110 и 220 кВ) непосредственно отходят линии распределительных сетей, к которым присоединены потребители электроэнергии. При этом требуется достаточно большое количество присоединений распределительных линий на источниках питания, что увеличивает соответствующие распределительные устройства питающих узлов и обусловливает большую протяженность распределительных линий.

2. К источникам питания присоединяется ограниченное число крупных (по сечениям проводов и кабелей) питающих линий, которые

оканчиваются в распределительных пунктах напряжением 6 и 10 кВ или на распределительных щитах напряжением до 1000 В, к которым присоединяется необходимое количество распределительных линий. В распределительных пунктах и на щитах такого же назначения отсутствует трансформация напряжения и осуществляется только разделение потоков электроэнергии. Экономический смысл такого двухзвенного построения РЭС заключается в снижении количества коммутационного электрооборудования в распределительных устройствах источников питания, а также в уменьшении протяженности линий на участках между источником питания и районом концентрированного расположения потребителей. В РЭС напряжением 6 и 10 кВ длины питающих линий могут составлять 2–5 км, в электросетях напряжением 380/220 В — десятки метров.

В РЭС применяются как воздушные, так и кабельные линии. С начального периода развития РЭС и до настоящего времени в сельской местности применяются воздушные линии, что определяется их значительно меньшей стоимостью по сравнению с кабельными и прохождением трасс по малонаселенной местности. В современных условиях все шире в РЭС 380 В и 10 кВ, в том числе и в районах городов используются изолированные провода, получившие за рубежом массовое применение.

В городах и в промышленности РЭС выполняются кабелями, прокладываемыми в грунте или в специальных каналах, блоках и туннелях. В последнее десятилетие за рубежом прокладываются только относительно дешевые кабели с синтетической изоляцией, что повышает надежность электроснабжения. Такие кабели находят применение и в сельской местности. Здесь широко используется открытая установка трансформаторов (на повышенных фундаментах) и электрооборудования 6 (10) кВ в сочетании с закрытым шкафом распределительного щита 380/220 В. Для создания необходимой безопасности ТП окружается металлическим сетчатым ограждением.

На территориях городов большинства стран первоначальным типом ТП РЭС были отдельно-стоящие строения, внутри которых размещалось электрооборудование, включая трансформаторы. С архитектурно-градостроительных позиций в настоящее время такие решения подвергаются критической переоценке. Им на смену пришли малогабаритные ТП, изготовляемые с применением современной синтетической и элегазовой изоляции, что в 2–3 раза снижает габариты подстанций, а также ТП, встроенных в подземные или первые этажи жилых и общественных зданий. При этом применяются специальные конструктивные решения, обеспечивающие пожаробезопасность и поглощение шумов (Л.Ф. Плетнев, В.А. Козлов, В.Д. Лордкипанидзе и др.). В США и других развитых странах при электроснабжении центров крупных городов применяются погруженные в грунт герметические конструкции ТП с некрупными трансформаторами (25–50 кВ?А); распределительный щит 380/220 В в таких случаях выносится в ближайшее здание. В промышленном электроснабжении ТП в виде отдельных зданий заменяются индустриально изготавливаемыми комплектными ТП, устанавливаемыми непосредственно в цехах предприятий (КТП) (Ю.Л. Мукосеев, А.А. Федоров и др.).

Отметим основные направления и создателей научно-методических основ прогрессивного развития РЭС в СССР и России. К ним, в первую очередь, относится создание методик расчетов РЭС на основе технических ограничений и требований, обеспечивающих надежное питание потребителей электроэнергии (А.А. Глазунов — 1925–1940 гг., В.Г. Холмский — 1940–1960 гг., Н.А. Мельников, Л.А. Жуков — 1950–1970 гг. и др.). С 30-х годов начинают развиваться методики оптимизации структур, схем, параметров линий и подстанций и режимов РЭС на основе усложняющихся технико-экономических критериев и с применением методов математической оптимизации. Здесь последовательно должны быть отмечены работы по общей теории формирования РЭС: В.М. Хрущева (Харьков), А.А. Глазунова (1935–1960 гг., Москва), В.Г. Холмского (1940–1960 гг., Киев) и др.; по промышленным РЭС: Г.М. Каялова (Новочеркасск), С.Д. Волобринского (Ленинград), А.А. Федорова (Москва), Л.М. Зельцбурга и Г.Я. Вагина (Горький) и др.; по городским РЭС: В.А. Козлова (Ленинград), В.В. Зорина (Киев), В.Д. Лордкипанидзе и А.А. Глазунова (Москва) и др.; по РЭС сельскохозяйственного назначения: И.А. Будзко, Л.М. Левина, Т.Б. Лещинской (Москва) и др.; по вопросам надежности электрических сетей: Ю.Б. Гука (Ленинград), Ю.А. Фокина (Москва) и др.; по оптимизации режимов и качеству напряжения: Л.А. Солдаткиной, Ю.С. Железко (Москва), И.В. Жежеленко (Мариуполь) и др.

5.3.5. ПОТЕРИ И КАЧЕСТВО ЭЛЕКТРОЭНЕРГИИ

Один из важных показателей, характеризующих экономичность передачи электроэнергии по электросетям, — уровень потерь электроэнергии.

В период 1970–1990 гг. уровень потерь в сетях Минэнерго СССР составлял 9,0–9,4% от отпуска электроэнергии в сети. В 1990 г. это соответствовало потерям энергии в абсолютных единицах более 150 млрд. кВт?ч. Для сравнения можно привести объем полезного потребления энергии наиболее энергоемкой отраслью — черной металлургией, который в том же периоде составлял 147 млрд. кВт?ч.

Из общих потерь электроэнергии 80–85% приходится на сети напряжением 220, 110, 35 и 6 — 10 кВ.

Мероприятия по снижению потерь включают экономические расчеты режимов сетей всех классов напряжения, определение структуры потерь, выявление причин и конкретных точек, где потери особенно велики, и выбор наиболее эффективных решений. Слабая методическая проработка этих вопросов и невысокий уровень вычислительной техники начала 70-х годов ограничивали возможности детального анализа потерь, особенно в сетях низших классов напряжения. В середине 70-х годов исследования уже привели к выводу о том, что для отечественных условий наиболее эффективны компенсирующие устройства в сетях потребителей электроэнергии, разгружающие сети всех классов напряжения от излишних потоков реактивной мощности (Ю.С. Железко, Ф.Ф. Карпов, А.А. Тайц).

Однако оснащенность отечественных сетей средствами компенсации реактивной мощности составляла менее 0,25 квар на 1 кВт максимальной нагрузки, в то время как для зарубежных энергосистем этот показатель составлял 0,6–0,8 квар/кВт.

В 1975 г. были введены нормативные документы, предусматривавшие в договорах на пользование электроэнергией индивидуальные требования по компенсации реактивной мощности (КРМ) каждому потребителю и скидки (надбавки) к тарифам на электроэнергию, стимулирующие выполнение этих требований. Требования по КРМ рассчитывались по специальной методике, учитывающей потери электроэнергии, обусловленные передачей реактивной мощности конкретному потребителю, и затраты на КУ, снижающие ее потоки по сетям (Ю.С. Железко).

Методическое и программное обеспечение таких расчетов постоянно совершенствовалось, и к 1992 г. уже 30 энергосистем перешли с более простого нормативного метода расчета на оптимизационный, предусматривающий выполнение расчета одновременно для всех потребителей, присоединенных к общей сети, с учетом взаимного влияния их реактивных нагрузок на уровень потерь. Подход к решению этих вопросов остается таким же и в настоящее время, хотя методики и программное обеспечение совершенствуются.

К середине 80-х годов к допросам расчета и анализа потерь стали подходить более тщательно. Возникла необходимость в систематизации разработанных программных средств, а также в унификации перечня возможных мероприятий по снижению потерь. Были введены новые нормативные документы, устанавливающие методы расчета и анализа потерь, типовой перечень мероприятий и методы их выбора. Современные программные средства позволяют выполнять подробный анализ потерь в сетях всех напряжений с разделением их на структурные составляющие (технические и коммерческие потери, нагрузочные, холостого хода, в различных группах элементов, с разделением по выделенным регионам и т.п.) с одновременным выявлением «очагов» потерь и выбором мероприятий по их снижению.

В последние 10–15 лет в связи с широким распространением электронной техники, чувствительной к помехам в сети питания, с одной стороны, и развитием и ростом мощностей технологического оборудования, вносящего помехи в сеть, в связи с реализуемыми электротехнологическими процессами (дуговые сталеплавильные печи, преобразовательные устройства, мощные сварочные аппараты и т.п.), с другой стороны, возросло внимание к проблеме качества электрической энергии (Л.А. Солдаткина, Н.А. Мельников, Ю.С. Железко, И.В. Жежеленко, Г.Я. Вагин и др.).

Стандарт, устанавливающий перечень показателей качества и нормы, впервые был введен в нашей стране в 1967 г. (ГОСТ 13109–67). В первые годы он использовался в основном проектными организациями. В 1984 г. были введены тарифные санкции за нарушение норм стандарта (скидки и надбавки к тарифам за качество электроэнергии), которые предъявляются к потребителям, вносящим искажения в сеть (надбавки к тарифам) и при расчетах с потребителями, вынужденными потреблять некачественную электроэнергию (скидки с тарифа). В то же время житомирским заводом «Электроизмеритель» были выпущены первые в стране приборы контроля качества электроэнергии, прошедшие аттестацию и включенные в государственный реестр.

В дальнейшем стандарт был модифицирован и в значительной степени приведен в соответствие с международными требованиями. В 1987 г. была введена в действие следующая его редакция (ГОСТ 13109–87), а в 1991 г. — действующая в настоящее время (Ю.С. Железко, И.В. Жежеленко).

В начале 90-х годов разработаны дополнительные документы, определяющие правила присоединения потребителя к сети по условиям влияния на качество электроэнергии, и новая редакция тарифных санкций.


5.4. ТЕХНИКА ЗАЩИТЫ ОБЪЕКТОВ ЭЛЕКТРОЭНЕРГЕТИКИ ОТ ГРОЗОВЫХ И ВНУТРЕННИХ ПЕРЕНАПРЯЖЕНИЙ

5.4.1. ПЕРЕНАПРЯЖЕНИЯ И ИХ ОГРАНИЧЕНИЕ

Первоначально исследования в этой области были направлены на обеспечение надежной эксплуатации линий электропередачи и электрооборудования. Изучалась работа линейных изоляторов, электропроводность и диэлектрические потери в изоляционных материалах, грозовые перенапряжения и защита от них электрооборудования, создавались теории пробоя изоляции. В дальнейшем с повышением номинальных напряжений электропередач на первый план вышли проблемы внутренних перенапряжений, их ограничения, координации изоляции.

Грозовые перенапряжения подразделяются на перенапряжения прямого удара молнии в электрическую установку и индуцированные перенапряжения, возникающие при ударе молнии в землю или в заземленные объекты поблизости от электроустановки. При прямом ударе молнии элементы электроустановки приобретают весьма высокий потенциал, достигающий нескольких мегавольт. Индуцированные перенапряжения значительно ниже — до 200–300 кВ.

В качестве основного защитного устройства еще в начале века было рекомендовано применение на линиях электропередачи заземленных тросов. Однако трос в то время рассматривался, в основном как средство для снижения индуцированных перенапряжений, значение которых весьма преувеличивалось. Защита от прямых ударов молнии считалась практически невыполнимой, да и сами удары молнии в линию редким явлением.

Для защиты трансформаторов за рубежом применялись катушки индуктивности, включаемые перед трансформатором с целью снижения крутизны фронта приходящих на подстанцию импульсов грозовых перенапряжений. В США применялись также алюминиевые и порошковые разрядники.

Для изучения методов защиты электропередач от перенапряжений и разработки руководящих указаний в 1925 г. были созданы комиссии: в Ленинграде под руководством проф. А.А. Смурова и в Москве под председательством проф. Л.И. Сиротинского. Согласованный комиссиями проект «Руководящих указаний по борьбе с перенапряжениями в электрических установках» был одобрен IX Всесоюзным электротехническим съездом в 1928 г.

В Руководящих указаниях были приведены основные решения, многие из которых действуют и поныне: глухое заземление нейтрали в электроустановках напряжением выше 35 кВ и заземление ее через дугогасящий реактор при напряжениях 35 кВ и ниже; применение заземленных тросов по всей длине линий на металлических опорах и только на подходах к станциям и подстанциям на линиях с деревянными опорами. Тросы рассматривались в основном как средство борьбы с индуцированными перенапряжениями, однако высказывалось предположение, что заземленный трос играет до некоторой степени роль громоотвода, защищающего линию. Рекомендовалось применение разрядников, но в то же время отмечались недостатки существовавших тогда иностранных разрядников [5.15; 5.16].

Появление первых линий электропередачи напряжением 110 кВ поставило вопрос об их электромагнитном влиянии на линии связи и железнодорожной блокировки, особенно сильном при коротких замыканиях и перенапряжениях. В 1923 г. были выпущены временные указания, а в 1925 г. — «Правила ограждения линий слабого тока от вредного влияния установок сильного тока». Эти, по существу, первые работы по электромагнитной совместимости электроустановок продолжались в 1938–1939 гг. специально созданной комиссией под председательством проф. Л.И. Сиротинского. Комиссия усовершенствовала «Правила ограждения сооружений связи и сигнализации от вредного воздействия установок сильного тока», а также разработала нормативы по защите устройств связи от опасного и мешающего влияния линий электропередачи напряжением 400 кВ.

В послевоенные годы проблема была передана в ведение связистов, и в настоящее время действуют «Правила защиты устройств проводной связи, железнодорожной сигнализации и телемеханики от опасного и мешающего влияний линий электропередачи».

Анализ аварий, произошедших в 1929–1931 гг. на линиях напряжением до 110 кВ и связанных с грозовыми перенапряжениями, показал, что прямой удар молнии в линию не такое редкое явление, как предполагалось раньше, и представляет значительно большую опасность, чем индуцированные перенапряжения.

Для исследования молнии рядом организаций (ВЭИ совместно с «Мосэнерго», Энергетическим институтом им. Г.М. Кржижановского, «Донбассэнерго» с участием ЛЭТИ и ХЭТИ) в 1932–1938 гг. была развернута сеть полевых станций и лабораторий. С 1936 г. начата массовая установка ферромагнитных регистраторов в энергосистемах. Регистраторы представляют собой цилиндрические стерженьки из магнитного материала, которые располагаются вдоль силовых линий магнитного поля, образуемого током молнии. По остаточной намагниченности феррорегистраторов определяется максимальное значение тока молнии. В результате обширных измерений была получена кривая распределения вероятностей амплитуд токов молнии:

С 1938 г. было организовано меньшее по масштабам измерение максимальной крутизны фронта тока молнии.

С помощью фотокамер с быстро вращающейся фотопленкой (камер Бойса) было установлено, что разряд молнии состоит из двух стадий: лидерной, характеризующейся сравнительно небольшими током и скоростью развития, и главной с токами до 200 кА и скоростями развития, доходящими иногда до 0,5 скорости света.

Энергетическим институтом им. Г.М. Кржижановского при содействии Гидрометеослужбы была составлена карта грозовой деятельности на территории страны по данным 640 метеостанций, полученным за 1920–1940 гг.

В JO-е годы в ЮАР были развернуты широкие исследования молнии с помощью камеры Бойса. Впервые было обнаружено ступенчатое развитие лидеров, развивающихся с отрицательно заряженных облаков, и получены данные по скоростям различных стадий и компонентов молнии.

В 1935 г. начаты исследования молнии, поражающей небоскреб Эмпайр стейт билдинг в Нью-Йорке (высота 410 м). Обнаружены ступенчатые лидеры, развивающиеся вверх от здания к облаку.

Параллельно в ряде лабораторий проводилось изучение искровых разрядов в длинных воздушных промежутках, показавшее в общих чертах аналогию длинной искры и молнии.

В 1930–1938 гг. в ВЭИ А.А. Акопяном были проведены работы на моделях по исследованию защитного действия молниеотводов [5.17]. В качестве аналога молнии использовался искровой разряд. В результате трудоемких опытов были определены зоны защиты стержневых и тросовых молниеотводов, причем впервые для двух и нескольких молниеотводов. Полученные результаты позволили с необходимой эффективностью рассчитывать защиту линий электропередачи и открытых распределительных устройств (ОРУ) подстанций от прямых ударов молнии. Более чем полувековой опыт эксплуатации молниезащитных устройств подтверждает обоснованность и надежность рекомендаций ВЭИ.

В более поздних американских исследованиях 1941–1942 гг. использовалась, по существу, методика, обоснованная и принятая ВЭИ.

В 1968–1975 гг. комплексные исследования молний, поражающих Останкинскую телебашню (высота 540 м), проводились Энергетическим институтом им. Г.М. Кржижановского [5.18]. Было установлено, что телебашня поражается в среднем 30 раз в год. Поражение ее нисходящими молниями (облако — башня) происходит примерно в 8% случаев, остальные разряды восходящие (башня — облако). Около 7% ударов поражают телебашню заметно ниже ее вершины. Наблюдались удары молнии в землю на небольшом расстоянии от телебашни (до 150 м). Этот эффект успешно объясняется с помощью развитого в последние два десятилетия электрогеометрического метода.

При ударе молнии в воздушную линию электропередачи — в фазный провод или в опору (трос) с последующим перекрытием изоляции — на проводе возникает импульс грозового перенапряжения. Эти импульсы, распространяясь по проводам, достигают подстанций и могут быть опасными для электрооборудования. Существенное значение имеют при этом затухание и деформация импульсов вследствие коронирования проводов и связанных с ним потерь энергии. Экспериментальное исследование указанных процессов было проведено в Харьковском электротехническом институте на линиях напряжением 35 и 110 кВ с помощью генератора импульсных напряжений. Теоретическое исследование влияния на затухание формы импульса, его амплитуды и длины пробега импульса проведено в 1938–1939 гг. проф. A.M. Залесским (ЛПИ). Исследование заземлителей при прохождении импульсов тока в полевых условиях и на моделях проводилось в ВЭИ, ХЭТИ и МЭИ.

Обобщение и изучение эксплуатационного опыта молниезащиты было сосредоточено в ЦНИЭЛ (теперь ВНИИЭ).

Результаты глубоких экспериментальных и теоретических исследований и обобщение опыта эксплуатации находят отражение в периодически выпускаемых «Руководящих указаниях по защите от перенапряжений» (1935, 1941, 1946, 1954 гг., проекты РУ 1964, 1965 и 1975 гг., последние «Руководящие указания по защите от грозовых и внутренних перенапряжений электрических сетей 6–1150 кВ ЕЭС России», НИИПТ, 1994 г.).

К настоящему времени сложилась следующая практика молниезащиты электроэнергетических систем. В качестве своего рода авангарда выступают воздушные линии электропередачи, которые могут поражаться молнией достаточно часто — десятки раз в год, в то время как ОРУ подстанций — всего один раз в несколько лет или десятилетий. В значительном числе случаев изоляция линии электропередачи не может выдержать напряжение, возникающее на ней при ударе молнии в элементы линии (тросы, провода, опоры), и перекрывается. Нормальный режим работы на линиях напряжением 110 кВ и выше восстанавливается с помощью АПВ, на линиях напряжением 6–35 кВ — посредством компенсации емкостного тока замыкания на землю с помощью включаемого в нейтраль дугогасящего реактора [5.19; 5.20].

Поскольку повышать электрическую прочность линейной изоляции, увеличивая длину гирлянд и изоляционных воздушных промежутков, нецелесообразно, то снижение вероятности перекрытия изоляции при ударах молнии в опору производится путем уменьшения сопротивления заземления опор, а снижение вероятности удара молнии в провода — путем надлежащего подвеса защитных тросов. Установлено, что защитный угол троса должен составлять 20–30°. На линиях СВН и УВН, имеющих очень высокие разрядные напряжения гирлянд изоляторов, основной причиной грозовых отключений (до 70%) являются пробои воздушного промежутка трос — фазный провод при ударах молнии в трос в средней части пролета (В.П. Ларионов, МЭИ).

Особую озабоченность вызывает так называемая опасная зона — участок линии перед подстанцией длиной 1–3 км. При ударах молнии в эту зону появляющиеся на проводах грозовые импульсы имеют недостаточную длину пробега до электрооборудования подстанции, поэтому они слабо деформируются, прежде всего мало снижается крутизна их фронта, и они могут представлять опасность для оборудования. По этой причине в пределах опасной зоны снижаются по возможности сопротивления заземления опор и уменьшается защитный угол тросов.

На линиях с деревянными опорами защитный трос подвешивается только в пределах опасной зоны. При этом разрядное напряжение изоляции на первой подтросовой опоре оказывается практически вдвое ниже, чем на линии, и именно на этой опоре могут часто возникать перекрытия изоляции. Защита последней осуществляется трубчатыми разрядниками (РТ). С помощью РТ производится также защита ослабленных точек линии (например, изоляции переходных металлических опор на линиях с деревянными опорами), а также пролетов пересечения линий разного номинального напряжения.

Защита электрооборудования подстанций от набегающих с линий импульсов грозовых перенапряжений осуществляется с помощью нелинейных ограничителей перенапряжений (ОПН) или вентильных разрядников (РВ). Оптимальная установка защитных аппаратов на территории подстанции рассчитывается с помощью анализаторов молниезащиты, разработанных впервые в ЛПИ, или с помощью ЭВМ.

Защита ОРУ подстанций от прямых ударов молнии производится, как правило, с помощью стержневых молниеотводов.

Внутренние перенапряжения в начале века считались синонимом коммутационных перенапряжений, связанных с плановыми (включение, отключение ненагруженных линий и трансформаторов) и аварийными коммутациями (несимметричные короткие замыкания, перемежающаяся дуга при однофазных замыканиях на землю в системах с изолированной нейтралью).

Для ликвидации перекрытий линейной изоляции, возникавших при коммутационных перенапряжениях, использовались разные подходы. В США большинство электроустановок работало с заземленной нейтралью, поэтому возникающий при перекрытии ток короткого замыкания на землю селективно отключался выключателем. В Германии сооружались сети с малыми токами замыкания на землю. В этом случае для ликвидации перекрытий изоляции между нейтралью трансформатора и землей включается катушка индуктивности (катушка Петерсена). При замыкании одного из проводов на землю на ней возникает фазное напряжение и через нее проходит индуктивный ток, компенсирующий емкостный ток замыкания на землю, что при соответствую-

щем индуктивном сопротивлении катушки (дугогасящего реактора, как он называется в настоящее время) приводит к быстрому погасанию электрической дуги в месте замыкания и восстановлению прочности линейной изоляции.

В нашей стране электроустановки напряжением до 35 кВ работают с дугогасящим реактором в нейтрали. Большинство опубликованных в 30-е годы работ посвящены анализу работы дугогасящих реакторов в сетях напряжением 35 кВ и ниже.

Рост номинальных напряжений вызвал интерес к коммутационным перенапряжениям в электроустановках напряжением 110 кВ и выше, работающих с заземленной нейтралью, поскольку стало труднее создавать достаточный запас электрической прочности изоляции. В 1938–1939 гг. ВЭИ приступил к исследованию перенапряжений, возникающих при отключении ненагруженных линий. Работы велись как на моделях, так и в сетях напряжением 110, 154 и 220 кВ «Мосэнерго» и «Днепрэнерго».

Новый всплеск исследований внутренних перенапряжений связан с проектированием и созданием двухцепной электропередачи длиной 1000 км между Волжской гидроэлектростанцией в районе Жигулей и центром европейской части России. Особенностью этой электропередачи, которая была включена в работу при напряжении 400 кВ и вскоре после пуска переведена на напряжение 500 кВ, было отсутствие, по крайней мере в начальный период эксплуатации, промежуточных подстанций, что породило ряд сложных проблем и привело к появлению еще одного вида (наряду с коммутационными) внутренних перенапряжений — резонансных.

Значительная длина линий и наличие компенсирующих устройств вызвали возникновение перенапряжений, которые отсутствуют в линиях меньшего напряжения. Ненагруженная линия большой длины, включенная последовательно с линейной индуктивностью, является источником перенапряжений, обусловленных резонансом на основной гармонике. А наличие в системе нелинейных элементов (трансформаторов, реакторов поперечной компенсации) вместе с конденсаторами продольной компенсации создает возможность возникновения перенапряжений при нелинейных резонансах как на основной, так и на высших и низших гармониках. В результате интенсивных и всесторонних исследований, проведенных институтом «Энергосетьпроект», ВЭИ, ВНИИЭ, НИИПТ, МЭИ, возникшие проблемы были решены, и электропередача Жигули — Центр успешно работает, как и другая подобная передача Волжская ГЭС — Центр [5.21].

Результаты проведенных в 50-е годы исследований явились хорошей базой для последующих работ по электропередачам 750 и 1150 кВ [5.22].

В настоящее время сложились следующие методы ограничения внутренних перенапряжений.

Основным средством ограничения установившихся (вынужденных) перенапряжений является установка компенсирующих реакторов на длинных линиях напряжением 500 кВ и выше. Чтобы исключить потери реактивной мощности в нормальном режиме работы линии (на приемном конце линии реактор не нужен)* применяется искровое (безынерционное) подключение реакторов. Помимо этого могут быть использованы и другие схемные мероприятия: снижение коэффициентов трансформации повышающих трансформаторов; включение линии с конца, примыкающего к шинам более мощной энергосистемы. Применение блочных схем без выключателей на стороне высшего напряжения исключает режимы, при которых к шинам системы присоединена разомкнутая линия.

Ограничение коммутационных перенапряжений (свободная составляющая) осуществляется с помощью применения ОПН или коммутационных РВ, выключателей с предвключенными сопротивлениями, управления фазой замыкания контактов выключателя. Вынос электромагнитных трансформаторов напряжения на линию (без реакторов) уменьшает вероятность повторных зажиганий дуги в выключателях, что способствует снижению перенапряжений при отключении ненагруженных линий и АПВ.

Коронный разряд на проводах воздушных линий электропередачи оказывает значительное влияние на развитие перенапряжений. В квазистационарных условиях (линейный резонанс) при коронировании проводов увеличивается емкость линии, вследствие чего сокращается ее волновая длина и максимум перенапряжения смещается в сторону длин, меньших четверти длины волны (1500 км). Одновременно вследствие потерь энергии на коронирование существенно уменьшаются перенапряжения.

Потери энергии при импульсной короне способствуют снижению крутизны фронта импульсов грозовых перенапряжений, набегающих по линии на подстанцию, и, как уже отмечалось, уменьшают риск повреждения электрооборудования.

Изучение коронного разряда на проводах воздушных линий началось в первые десятилетия XX в. Американским исследователем Ф.В. Пиком были впервые предложены формулы для расчетов начальных напряжений коронного разряда, характеристик зажигания короны, потерь энергии на корону. Как уже указывалось в § 5.3, в 1910 г. В.Ф. Миткевичем была выдвинута идея расщепления проводов фаз для подавления коронного разряда на линиях электропередачи, намного опережавшая потребности электротехники того времени. Идея эта была реализована четыре десятилетия спустя на линиях СВН и получила признание во всем мире.

Значительный вклад в теорию коронного разряда и решение практических проблем, связанных с коронированием проводов воздушных линий переменного и постоянного напряжения, внес В.И. Попков [5.23].

В результате исследований, проведенных на линиях электропередачи и опытных пролетах, разработаны и успешно применяются при проектировании электропередач методы расчета потерь энергии на корону, акустических и радиопомех. Характеристики коронного разряда учитываются при расчетах квазистационарных перенапряжений, а также при определении деформации и затухания грозовых импульсов.

5.4.2. РАЗВИТИЕ МЕТОДОВ И АППАРАТУРЫ ДЛЯ ЗАЩИТЫ ОТ ПЕРЕНАПРЯЖЕНИЙ

Габариты, стоимость и надежность высоковольтного электрооборудования в линиях электропередачи в значительной степени зависят от уровня изоляции, который устанавливается и контролируется испытательными напряжениями в соответствии с ГОСТ 1516.1–76. При выборе испытательных напряжений исходят из того, что высоковольтные аппараты, находясь неограниченно долго под наибольшим рабочим напряжением промышленной частоты, должны выдерживать ограниченные по времени воздействия повышенных напряжений промышленной частоты и воздействия импульсных перенапряжений (коммутационных длительностью порядка нескольких миллисекунд и грозовых длительностью порядка 10–100 мкс).

Ограничение уровня возможных грозовых и коммутационных перенапряжений возлагается на разрядники, являющиеся основополагающими аппаратами, определяющими уровень ограничения перенапряжений, а соответственно и выбор уровней изоляции электрооборудования, т.е. обеспечения координации изоляции.

Первоначально разрядником являлся искровой промежуток с пробивным напряжением ниже, чем уровень изоляции защищаемого оборудования. Его пробой требовал отключения короткого замыкания.

Для защиты от грозовых перенапряжений изоляции линейных подходов к подстанциям, участков пересечения линий различного номинального напряжения, а также для защиты электрооборудования маломощных подстанций напряжением 3–10 кВ применяются трубчатые разрядники, выполняемые на напряжения до 220 кВ. Пробой искровых промежутков трубчатого разрядника при грозовых перенапряжениях сопровождается прохождением тока промышленной частоты, который гасится автоматически самим аппаратом, и отключение линии не требуется [5.24; 5.25].

Следующий этап — это вентильный разрядник, в котором многократный искровой промежуток включался с последовательным нелинейным резистором в виде отдельных последовательных дисков, изготовленных на базе карбида кремния (SiC) с высокотемпературным обжигом в среде водорода (тирит).

Напряжение на этом резисторе (остающееся напряжение) при импульсе тока 5–10 кА (8/ 20 мкс) принимается равным импульсному пробивному напряжению искрового промежутка, что и определяет уровень ограничения перенапряжения.

В 40-х годах на базе исследований ВЭИ был разработан многократный искровой промежуток, дугогасящая способность и стабильность пробивного напряжения которого при предразрядных временах от 0,1 мкс до воздействия напряжения промышленной частоты обеспечивались оригинальной конструкцией единичного искрового промежутка (ИП) и шунтировкой многократного ИП нелинейным резистором.

Для рабочего последовательного нелинейного резистора была разработана новая безобжиговая технология изготовления дисков (вилит). За разработку и внедрение в серийное производство отечественных вилитовых вентильных разрядников серии РВС на напряжение до 220 кВ коллективу ВЭИ и ленинградского завода «Пролетарий» (Л.И. Иванов, В.И. Пружинина, В.П. Савельев, П.С. Бловман и др.) присвоено звание лауреатов Государственной премии [5.26].

Дальнейшее совершенствование вентильных разрядников в направлении улучшения их защитного действия в мировой и отечественной практике проводилось путем повышения дугогасящей способности ИП, что обеспечивало возможность увеличения сопровождающего тока, и путем увеличения пропускной способности ИП и рабочего сопротивления (в основном увеличением диаметра дисков), а также улучшения нелинейности.

Рис. 5.9. Схемы аппаратов для защиты от перенапряжений, характеризующие этапы их совершенствования
1 — координирующий искровой промежуток; 2 — вентильный разрядник типа РВС; 3 — магнитно-вентильный разрядник типа РВМГ; 4 — магнитно-вентильный комбинированный разрядник типа РВМК; 5 — безыскровый разрядник — ограничитель перенапряжений нелинейный (ОПН) 

В ВЭИ в 60-е годы были исследованы принципы магнитного вращения и гашения дуги сопровождающего тока и разработаны конструкции отечественных магнитных искровых промежутков, защищенные авторскими свидетельствами. На базе этих искровых промежутков и вилитовых дисков увеличенного диаметра была разработана серия магнитно-вентильных разрядников РВМГ на напряжение до 500 кВ, которые изготавливались ленинградским заводом «Пролетарий». Проектирование дальних ЛЭП СВН выявило необходимость ограничения коммутационных перенапряжений на концах линии при возможных коммутациях, что приводило к тяжелым по амплитудам и длительности воздействиям на вентильные разрядники. Это обусловило разработку новой серии магнитно-вентильных разрядников типа РВМК, не имеющей аналогов за рубежом.

В этой серии (рис. 5.9) коммутационные перенапряжения воздействуют на полное рабочее сопротивление, а при грозовых перенапряжениях с большими амплитудами импульсных токов часть рабочего сопротивления шунтируется ИП для снижения грозозащитного уровня.

Разработка и внедрение отечественных магнитно-вентильных разрядников серий РВМГ и РВМК, защищенных авторскими свидетельствами, позволили поднять номинальное напряжение ЛЭП с 400 до 500 кВ без изменения уровней изоляции всего комплекса электрооборудования, что было отмечено Ленинской премией в 1970 г. (А.А. Акопян, А.В. Панов и др.).

Серия РВМК, специально предназначенная для ограничения как грозовых, так и тяжелых режимов внутренних перенапряжений, способствовала созданию в России и СНГ ЛЭП с номинальными напряжениями 330, 500, 750 и 1150 кВ. Характеристики вентильных разрядников серий РВС, РВМГ и РВМК закреплены ГОСТ 16357–83, и до настоящего времени эти вентильные разрядники обеспечивают координацию изоляции подстанций СВН России, СНГ и также ряда стран дальнего зарубежья.

Разработка высоконелинейных резисторов на базе оксида цинка ZnO послужила основой создания разрядника без искровых промежутков, именуемого в отечественной практике ограничителем перенапряжений нелинейным (ОПН). Высокая нелинейность позволяет оставлять его включенным при наибольшем допустимом напряжении неограниченно долго. При этом уровень ограничения перенапряжений определяется только его вольт-амперной характеристикой (ВАХ), охватывая и область возможных коммутационных перенапряжений с меньшими амплитудами токов.

Следует подчеркнуть, что вентильные разрядники после поглощения энергии при перенапряжении должны поглощать еще значительную часть энергии при протекании сопровождающего тока, который в ОПН практически отсутствует (порядка нескольких миллиампер).

Однозначность защитных характеристик, упрощение конструкции, снижение габаритов при одновременном улучшении защитных характеристик столь очевидны, что ведущие фирмы отказались от производства традиционных вентильных разрядников. Кроме того, наметилась тенденция замены обычного фарфорового корпуса на полимерные конструкции, позволяющие уменьшить массогабаритные показатели, увеличить длины пути утечки, снизить повреждения при транспортировке и взрывобезопасность.

Основными параметрами ОПН являются:

наибольшее допустимое напряжение (UНД или UC по аббревиатуре МЭК 99–4) — это действующее значение напряжения промышленной частоты, которое допускается на ОПН неограниченно долго и не приводит к потере теплового равновесия после поглощения энергии в процессе ограничения перенапряжений и воздействия повышенного напряжения в течение нормированного времени. Значение UНД в большой степени зависит от возможной деградации (старения) высоконелинейных резисторов в процессе эксплуатации;

пропускная способность ОПН — это способность многократно (обычно 18–20 раз) поглотить энергию при ограничении перенапряжения без разрушения и изменения характеристик. Естественно, что чем ниже уровень ограничения перенапряжений, тем больше должна быть пропускная способность ОПН;

остающиеся напряжения — это напряжения на ОПН при воздействии импульсов тока различной амплитуды и формы, т.е. вольт-амперные характеристики ОПН, которые характеризуют уровень ограничения перенапряжений при импульсных воздействиях. Для грозовых воздействий принимаются импульсные токи длительностью 8/20 мкс, а для коммутационных — с фронтом 30 мкс и более;

допустимые напряжения промышленной частоты в зависимости от времени их приложения. ОПН, ограничив импульсные напряжения и поглотив определенную энергию, может оказаться на некоторое время под воздействием напряжения промышленной частоты выше чем UНД (например, 1,4UНД до отключения КЗ при эффективном заземлении нейтрали).

Способность ОПН выдерживать повышенные напряжения промышленной частоты задается в зависимости от времени. Все нормируемые параметры ОПН подтверждаются соответствующими испытаниями, объем и методы которых определены международным стандартом МЭК 99–4.

Первые ОПН в практике России были разработаны ПО «Электрокерамика» (Ленинград) и установлены на ряде сибирских электростанций.

Освоение технологии производства нестарящихся высоконелинейных резисторов типа МНР и конструкций с полимерной изоляцией (ВЭИ) позволило обеспечить разработку и производство серии ОПН на классы напряжения от 6 до 220 кВ, отвечающих международному стандарту МЭК 99–4 и не уступающих мировым аналогам.

5.4.3. КООРДИНАЦИЯ ИЗОЛЯЦИИ И МЕТОДЫ ЕЕ ИСПЫТАНИЙ

Координацией изоляции электрооборудования называется взаимное согласование значений воздействующих напряжений (перенапряжений), электрических характеристик защитной аппаратуры и изоляции оборудования, обеспечивающее надежную работу и высокую экономичность электроустановок. На основе такого согласования для каждого класса напряжения устанавливаются испытательные напряжения промышленной частоты и импульсные испытательные напряжения, которые являются нормой, обязательной к выполнению.

Первые нормативные требования на уровни изоляции оборудования напряжением до 35 кВ были изложены в «Правилах и нормах IX Всесоюзного электротехнического съезда» (1927 г.). В них были нормированы испытания изоляции трансформаторов, вводов и опорных изоляторов только напряжением промышленной частоты.

В 1936 г. в ВЭИ был разработан «Проект норм испытаний электрической прочности изоляции силовых трансформаторов». В нем наряду с испытаниями одноминутными напряжениями промышленной частоты были предложены импульсные испытания трансформаторов напряжением до 220 кВ. Нормы на испытательные напряжения промышленной частоты вошли в ОСТ Наркомтяжпрома № 2514, введенный с 1937 г.

Принципы стандартизации импульсной прочности и уровни изоляции, предложенные МЭЗ и ВЭИ (А.В. Панов, А.В. Сапожников, В.А. Карасёв и др.) были одобрены в 1940 г. на Всесоюзном совещании по трансформаторостроению. Предполагалось согласовать их в течение 1941 г. с заинтересованными организациями и представить на утверждение проект стандарта. Однако в связи с военными условиями пришлось ограничиться выпуском в 1941 г. ГОСТ 1516–42 «Напряжения испытательные и разрядные высоковольтных трансформаторов, аппаратов и изоляторов, предназначенных для установок, связанных с воздушными сетями» без требований к импульсной прочности изоляции.

Взамен ГОСТ 1516–42 в 1961 г. введен ГОСТ 1516–60, разработанный в ВЭИ. Стандарт охватывал нормы и методы испытаний, в том числе импульсным напряжением, электрооборудования 3–220 кВ.

В последующие годы работа по подготовке нового издания стандарта завершилась утверждением ГОСТ 1516–68 со сроком введения в 1969 г. При разработке этого стандарта учитывалась необходимость его сближения с рекомендациями МЭК.

Головной разработчик стандартов — ВЭИ. Нормативные требования, заложенные в стандарты, основываются на теоретических и экспериментальных исследованиях научных лабораторий института. Большой вклад в разработку внесли специалисты МЭЗ, заводов «Электроаппарат» и «Изолятор», ВИТ и др. Автором проекта ГОСТ 1516–68 и предшествовавших выпусков стандарта был А.В. Панов. В подготовке проекта ГОСТ 1516–68 участвовал А.В. Сапожников. Авторы проекта ГОСТ 1516–73 А.В. Сапожников и В.К. Кожухов [5.27].

В настоящее время уровни изоляции электрооборудования напряжением 3–500 кВ нормированы ГОСТ 1516.1,2–76*, который состоит из двух частей. В первой части приведены нормы на испытательные напряжения промышленной частоты и на импульсные испытательные напряжения, а во второй части — методики испытаний. Нормы на испытательные напряжения электрооборудования напряжением 750 кВ регламентированы ГОСТ 20690–75* (звездочки в обозначениях стандартов указывают на продление сроков их действия). Авторами проектов стандартов являются А.К. Лоханин, В.М. Погостин, М.И. Сысоев.

В идеале координация изоляции должна основываться на всесторонних данных о перенапряжениях, электрической прочности изоляции и экономических факторах и должна учитывать статистический характер распределения амплитуд перенапряжений и выдерживаемого изоляцией напряжения. Существующий метод координации изоляции является лишь приближением к указанному идеальному, так как многие из используемых данных неполные или ориентировочные.

Практически одна сторона проблемы координации изоляции заключается в анализе факторов и условий, от которых зависят перенапряжения на зажимах электрооборудования, выборе определенных условий в качестве основы для стандартизации уровней изоляции, нормировании этих уровней — испытательных напряжений электрооборудования. Вторая сторона проблемы — решение вопросов, возникающих в тех случаях, когда условия в отношении воздействия перенапряжений отличаются от принятых для стандартизации. При неблагоприятных условиях задача заключается в изыскании дополнительных средств ограничения перенапряжений до уровня, допустимого при стандартизованных испытательных напряжениях электрооборудования. Наоборот, при благоприятных условиях целесообразно выявлять возможности упрощения защиты от перенапряжений до степени, допускаемой уровнем изоляции электрооборудования.

При разработке норм для электрооборудования напряжением 330 кВ и выше начальная стадия координации изоляции состояла в исследовании технических возможностей ограничения перенапряжений на основе совершенствования схем и методов защиты, а также возможностей создания электрооборудования с требуемыми параметрами, в определении размеров воздушных промежутков, необходимых при том или другом выдерживаемом напряжении.

Перенапряжения, воздействующие на зажимы электрооборудования, определяются защитным уровнем вентильных разрядников. При разработке ГОСТ 1516-(60, 68) в качестве защитного уровня принимались защитные характеристики стандартных грозовых вентильных разрядников — их остающееся импульсное напряжение и пробивное напряжение частотой 50 Гц.

При введении в ГОСТ 1516.1–76 для электрооборудования СВН испытания коммутационным импульсом значение испытательного напряжения этого импульса определялось защитным уровнем при воздействии внутренних перенапряжений и пробивным или остающимся напряжением на защитном устройстве (разряднике или ограничителе перенапряжений) при токе координации.

Используемое для координации изоляции остающееся напряжение представляет собой амплитуду напряжения, возникающую на зажимах разрядника при приложении к нему определенного импульсного тока. Амплитуда этого импульса выбрана с учетом возможных перенапряжений на линии электропередачи данного напряжения, условий набегания импульсных волн на подстанцию. Например, для ряда классов высокого напряжения в качестве защитного импульсного уровня при грозовых перенапряжениях принято остающееся напряжение при импульсе тока с амплитудой 5 кА (10/20 мкс), а для классов СВН — до 10 кА. Защитный уровень ограничителей перенапряжений был принят равным 1,85UН.Р/?3, где UН.Р — наибольшее рабочее линейное напряжение.

Грозовые перенапряжения на зажимах электрооборудования превышают остающееся напряжение разрядника из-за удаления его от электрооборудования. На остающееся напряжение накладываются обусловленные этим удалением колебания, как правило, значительные. В соответствии с этим основой для определения необходимого уровня изоляции электрооборудования, скоординированного с атмосферными перенапряжениями, являются расчетные перенапряжения, амплитуда которых выше остающегося напряжения разрядника. Расчетные грозовые перенапряжения принимаются многократно воздействующими на изоляцию электрооборудования и условно представляются в виде стандартных полной и срезанной импульсных волн. Амплитуда первой на 10% или несколько больше превышает остающееся напряжение при импульсном токе, принятом при координации изоляции; амплитуда расчетной срезанной волны на 20–25% больше, чем полной.

При срабатывании вентильного разрядника крутого среза импульса не происходит. Принятие в качестве расчетного воздействия не только полной, но также срезанной импульсной волны вызвано необходимостью учитывать возможность крутого среза волн грозовых перенапряжений на случайно ослабленном элементе изоляции подстанции, а также в случае применения трубчатых разрядников или простых защитных искровых промежутков. При срабатывании этих защитных устройств происходит крутой срез напряжения. Учтено также, что изменение напряжения, столь же быстрое, как при крутом срезе импульсов, происходит при повторном зажигании дуги в выключателях.

Включение срезанной волны с крутым спадом напряжения в число расчетных воздействий имеет большое значение для внутренней изоляции трансформаторов (силовых и напряжения) и реакторов. При крутом срезе импульса между элементами обмоток трансформаторов и катушками реакторов могут возникнуть значительно более сильные воздействия, чем при полной волне той же амплитуды. Стойкость изоляции между указанными элементами обмотки по отношению к крутым срезам в эксплуатации может быть проверена только проведением испытания срезанной волной. В ГОСТ 1516.3–96 испытание срезанным грозовым импульсом нормировано только для электрооборудования с обмотками.

Уровень изоляции электрооборудования, стандартизованный в ГОСТ 1516, — это нормированные испытательные напряжения коммутационных импульсов (для электрооборудования напряжением 330 кВ и выше), грозовых импульсов и кратковременное напряжение промышленной частоты, отнесенные к определенным условиям испытания.

Основой для нормирования испытательных напряжений является требование о том, чтобы данное электрооборудование в целом (все элементы его внутренней и внешней изоляции) в эксплуатационных условиях выдерживало грозовые и внутренние перенапряжения, принятые для электрооборудования в качестве расчетных воздействий на его зажимах. Испытательные напряжения выбираются как эквивалент этим перенапряжениям с учетом свойств внутренней и внешней изоляции, обусловливающих различие ее прочности в нормальных условиях испытания и в эксплуатации. При установлении испытательных напряжений внутренней изоляции учитывается снижение ее электрической прочности при перенапряжениях в условиях эксплуатации по сравнению с прочностью при типовом испытании неработавшей изоляции. Для трансформаторов (силовых и напряжения) и реакторов (шунтирующих и заземляющих) принимается во внимание повышение перенапряжений на элементах изоляции обмоток при воздействии импульсов в эксплуатации на возбужденный трансформатор или реактор по сравнению с перенапряжениями при отсутствии возбуждения трансформатора во время проведения импульсного испытания. Для внешней (воздушной) изоляции учитывается снижение разрядных (выдерживаемых) напряжений при атмосферных условиях, возможных в эксплуатации.

Учет перечисленных факторов приводит к выбору неодинаковых испытательных напряжений для внутренней и внешней изоляции данного вида электрооборудования. При этом обеспечивается выдерживание всеми элементами его изоляции перенапряжений принятого расчетного уровня в эксплуатационных условиях, наиболее тяжелых для каждого вида изоляции. В одних и тех же возможных условиях данный элемент изоляции может иметь более высокое напряжение пробоя или перекрытия, чем другой; в других условиях соотношение электрической прочности может быть обратным.

Создание сетей СВН связано с необходимостью ограничения уровней перенапряжений по мере роста номинального напряжения сети, что в первую очередь было связано с более медленным ростом электрической прочности внешней изоляции по сравнению с повышением напряжения сети. Если для сети напряжением 110–220 кВ расчетный уровень внутренних перенапряжений был не ниже 3UН.Р/?3, то для сетей напряжением 330, 500, 750 и 1150 кВ было необходимо ограничить его значением 2, UН.Р/?3; 2,5UН.Р/?3; 2,1UН.Р/?3 и 1,8UН.Р/?3 соответственно, что обеспечило примерно пропорциональный рабочему напряжению рост длины гирлянды изоляторов.

Снижение уровня изоляции имеет также большое значение для других видов электрооборудования, особенно для силовых трансформаторов сверхвысокого напряжения.

Для отечественной практики создания и развития электропередач УВН (1150 кВ) вопрос о снижении уровня изоляции связан также с самой возможностью разработки электрооборудования этого класса напряжения.

Эффективность снижения уровня изоляции силовых трансформаторов зависит от многих факторов: класса напряжения, количества обмоток, параметров и расположения обмоток на магнитопроводе, стоимости материалов, потерь и пр.

Для трансформаторов напряжением 330–750 кВ каждый процент снижения испытательных напряжений благодаря сокращению изоляционных расстояний позволяет уменьшить полную массу трансформатора на 0,4–0,7% и увеличить мощность при тех же габаритах на 0,6–0,8%.

Предел эффективного снижения уровня изоляции определяется прочностью при кратковременных воздействиях, которой будет обладать изоляция, выбранная только с учетом длительного воздействия рабочего напряжения.

На основании накопленных к настоящему времени знаний о длительной электрической прочности внутренней изоляции можно сделать вывод, что снижение уровня перенапряжений ниже 1,65UН.Р/?3 неэффективно.

Уменьшение изоляционных расстояний приводит к увеличению рабочих напряжений в изоляции, что требует рассмотрения координации изоляции относительно длительного воздействия рабочего напряжения. Поэтому снижение испытательных напряжений основывается на совершенствовании не только способов ограничения перенапряжений, но также конструкций изоляции, технологии производства, заводских испытаний, мер по поддержанию необходимого качества изоляции в условиях эксплуатации.

Возможность надежной работы силовых трансформаторов со сниженными уровнями изоляции была подтверждена многочисленным опытом эксплуатации ряда конструкций трансформаторов на напряжение 500 кВ, изготовленных ПО «Запорожтрансформатор» с участием ВИТ и ВЭИ, а также трансформаторов на напряжение 1150 кВ.

Совершенствование методов координации изоляции предполагает и совершенствование методов ее испытаний. Введение для электрооборудования СВН испытаний коммутационными импульсами (ГОСТ 1516.1–76, ГОСТ 20690–75 и ГОСТ 1516.3–96) обеспечило более полную проверку изоляции при воздействии внутренних перенапряжений. Стандартный коммутационный импульс имеет время подъема напряжения до максимума 250 мкс и длительность (время до полуспада) 2500 мкс и обозначается 250/2500. Особо важное значение имело введение испытания напряжением промышленной частоты с измерением частичных разрядов, что позволило выявлять дефекты конструкции и технологии производства изоляции, которые могли быть не обнаружены традиционными кратковременными испытательными воздействиями и выявиться при длительном приложении рабочего напряжения в эксплуатации. Отсюда введение испытаний внутренней изоляции силовых трансформаторов и шунтирующих реакторов длительным (30–60 мин) переменным напряжением при допустимом уровне частичных разрядов 100 пКл. Введены также (ГОСТ 1516.3–96) испытания напряжением промышленной частоты с измерением частичных разрядов для внутренней изоляции трансформаторов напряжения и тока, вводов и изоляции КРУЭ.

5.4.4. ИСТОЧНИКИ НАПРЯЖЕНИЙ И ТОКОВ ДЛЯ ИСПЫТАНИЙ ЭЛЕКТРООБОРУДОВАНИЯ

Изоляция электрооборудования при эксплуатации подвергается воздействиям не только рабочего напряжения, но и перенапряжений промышленной частоты, а также импульсных перенапряжений, возникающих при ударах молнии в линии электропередачи или вблизи них, при плановых или аварийных коммутациях в системе. Для испытаний изоляции на стойкость к воздействиям перенапряжений, а также для определения характеристик изоляции, таких как ее фактическая прочность, диэлектрические показатели, уровень частичных разрядов и др., применяются специальные испытательные установки высокого напряжения. Это прежде всего установки переменного напряжения промышленной частоты и генераторы импульсных напряжений, имитирующие тот или иной вид перенапряжений. Аналогичные установки используются и для других целей, например, для исследований электрического разряда, в электрофизической аппаратуре, при имитации ударов молнии и т.д. Рассмотрим типичные испытательные установки.

Испытательные установки переменного напряжений промышленной частоты. В зависимости от класса напряжения и характеристик испытуемого объекта для получения испытательных напряжений используются отдельные трансформаторы, каскадные устройства на базе трансформаторов или резонансные схемы.

В отличие от силовых испытательные трансформаторы выполняются однофазными и работают в кратковременном режиме. Поэтому они не имеют развитой системы охлаждения. Их номинальное напряжение в зависимости от назначения обычно лежит в пределах от нескольких десятков до сотен киловольт. Рядом зарубежных фирм изготовлены уникальные трансформаторы напряжением 750–1200 кВ. Номинальные токи испытательных трансформаторов обычно составляют 0,1–10 А. Важной особенностью выполнения испытательных трансформаторов является стремление предельно снизить уровень собственных частичных разрядов и индуктивность рассеяния. Первое позволяет более точно измерять частичные разряды в испытуемом объекте, второе — соединять трансформаторы в каскадные схемы.

Из экономических соображений для получения предельно высоких испытательных напряжений целесообразно использовать каскадное последовательное включение испытательных трансформаторов, имеющих на стороне высокого напряжения специальную обмотку для питания следующей ступени. Обычно каскадные схемы состоят из четырех трансформаторов, причем первая ступень состоит из двух параллельно включенных трансформаторов. Трехступенчатыми каскадами напряжением 2250 кВ и мощностью 5 MB?А оснащены крупнейшие исследовательские лаборатории России (НИИПТ, СПГТУ, СибНИИЭ и др.), производства фирмы TuR (г. Дрезден, Германия). Уникальный трехступенчатый каскад напряжением 3 MB производства этой же фирмы установлен на открытой площадке ВЭИ (г. Истра).

При испытаниях объектов с большой емкостью, таких как кабели, шинопроводы, элегазовые устройства, используются резонансные схемы. В них испытуемый объект соединяется последовательно с катушкой индуктивности. Питание осуществляется от трансформатора номинальным напряжением порядка 10 кВ. За счет резонанса напряжений на объекте создается испытательное напряжение, во много раз превышающее напряжение питающего трансформатора. Использование резонансных схем позволяет существенно снизить стоимость испытательной установки.

Испытательные установки постоянного высокого напряжения. Изоляция электрооборудования электропередач постоянного тока, а также некоторого оборудования промышленной частоты, например кабелей городских сетей, испытывается постоянным напряжением. Для получения постоянного напряжения до 100 кВ используются испытательные или иные маломощные трансформаторы в комбинации с выпрямительным элементом. При более высоких напряжениях применяют каскадные выпрямители, состоящие из источника переменного высокого напряжения и ступеней умножения напряжения, содержащих конденсаторы и выпрямители. С помощью каскадных выпрямителей получают испытательные постоянные напряжения до 2 MB при токах до 1 А. Еще большие постоянные напряжения дают каскадные выпрямители, предназначенные для питания ускорителей элементарных частиц.

Другой вид источников постоянных высоких напряжений — электростатические генераторы, принцип действия которых основан на механическом переносе заряда с помощью движущейся ленты или вращающихся диска либо барабана, для испытания изоляции используется чрезвычайно редко. Однако в технике высоких напряжений электростатические генераторы находят применение в качестве эталонов высокого напряжения, отличающихся высокой стабильностью и отсутствием пульсаций.

Генераторы импульсных напряжений и токов. Импульсные воздействия на изоляцию подразделяются на грозовые и коммутационные. Грозовые перенапряжения проявляются в виде импульсов, поступающих по линиям. В формировании импульсов принимают участие как амплитуда и крутизна тока главного разряда молнии, так и перекрытия изоляции на линии, корона на линии. В результате статистического обобщения данных о грозовых импульсах, приходящих на подстанции, импульс грозовых перенапряжений нормирован. Считается, что длительность фронта составляет 1,2 мкс, а длительность самого импульса (до половины амплитудного значения) равна 50 мкс. При перекрытиях изоляции или срабатывании защитных устройств вблизи рассматриваемого объекта возникает так называемый срезанный импульс, имеющий такой же фронт, как и полный, однако гораздо меньшую длительность (2–5 мкс). Для получения испытательных грозовых импульсов используются специальные генераторы, принцип действия которых основан на умножении напряжения при переключении заряженных конденсаторов с параллельного соединения на последовательное. Впервые этот принцип умножения напряжения описан в 1914 г. В.К. Аркадьевым и Н.Н. Баклиным, а в 1923 г. на аналогичную схему получил патент Э. Маркс (Германия).

Генераторы импульсных напряжений, используемые для исследований электрического разряда, для испытаний макетов и готовой изоляции, созданные в разных странах и в разное время, различаются по параметрам и конструкции. Существуют различные варианты генераторов как для внутренней, так и для наружной установки. Генераторы для наружной установки выполняются в виде изоляционных башен, лестничных конструкций, подвесных устройств и т.п. Еще более разнообразны разновидности генераторов для внутренней установки: этажерочные, колонковые, многомаршевые лестничные, подвесные, башенные, передвигаемые по рельсам или на воздушной подушке, выполненные в изоляционном баке, с заполнением элегазом и т.п.

Уникальные генераторы были созданы в нашей стране. Так, на открытой площадке Харьковского электротехнического института в 30-е годы был сооружен генератор суммарным зарядным напряжением 8,3 MB и накапливаемой энергией 500 МДж, разрушенный во время Великой Отечественной войны. В ВЭИ (г. Истра) на открытой площадке установлен генератор в виде изоляционной башни напряжением 9 MB и энергией 1,35 МДж, на котором возможно испытание изоляции классов напряжения до 2 MB.

Разнообразными генераторами внутренней установки фирмы TuR напряжением до 7,2 MB и энергией до 1 МДж оснащены практически все российские организации, занимающиеся разработками и испытаниями изоляционных конструкций высокого напряжения.

Генераторы импульсных напряжений снабжаются вспомогательными устройствами, являющимися составной частью разрядного контура, формирующего требуемый импульс: измерительным шаровым разрядником, устройством среза напряжения, делителем высокого напряжения, нагрузочным конденсатором, набором сменных резисторов и т.д. Установкой резисторов с разными сопротивлениями достигается изменение формы выходного импульса генератора.

Коммутационные импульсы перенапряжений имеют иную природу, чем грозовые, и соответственно иные параметры.

Формирование коммутационных импульсов происходит в результате переходных процессов в цепях, образованных емкостями, индуктивностями, сопротивлениями объекта и соседнего оборудования, участками линий электропередачи между местом коммутации и рассматриваемым объектом. Так как схема передачи и параметры ее элементов могут быть самыми разнообразными, то и параметры коммутационных импульсов могут сильно отличаться. Причем отличие может состоять не только в амплитуде, но и в форме импульса и его временных параметрах. Основным стандартизированным коммутационным импульсом является апериодический с временем нарастания 250 мкс и длительностью 2500 мкс. Кроме того, установлены и иные временные параметры и формы коммутационных импульсов: колебательные с переходом и без перехода через нуль. Соответственно различаются и устройства для получения испытательных коммутационных импульсов.

Апериодические коммутационные импульсы получают, как правило, от генераторов импульсных напряжений, предназначенных для формирования грозовых импульсов, путем замены резисторов, входящих в схему генераторов. Колебательные импульсы требуют включения в разрядную цепь генератора дополнительных катушек индуктивности. При этом катушки могут быть включены как в ступенях генератора, так и на его выходе. Один из способов получения коммутационных импульсов, разработанным в ЛПИ, заключается в разделении генератора импульсных напряжений на две части, одна из которых имеет фронтовые резисторы, а вторая — катушки индуктивности.

При зарядке частей генератора напряжениями разных полярностей можно на выходе генератора получить напряжение, равное сумме апериодического и колебательного затухающего импульсов, сформированных разными частями генератора.

Другой возможностью получения коммутационных импульсов колебательной формы является импульсное питание испытательного трансформатора или каскада трансформаторов. Для этого разработаны конденсаторные приставки к испытательным трансформаторам, состоящие из двух групп конденсаторов и коммутатора. При разряде этих групп конденсаторов, присоединенных к первичной обмотке трансформатора и заряженных напряжениями разных полярностей (одной через резистор, а второй через катушку индуктивности), на первичной обмотке трансформатора формируется импульс напряжения, содержащий апериодическую и колебательную составляющие.

Преимущество использования каскадной схемы испытательных трансформаторов заключается в том, что возможно реализовать наложение в нужный момент коммутационного импульса на синусоидальное напряжение промышленной частоты, включив конденсаторную приставку в последнюю ступень каскада.

Испытания изоляции напряжением промышленной частоты, грозовыми и коммутационными импульсами являются лишь частью испытаний электрооборудования. Так, некоторые виды оборудования требуют испытаний импульсными токами. Коммутационная аппаратура подлежит испытаниям на отключающую способность, электродинамическую устойчивость. Защитная аппаратура (разрядники, ограничители перенапряжений) должна испытываться на устойчивость при прохождении через нее импульсов тока, обусловленного грозовыми или коммутационными перенапряжениями. Техника получения испытательных токов базируется на использовании либо ударных генераторов, либо емкостных накопителей энергии. Так, для имитации токов коротких замыканий при испытании электрооборудования в 1924 г. на заводе «Электросила» был изготовлен первый машинный генератор импульсных токов. В 1937 г. А.А. Горев впервые предложил использовать колебательный контур для получения сильных токов промышленной частоты — «контур Горева». За разработку метода и создание установки проф. А.А. Горев и его сотрудники были удостоены в 1948 г. Государственной премии СССР.

Следует отметить еще одну проблему, связанную с испытаниями разнообразных объектов, в том числе и электрооборудования, на устойчивость при прямых ударах молнии. Для имитации удара молнии в объект на кафедре техники и электрофизики высоких напряжений МЭИ созданы уникальные установки, способные в реальных масштабах амплитуд и времени воспроизводить сложные по форме импульсы тока, включая многокомпонентные токи молнии.


5.5. ТЕХНИКА РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ УПРАВЛЕНИЯ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИМИ СИСТЕМАМИ

5.5.1. РЕЛЕЙНАЯ ЗАЩИТА

Электроэнергетические системы (ЭЭС), их объединения и Единая энергосистема страны постоянно подвержены случайным возмущающим воздействиям, поэтому без автоматического управления их функционирование практически невозможно. Скачкообразно и случайно изменяющаяся электрическая нагрузка в условиях необходимого свойственного производству электроэнергии равенства в каждый момент времени генерируемой и потребляемой мощностей (их баланса) при отсутствии непрерывно действующего автоматического управления непременно вызовет недопустимые отклонения показателей качества электроэнергии, прежде всего амплитуды напряжения и частоты промышленного тока.

Неизбежные в силу физической природы электричества короткие замыкания, возникающие то в одном, то в другом месте рассредоточенной по всей территории страны ЕЭС и столь же неизбежные ввиду сложности электрической схемы ЕЭС случайные отключения синхронных генераторов и магистральных линий электропередачи, дискретно нарушающие баланс генерируемой и потребляемой мощностей, без экстренного и интенсивного воздействия автоматики могут вызвать нарушение синхронной работы генераторов электрических станций и, как следствие, полное прекращение процесса производства и передачи электроэнергии, т.е. общесистемную аварию с ее катастрофическими последствиями.

Эти специфические особенности электроэнергетики обусловили развитие технических средств автоматического управления еще в начальный период ее становления.

Прежде всего возникла и непрерывно совершенствовалась техника автоматического обнаружения коротких замыканий (КЗ) и быстродействующего отключения поврежденных электроэнергетических объектов — техника релейной защиты как абсолютно необходимая разновидность противоаварийной автоматики, без которой невозможна работа даже простейшей электроэнергетической установки.

Первыми и простейшими устройствами автоматического отключения электрооборудования при КЗ были легкоплавкие вставки (предохранители), расплавлявшиеся (перегоравшие) под воздействием токов КЗ, не менее чем на порядок превышавших рабочие. Они и до сих пор остаются техническим средством защиты (прежде всего от пожара) широко разветвленных промышленных и бытовых электрических сетей низкого (ниже 1000 В) напряжения. Их техническое исполнение и защитные свойства непрерывно совершенствовались, и теперь предохранители применяются в системах электроснабжения и при высоком (выше 1000 В) напряжении.

К техническим устройствам собственно релейной защиты относятся появившиеся в самом начале развития электроэнергетики электромагнитные расцепители механизмов отключения выключателей низкого и высокого напряжений, лавинообразно действующие на отключение выключателя при достижении током в защищаемой электрической цепи определенного фиксированного значения. Это максимальные первичные, а затем вторичные (включаемые в электрическую цепь через измерительные трансформаторы тока) реле тока. На их основе вплоть до последнего десятилетия выполнялись автоматические устройства максимальной токовой (МТЗ) и направленной защиты с использованием измерительного реле направления мощности.

На линиях электропередачи напряжением 110–330 кВ с глухо заземленной нейтралью широко применяется направленная токовая защита нулевой последовательности от однофазных и двухфазных КЗ на землю. Ее достоинство — независимость настройки и действия от рабочих режимов ЭЭС.

Аналогичным свойством обладает и появившаяся в начале 30-х годов первая отечественная дистанционная защита от междуфазных КЗ, которая вытеснила защиты иностранных фирм «Сименс» и «Вестингауз». По отношению напряжения и тока — сопротивлению она определяет расстояние до места КЗ. Направленная дистанционная защита с измерительными реле сопротивления стала наиболее распространенным устройством релейной защиты современных ОЭС и ЕЭС.

В развитии теории электромагнитных переходных процессов в ЭЭС, возникающих при КЗ, на основе которой функционирует релейная защита, важную роль сыграли труды российских ученых Н.Н. Щедрина, Н.Ф. Марголина, С.А. Ульянова, А.Б. Чернина [5.28; 5.29]. Первым обобщающим трудом отечественных авторов по теории и технике релейной защиты была книга В.И. Иванова «Реле и релейная защита», вышедшая в 1932 г.

Опыт проектирования и эксплуатации релейной защиты в военные годы был обобщен в выпущенной в 1945 г. книге М.Ф. Кострова, И.И. Соловьева и A.M. Федосеева «Основы техники релейной защиты». «Руководящие указания по релейной защите» вышли под руководством Л.Е. Соловьева тремя выпусками в 1933–1939 гг., а в последующем Руководящие указания по отдельным видам защит выходили в 1942–1975 гг. под руководством A.M. Федосеева.

Однако даже быстродействующие дистанционные защиты оказались недостаточно эффективными для сохранения при КЗ динамической устойчивости при параллельно работающих мощных электрических станциях, связанных длинными и сильно нагруженными линиями. Оснащенность линий высокочастотной связью, обеспечивающей обмен информацией между устройствами релейной защиты, установленными на противоположных концах, позволила создать сверхбыстродействующие высокочастотные защиты электропередач сверхвысокого напряжения 500–750 кВ. ВНИИЭ и институтом «Энергосетьпроект» были разработаны фильтровая направленная обратной последовательности (ФНЗОП) и дифференциально-фазная (ДФЗ) высокочастотные защиты таких линий электропередачи. Благодаря использованию фильтров симметричных составляющих, а именно обратной последовательности напряжений и токов, в первой из названных защит и комбинированных фильтров токов прямой, обратной и нулевой последовательностей во второй из них было достигнуто существенное повышение эффективности действия защит для сохранения динамической устойчивости электропередач при КЗ.

В процессе создания ФНЗОП и ДФЗ были радикально усовершенствованы электромеханические измерительные реле тока, напряжения, направления мощности, направленные реле сопротивления. Первые отечественные электромеханические измерительные реле выпускались Харьковским электромеханическим заводом. Во время Великой Отечественной войны он был эвакуирован в Чебоксары, где на его базе был создан Чебоксарский электроаппаратный завод (ЧЭАЗ), ставший основным релестроительным заводом страны.

Чебоксарский завод освоил и выпустил новые полупроводниковые, а затем микросхемные измерительные реле для дистанционных и высокочастотных защит. На основе сочетания взаимодополняющих свойств ФНЗОП и ДФЗ разработана и выпускается самая совершенная и быстродействующая высокочастотная фильтровая направленная и дифференциально-фазная защита для современных и вновь сооружаемых линий электропередачи напряжением 750–1150 кВ. На таких электропередачах широко используется отключение только одной фазы, поврежденной при однофазном КЗ на землю. Эта защита — единственная быстродействующая и правильно функционирующая в неполнофазном режиме работы линий электропередач.

Основы новой отечественной техники релейной защиты составили фундаментальные труды Г.И. Атабекова, Л.Е. Соловьева, В.Л. Фабриканта, A.M. Федосеева. В ее разработке принимали активное участие научные сотрудники института «Энергосетьпроект» (В.М. Ермоленко, С.Я. Петров), ВНИИЭ (Е.Д. Сапир, Я.С. Гельфанд, А.И. Левиуш, П.К. Фейст) и ведущие специалисты эксплуатационных организаций (М.А. Беркович, Н.В. Чернобровое, М.Ф. Мельников).

Непростой проблемой оказалось и создание быстродействующих, безотказно и правильно работающих автоматических устройств релейной защиты синхронных генераторов и трансформаторов, а также шин электрических станций и подстанций.

Работы И. А. Сыромятникова по режимам работы синхронных генераторов и электродвигателей способствовали повышению надежности собственных нужд электростанций.

Первые электромеханические дифференциальные защиты часто излишне срабатывали на отключение, особенно трансформаторов, под воздействием бросков токов намагничивания в момент включения или скачкообразного восстановления (после отключения КЗ) напряжения на трансформаторе.

Радикальным техническим средством, обеспечившим приемлемые показатели дифференциальной защиты, оказались насыщающиеся вторичные измерительные трансформаторы тока, включаемые в дифференциальную цепь защиты (встроенные в измерительные реле тока). Внедрение их в эксплуатацию происходило под руководством И.И. Соловьева и М.И. Царева (ВНИИЭ).

Следующим этапом повышения чувствительности устройств продольной токовой дифференциальной защиты было внедрение специально разработанных (под руководством А.Д. Дроздова) дифференциальных измерительных реле тока с магнитным торможением, автоматически снижавшим чувствительность этих устройств при внешних (за пределами защищаемого электроэнергетического объекта) КЗ.

Продольная токовая дифференциальная защита с насыщающимися вторичными трансформаторами тока и магнитным торможением (типов ДЗ-11, ДЗ-13) широко применяется как основная быстродействующая и высокочувствительная защита синхронных генераторов и трансформаторов.

В последнее время ЧЭАЗ выпускает наиболее технически совершенную микросхемную дифференциальную защиту типов ДЗ-21, ДЗ-23, специально разработанную для трансформаторов. Современное техническое исполнение и новые принципы обеспечения недействия при бросках тока намагничивания и повышения чувствительности характеризуют ее высокое техническое совершенство. ЧЭАЗ выпускает также продольную токовую дифференциальную защиту шин электрических станций и подстанций, обладающую необходимой чувствительностью благодаря оригинальному способу ее автоматического загрубления (торможения) при внешних КЗ.

Отечественными научно-исследовательскими организациями были разработаны и другие оригинальные устройства релейной защиты синхронных генераторов и трансформаторов. К ним относятся токовая защита обратной последовательности от несимметричных КЗ и перегрузок синхронного генератора с зависимой от степени несимметричной перегрузки и согласованной с его нагревом и остыванием характеристикой выдержки времени, а также защита напряжения нулевой последовательности от замыканий на землю в обмотках статора синхронного генератора. Последняя состоит из двух устройств, совокупное действие которых обеспечивает защиту всей обмотки, что длительное время было проблемной задачей.

К автоматическим устройствам, специально созданным для обеспечения высокой эффективности релейной защиты, относится и устройство резервирования отказа выключателей (УРОВ), не отключившихся после воздействия на них релейной защиты. Оно обязательно для установки на синхронных генераторах, трансформаторах, шинах и линиях электропередачи.

В последнее время ведется интенсивная научно-исследовательская работа по созданию микропроцессорных многофункциональных автоматических устройств релейной защиты.

5.5.2. ПРОТИВОАВАРИЙНАЯ АВТОМАТИКА

Отключая поврежденный синхронный генератор, трансформатор или линию электропередачи и избавляя электроэнергетическую систему от сильного возмущающего воздействия в виде КЗ, автоматические устройства релейной защиты создают часто не менее сильные возмущающие воздействия, т.е. скачкообразные уменьшения генерируемой или передаваемой электроэнергии — нарушения баланса мощности. Поэтому уже на ранних этапах развития ЭЭС появились устройства противоаварийной автоматики, предназначенные для демпфирования возмущающих воздействий. В самом начале 30-х годов появились устройства автоматического включения резервного электрооборудования (УАВР), прежде всего трансформаторов собственных нужд электростанций.

Особенно эффективными оказались автоматические устройства повторного включения (УАПВ) линий электропередачи: в большинстве своем дуговые КЗ, особенно на землю на воздушных линиях систем с глухо заземленной нейтралью, самоликвидировались после отключения линий релейной защитой. Поэтому последующее их автоматическое включение УАПВ восстанавливало предшествовавшую КЗ схему ЭЭС. Начиная с конца 30-х годов и, особенно, в годы Великой Отечественной войны они получили массовое распространение во всех ЭЭС и не только на воздушных, но и на кабельных линиях, а впоследствии на шинах подстанций и одиночных трансформаторах. Первой монографией, обобщающей отечественный опыт, явилась вышедшая в 1950 г. книга И.И. Соловьева «Автоматизация энергетических систем» [5.30]. По инициативе и под руководством ее автора разрабатывались и внедрялись первые УАПВ.

Появившееся в тяжелейших условиях электроснабжения в военной обстановке предложенное И.А. Сыромятниковым смелое решение: при угрозе развития системной аварии включать синхронные генераторы на параллельную работу методом самосинхронизации — позволило внедрить несинхронные устройства автоматического повторного включения магистральных линий электропередачи с двусторонним питанием (НАПВ), а затем и устройства автоматической ресинхронизации отключившихся синхронных генераторов.

Быстродействующие современные устройства релейной защиты и выключатели линий электропередачи позволили осуществлять быстродействующее (БАПВ) и ускоренное (УАПВ) повторное включение. Создание высокочувствительных избирательных органов, определяющих, на каком из проводов воздушной линии высокого или сверхвысокого напряжения произошло КЗ на землю, позволило внедрить однофазное автоматическое повторное включение (ОАПВ). Впервые ОАПВ с автоматическим переводом линий с обрывом одного провода в неполнофазный режим было успешно применено во время Великой Отечественной войны.

Современные микросхемные комплексные автоматические устройства осуществляют любой из указанных видов АПВ и автоматическое включение линий связи вышедших из синхронизма частей ЭЭС — АПВ с синхронизацией (АПВС). Они разработаны во ВНИИЭ (Г.Г. Фокин, Г.Г. Якубсон) и ВНИИР.

Следующим этапом развития противоаварийной автоматики являлись разработка и внедрение автоматов, функционирующих при снижении частоты вследствие возникшего дефицита активной мощности. Автоматический частотный пуск с самосинхронизацией и набором нагрузки гидрогенераторов и автоматическая частотная разгрузка (АЧР) в виде автоматов временного отключения наименее ответственных потребителей электроэнергии (с последующим их частотным АПВ) являлись эффективными средствами предотвращения системных аварий вследствие лавины частоты. Соответственно появились и автоматические устройства ограничения повышения частоты в избыточной по мощности части ЭЭС.

Российскими учеными и специалистами были созданы основы теории и техники противоаварийной автоматики (Б.И. Иофьев, Л.А. Кощеев, Я.Н. Лугинский, М.А. Беркович, А.А. Окин, С.А. Совалов, В.А. Семенов).

Современная общесистемная противоаварийная автоматика ЕЭС имеет назначение не допустить нарушения динамической или статической устойчивости параллельной работы электрических станций или сохранить результирующую устойчивость функционирования ЕЭС. Она состоит из двух рассредоточенных по электроэнергетическим системам комплексов автоматических устройств, связанных каналами обмена информацией и централизованно управляемых от управляющего вычислительного комплекса (УВК), а именно: автоматики предотвращения нарушения устойчивости (АПНУ) и автоматики ликвидации возникающего асинхронного режима работы (АЛАР).

Особенно сложной является АПНУ. Она функционирует на основе результатов, производимых ЭВМ циклически (через 5—10 с) расчетов устойчивости. При этом вырабатываются необходимые по интенсивности и длительности (дозированные) противоаварийные воздействия на электроэнергетические объекты для каждого из возможных возмущающих воздействий. После каждого цикла расчетов они передаются на места их возможного применения и запоминаются там как готовые к немедленной реализации по безынерционно поступающему сигналу о возникшем возмущающем воздействии.

Для предотвращения нарушения динамической устойчивости производятся, например, кратковременные импульсная разгрузка паровых турбин или электрическое торможение гидрогенераторов. Предотвращение нарушения статической устойчивости в послеаварийных и новых установившихся режимах работы достигается переводом вращающихся гидроагрегатов из режима работы синхронным компенсатором в генераторный режим, отключением части гидрогенераторов и другими действиями, направленными на ликвидацию перегрузки линий электропередачи.

Аналогичные дозированные противоаварийные воздействия характерны и для АЛАР. Если асинхронный режим ликвидировать не удается, действует делительная автоматика, отключающая от ЭЭС несинхронно работающую электростанцию. Последующее восстановление связи производится, как указывалось, устройствами АПВ с синхронизацией.

В совершенствующихся АПНУ и АЛАР все шире применяются современные ПЭВМ. Их разработки ведутся в ВЭИ (В.Д. Ковалев), институте «Энергосетьпроект» и ВНИИР.

5.5.3. АВТОМАТИКА УПРАВЛЕНИЯ

Соответственно развивались и технические средства автоматического управления нормальными режимами работы. Прежде всего автоматизировалась такая ответственная и кропотливая операция, как включение синхронного генератора на параллельную работу методом точной синхронизации.

Современный микросхемный автоматический синхронизатор представляет собой специализированную аналоговую ЭВМ, вычисляющую угол опережения и допустимую по условию устойчивости синхронизации частоту скольжения генератора, учитывая и ускорение вращения генератора в процессе его синхронизации. По соответствующему алгоритму функционируют и программные микропроцессорные автоматические синхронизаторы.

Технические средства собственно автоматического управления нормальными режимами работы электрических станций и подстанций — это непрерывно действующие автоматические регуляторы напряжения и реактивной мощности, частоты вращения и активной мощности синхронных генераторов, автоматические регуляторы реактивной мощности синхронных компенсаторов и непрерывно управляемых статических ее источников, а также автоматические регуляторы коэффициентов трансформации трансформаторов с УРПН и реактивной мощности конденсаторных батарей.

В начальный период становления электроэнергетики автоматическое управление частотой промышленного тока и активной мощностью синхронных генераторов удовлетворительно производилось автоматическими регуляторами частоты вращения паровых и гидротурбин.

Поэтому первыми появились автоматические регуляторы возбуждения (АРВ) синхронных генераторов и компенсаторов, необходимые для автоматического управления напряжением на шинах электрических станций и подстанций и реактивной мощностью. Это были электромеханические аналоги зарубежных медленно действующих автоматических устройств, примером которых являлся электромеханический АРВ типа СН-91. В 1937 г. в ВЭИ был разработан и выпущен большой партией электронно-ионный АРВ. Однако в связи с низкой надежностью электронных ламп он вскоре уступил место высоконадежным электромагнитным (на магнитных усилителях и первых твердотельных выпрямителях) АРВ, разработанным под руководством В.Л. Иносова и Л.В. Цукерника. Это были комбинированные автоматические устройства, состоявшие, по существу, из двух регуляторов, функционирующих по главным возмущающим напряжение синхронной машины воздействиям: току нагрузки и cos? — устройства токового и фазового компаундирования, и по остаточному (после воздействия на возбудитель устройства компаундирования) отклонению напряжения — электромагнитные корректоры напряжения. Это были АРВ пропорционального действия.

Во время сооружения первых мощных ГЭС Волжского каскада и первых протяженных и сильно нагруженных линий электропередачи СВН возникла необходимость разработки более совершенных АРВ, обеспечивающих повышение пропускной способности электропередач. В ВЭИ под руководством Г.Р Герценберга были разработаны сначала электронно-ионный, а затем электромагнитный автоматические регуляторы возбуждения пропорционально-дифференциального («сильного») действия (АРВ СД).

Быстрое и интенсивное воздействие на возбудитель синхронного генератора АРВ СД, обеспечиваемое использованием сигналов, формируемых по производным напряжения и угла электропередачи, существенно повысило статическую и динамическую устойчивость функционирования ЭЭС, связанных протяженными и до предела нагруженными линиями СВН.

С появлением интегральных микросхем был разработан аналоговый АРВ СДП, измерительная часть которого формирует сигналы по новым принципам, заметно повышающим эффективность его функционирования. Он успешно эксплуатируется на современных мощных синхронных генераторах и компенсаторах.

Внедрение в технику автоматического управления производством и передачей электроэнергии цифровой вычислительной техники, естественно привело к созданию в ВЭИ (А.В. Фадеев, М.А. Лотков и др.) микропроцессорного АРВ СД, соответствующего последним научно-техническим достижениям в области автоматического управления.

Наиболее актуальная и сложная проблема автоматического управления нормальными режимами — автоматическое регулирование активной мощности и связанной с ней частоты промышленного тока. Сложность ее технической реализации определяется противоречивостью требований к автоматическим регуляторам, определяемых условиями жесткой стабилизации частоты и гибкого оптимального по технико-экономическим показателям распределения нагрузки между синхронными генераторами.

Как указывалось, в начальный период создания ЭЭС, когда мощности одной частоторегулирующей гидроэлектростанции было достаточно для покрытия непрогнозируемой (случайно изменяющейся) части графика нагрузки ЭЭС, поддержание частоты практически на неизменном уровне обеспечивалось астатическими автоматическими регуляторами частоты вращения (АРЧВ) гидротурбин, а распределение прогнозируемой части нагрузки достигалось за счет статизма АРЧВ турбин тепловых электростанций и не принимающих участия в регулировании частоты турбин гидростанций.

Первое электромеханическое устройство автоматического регулирования частоты и активной мощности — регулятор П.П. Острого появился в середине 30-х годов. Особенно интенсивно велась их разработка в 40-х годах, когда несколькими научно-исследовательскими организациями были разработаны различные по принципам действия измерительной части автоматические регуляторы частоты и активной мощности.

К началу 50-х годов определились два направления — электронное и электромагнитное — их исполнения, различающиеся способами распределения нагрузки между параллельно работающими синхронными генераторами. Электронный регулятор предназначался для обычно однотипных гидрогенераторов с равномерным распределением нагрузки гидростанции между ними. Впоследствии его функции стали выполняться новыми и непрерывно совершенствовавшимися как по принципам действия, так и по техническому исполнению электрогидравлическими АРЧВ гидротурбин (ЭГР) с устройствами уравнивания нагрузки гидрогенераторов. Последняя разработка на интегральных микросхемах (ЭГР-2И) применяется на современных мощных гидроэлектростанциях.

Электромагнитный автоматический регулятор содержал устройство принудительного гибкого, соответствующего оптимальному по технико-экономическим показателям распределения активной нагрузки (УРАН) между разнотипными турбогенераторами тепловых электростанций. Так называемый мнимостатический закон (алгоритм) его функционирования оказался наиболее целесообразным и получил дальнейшее развитие при разработках микропроцессорных с использованием ПЭВМ автоматизированных систем управления режимами работы электрических станций. Дополненный критерием интегрального отклонения частоты, он стал основой решения задач общесистемного автоматического регулирования частоты и мощности.

Именно в соответствии с формированием регулирующих воздействий до полного устранения отклонений частоты и достижения равенства предписанной и истинной мощности частоторегулирующей электростанции и функционируют современные цифровые централизованные автоматические системы регулирования частоты и мощности (АСРЧиМ) в ОЭС и ЕЭС.

Взаимодействующий комплекс автоматических управляющих устройств и систем — основа будущей полностью автоматической (без непосредственного участия человека) системы управления ЕЭС.

Управление режимами работы энергосистем осуществляется автоматизированными системами диспетчерского управления (АСДУ). Они функционируют на основе сбора и переработки информации о свойствах управляемых электроэнергетических объектов, их состояниях и режимах работы и о складывающихся ситуациях в ЭЭС в результате возмущающих воздействий. Информация в виде различных электрических сигналов в цифровом виде поставляется автоматическими информационными устройствами по каналам высокочастотной связи, технически реализованным по проводам линий электропередачи. Взаимодействующая их совокупность образует автоматическую систему информационного обеспечения АСДУ.

5.5.4. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ И КОМПЛЕКСЫ ПРОТИВОАВАРИЙНОГО УПРАВЛЕНИЯ

Работы по созданию автоматизированных систем управления технологическими процессами (АСУ ТП) электроэнергетических объектов были начаты с появлением первых управляющих вычислительных машин (УВМ). Первая в нашей стране АСУ ТП была создана для Боткинской ГЭС на УВМ типа УМ-ШХ (1973–1975 гг.) по инициативе и проектным разработкам Ленгидропроекта. В дальнейшем в качестве технической базы при создании АСУ ТП ГЭС (Красноярская, Саяно-Шушенская, Чиркейская ГЭС, Загорская ГАЭС) использовались средства управляющей вычислительной техники на базе ЭВМ (М-6000, М-7000, СМ-1, СМ-2, ТВСО и др.). Наибольший вклад в становление и развитие работ по АСУ ТП ГЭС внесли М.Н. Розанов, В.А. Карпов, Н.Б. Гущина (ВЭИ), В.В. Семенов (ВНИИэлектромаш), В.И. Фельдман (Ленгидропроект), Г.Р. Носова (Гидропроект), Л.В. Росман (Энергосетьпроект).

С появлением микропроцессорной вычислительной техники (конец 70-х — начало 80-х годов) в мире и одновременно в СССР начались разработки и внедрение в энергосистемах микропроцессорных систем управления. Отечественными разработчиками (ВЭИ, ВНИИЭ, ВНИИэлектромаш) были начаты исследования по созданию локальных микропроцессорных устройств управления. Впервые в нашей стране в 1979 г. сотрудниками ВЭИ были проведены испытания опытного образца микропроцессорного автоматического регулятора возбуждения на Днепровской ГЭС. В результате исследований и полномасштабных испытаний разработаны следующие микропроцессорные устройства:

автоматические регуляторы возбуждения гидро- и турбоагрегатов (АРВ-СДМ);

системы управления мощностью турбоагрегатов (ЭЧСР-М);

устройства противоаварийного управления (ПАА);

устройства группового регулирования активной и реактивной мощности электростанции;

система сбора и отображения информации на ГЭС, ГАЭС;

системы управления и защиты передач и вставок постоянного тока.

К числу важных устройств относятся автоматические регуляторы возбуждения генераторов сильного действия, без которых невозможно обеспечить устойчивую работу ЕЭС. Первые автоматические регуляторы возбуждения сильного действия на базе магнитных усилителей были созданы для Волжской ГЭС им. В.И. Ленина (И.А. Глебов (ВНИИэлектромаш), И.М. Ботвинник (ВНИИЭ), Г.Р. Герценберг (ВЭИ), В.А. Веников (МЭИ), С.А. Совалов (ЦДУ ЕЭС)).

Существенный вклад в создание микропроцессорных систем автоматического управления внесли В.Д. Ковалев, B.C. Мельников, А.В. Фадеев (ВЭИ), В.М. Долкарт (ВНИИЭМ), В.В. Кичаев (ВНИИэлектромаш), Я.Н. Лугинский (ВНИИЭ), А.Н. Комаров (ЦДУ ЕЭС).

Накопленный опыт разработки и эксплуатации микропроцессорных систем автоматического управления позволил перейти к созданию интегрированных микропроцессорных АСУ ТП. Отечественными институтами (ВЭИ, НИИтеплоприбор, ВНИИЭМ) разработаны микропроцессорные средства для создания интегрированных АСУ ТП, соответствующие мировому уровню.

Системы автоматизации для АСУ ТП зарубежного производства (фирмы «Siemens», ABB, AEG, «Allen-Bradley», «Valmet» и др.) требуют адаптации аппаратных средств к отечественному электротехническому и энергетическому оборудованию. Кроме этого, при применении аппаратуры зарубежных фирм сохраняется зависимость от фирм-поставщиков при дальнейшем расширении или реконструкции объекта, а также при ремонте аппаратуры. Аппаратно-программные системы зарубежных фирм, как правило, в 2–3 раза дороже отечественных.

В последнее время функциональные задачи, возлагаемые на АСУ ТП, значительно расширились. АСУ ТП выполняется в виде двухуровневой распределенной системы. Верхний уровень управления включает в себя:

подсистему представления информации персоналу станции (ППИ);

подсистему группового регулирования частоты и активной мощности (ГРАМ);

подсистему общестанционного регулирования напряжения (ОСРН);

подсистему выбора состава работающих агрегатов (ПУСК);.

подсистему регистрации и анализа аварийных режимов (ПРАР);

устройство противоаварийной автоматики (ПАА);

подсистему коммерческого учета электроэнергии (КУЭ);

подсистему связи с вышестоящим уровнем управления (ПСВУ).

Нижний уровень АСУ ТП содержит:

устройства сбора и первичной обработки информации (УСИ) от агрегатов, блочных трансформаторов, преобразователей, линий и т.д.;

локальные системы регистрации (ЛСР) аварийного режима на агрегатах и подстанциях;

устройства контроля и диагностики агрегата (КДА);

подсистемы комплексного управления агрегатом (КУА);

подсистемы контроля и диагностики подстанционного оборудования (КДПО).

Интегрированные микропроцессорные АСУ ТП проектируются для Волжской, Чебоксарской ГЭС и ряда других объектов.

Подсистема представления информации строится на базе локальной вычислительной сети IBM-совместимых персональных компьютеров промышленного исполнения. В качестве технических средств остальных подсистем используются унифицированные микропроцессорные комплексы разработки ВЭИ, отвечающие требованиям энергетических объектов по электромагнитной совместимости, помехозащищенности и надежности.

Приоритет разработок в области противоаварийного управления принадлежит отечественным специалистам В.А. Веникову, С.А. Совалову, В.А. Семенову, В.Д. Ковалеву, Л.А. Кощееву, Б.И. Иофьеву, PC. Рабиновичу. Используемые в энергосистемах России комплексы противоаварийной автоматики (УПА) включают:

устройства для обеспечения устойчивости электростанций и энергосистем;

автоматику предотвращения асинхронного хода (АПАХ);

автоматическую частотную разгрузку (АЧР);

противоаварийную автоматику от опасного повышения (понижения) напряжения.

Наиболее ответственной является система противоаварийного управления, предотвращающая нарушение устойчивости электростанций и энергосистем. Соответствующие устройства формируют управляющие воздействия на отключение части генераторов, быстродействующую разгрузку паровых турбин, отключение нагрузки, форсировку (расфорсировку) мощности передач и вставок постоянного тока, деление энергосистем и т.п.

Устройства противоаварийной автоматики создавались вначале как релейные комплексы. Обеспечивающие устойчивость ограниченного энергорайона отдельные устройства были слабо координированы между собой и не отличались точностью формирования управляющих воздействий (УВ).

Когда в энергосистемах началось широкое строительство линий электропередачи напряжением 500 кВ и выше, существенно возросли требования к точности реализации УВ и надежности функционирования УПА. К этому времени отечественной промышленностью уже начали выпускаться управляющие вычислительные машины.

Созданные в некоторых энергообъединениях централизованные (в рамках энергорайона) УПА с применением мини-ЭВМ типов М-6000, ТА-100, СМ-1, СМ-2 давали возможность формировать УВ для энергосистем со сложной структурой. Однако ограниченное быстродействие мини-ЭВМ не позволяло осуществлять формирование алгоритмов с достаточной степенью точности. Централизованные системы требовали большого количества дорогостоящих телеканалов связи для передачи контролируемых режимных параметров, УВ, информации о состоянии сети и пусковых органах. Управляющие системы с мини-ЭВМ и большим объемом периферийного оборудования не отличались надежностью, а для их обслуживания были необходимы квалифицированные специалисты по вычислительной технике.

С появлением промышленных микропроцессоров и микроЭВМ появилась реальная возможность создания иерархических систем противоаварийного управления, отличающихся большей надежностью, точностью вычисления УВ и меньшей стоимостью по сравнению с централизованными УПА.

Первый двухуровневый комплекс противоаварийного управления создан для объединенной энергосистемы Поволжья, где для верхнего уровня противоаварийного управления применяется мини-ЭВМ типа СМ-1420, а на нижнем — используются микропроцессорные устройства противоаварийной автоматики, разработанные ВЭИ.

Устройства автоматики для предотвращения асинхронного хода действуют локально. Устройства АПАХ, установленные в энергосистемах страны, подразделяются на два вида: быстродействующие, срабатывающие с небольшой выдержкой времени в течение первого периода асинхронного режима, и замедленные, срабатывающие с заданной выдержкой времени или после определенного числа периодов асинхронного режима.

Автоматическая частотная разгрузка, широко распространенная в энергосистемах нашей страны и находящая в последние года все большее применение за рубежом, сравнительно проста и вместе с тем чрезвычайно эффективна, так как благодаря ей предотвращаются наиболее тяжелые аварии с полным нарушением энергоснабжения из-за так называемой «лавины» частоты. Автоматическая частотная разгрузка выполняется в виде местных устройств с использованием в качестве пусковых органов реле частоты, действующих на отключение потребителей.

Наряду с АЧР для предотвращения развития аварии при снижении частоты в энергосистеме применяется автоматический пуск и загрузка гидрогенераторов или перевод их из режима СК в генераторный режим.

Автоматика, защищающая от повышения напряжения, предотвращает повреждение электротехнического оборудования в случае опасного повышения напряжения, вызванного избытком реактивной мощности. Автоматика действует на включение нормально отключенных шунтирующих реакторов, а затем, если напряжение остается недопустимо высоким, на отключение линии электропередачи, являющейся источником избыточной реактивной мощности.


5.6. УПРАВЛЕНИЕ СОВРЕМЕННЫМИ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИМИ СИСТЕМАМИ

5.6.1. ФОРМИРОВАНИЕ РЫНОЧНЫХ ОТНОШЕНИЙ В РОССИЙСКОЙ ЭЛЕКТРОЭНЕРГЕТИКЕ

Организационная структура отрасли в ходе акционирования и решения по ее совершенствованию. Начавшийся в 1991 г. переход России к рыночной экономике обусловил необходимость структурных реформ в электроэнергетике России и создания новых форм внутри- и межотраслевых экономических отношений. В 1992 г. было проведено акционирование и началась частичная приватизация предприятий отрасли. Этому предшествовала реструктуризация отрасли, обусловленная неравномерным размещением генерирующих мощностей и зависимостью большинства российских регионов от межсистемных перетоков электроэнергии и мощности. В сложившихся условиях это грозило монополизмом энергоизбыточных регионов и дезорганизацией межсистемных перетоков. Выход из ситуации был найден в сосредоточении основных функций управления в единой холдинговой компании — Российском акционерном обществе энергетики и электрификации (РАО «ЕЭС России»), контролирующей электроэнергетику почти всей страны, и в переводе в режим оптовой торговли крупнейших электростанций с выводом их и системообразующих сетей из состава региональных энергоснабжающих организаций.

В составе РАО «ЕЭС России», образованного в соответствии с указами Президента РФ, предполагалось сосредоточить отраслевые объекты межсистемного значения: крупные тепловые (мощностью от 1000 МВт) и гидравлические (мощностью от 300 МВт) станции, имеющие общую мощность 95 млн. кВт (около половины всей установленной мощности), системообразующую сеть высокого напряжения, а также центральное и объединенные диспетчерские управления и другие отраслевые предприятия и организации. Все они становились дочерними компаниями с передачей РАО 100% их акционерного капитала. Кроме того, в уставный капитал РАО передавалось 49% акций каждого из региональных акционерных обществ энергетики и электрификации (АОэнерго), создаваемых на базе имущества бывших региональных производственных объединений после изъятия из них крупных станций и сетевых объектов. Для сохранения государственного контроля над отраслью государство закрепило за собой контрольный пакет обыкновенных акций РАО (51%) сроком на 3 года (в 1996 г. этот срок был продлен еще на 3 года).

Рис. 5.10. Управление электроэнергетическим комплексом России 

На основе предусмотренных, но по разным причинам не полностью реализованных мер реструктуризации РАО получило в собственность 34 электростанции. Остальные акционировались и приватизировались в составе АОэнерго; 7 из 34 электростанций переданы в аренду региональным АОэнерго, которые самостоятельно управляют ими, выплачивая небольшую арендную плату РАО «ЕЭС России». Из оставшихся 27 электростанций РАО 5 имеют статус его филиалов, а остальные 22 стали его дочерними акционерными обществами (12 из них находятся

в полной собственности РАО). Неполностью были реализованы и планы передачи акций АОэнерго в уставный капитал РАО «ЕЭС России». Три АОэнерго передали в уставный капитал РАО менее 49% своих голосующих акций (АО «Башкирэнерго», АО «Бурятэнерго», АО «Новосибирскэнерго»). Два АОэнерго (АО «Татэнерго» и АО «Иркутскэнерго») не передали своих акций и стали полностью независимыми от РАО акционерными обществами, причем АО «Иркутскэнерго» сохранило в своем составе три крупные ГЭС, которые должны были перейти в собственность РАО «ЕЭС России» с переводом в режим оптовой торговли. Сложившаяся в результате этих преобразований схема управления электроэнергетическим комплексом России и структура собственности в ее электроэнергетике показаны на рис. 5.10 и 5.11 [5.31].

Рис. 5.11. Структура собственности электроэнергетики России в 1996 г. (ДАО — дочернее акционерное общество) 

В результате первого этапа реструктуризации российская электроэнергетика утратила прежнюю вертикально интегрированную структуру, произошло также частичное организационное разделение видов хозяйственной деятельности. В производстве электроэнергии появились несколько хозяйственных субъектов с самостоятельными экономическими интересами: станции РАО «ЕЭС России», государственные АЭС, станции региональных АОэнерго. В сфере передачи электроэнергии произведено объединение межсистемных линий в рамках РАО «ЕЭС России». В сфере распределения были образованы структурно самостоятельные акционерные компании, обеспечивающие эксплуатацию передающих и распределительных сетей на территории соответствующих субъектов РФ. Вместе с тем новая структура РАО «ЕЭС России» во многом воспроизвела прежнюю систему административно-отраслевого управления, но реализованную уже на основе имущественных отношений с передачей контрольных пакетов акций одной общеотраслевой холдинговой компании, заменившей отраслевое министерство. Первоначальное размещение акций АОэнерго было проведено таким образом, чтобы затруднить аккумулирование значительного пакета в одних руках и минимизировать риск установления контроля любых акционеров (кроме РАО) над этими компаниями. Кроме того, РАО «ЕЭС России» на правах холдинговой компании полностью контролирует формирование органов управления дочерних компаний, заключая трудовые контракты с их генеральными директорами.

Выбранный способ формирования отраслевой структуры капитала, при котором контрольный пакет акций большинства отраслевых компаний принадлежит РАО «ЕЭС России», обеспечил преемственность управления в условиях трудного переходного периода. Вместе с тем он создал определенные проблемы для формирования в России конкурентного федерального оптового рынка электроэнергии и мощности (ФОРЭМ).

Состав и принципы организации ФОРЭМ. Конечная цель создания ФОРЭМ — экономичное и надежное энергоснабжение потребителей на основе стабильного и недискриминационного механизма купли-продажи электроэнергии и мощности.

Такой механизм предполагает организацию конкурентной системы оптовой торговли как главного стимула более эффективного использования существующих генерирующих мощностей, а также создание условий для рационального развития мощностей по производству и передаче электроэнергии.

В результате первого этапа реформирования электроэнергетики был сформирован двухуровневый регулируемый рынок электроэнергии, включающий:

федеральный оптовый рынок электроэнергии и мощности, обеспечивающий поставки в дефицитные регионы страны электроэнергии от крупных гидравлических, тепловых и атомных электростанций, а также от избыточных АОэнерго по транспортной сети рынка — межсистемным линиям электропередачи напряжением 330 кВ и выше;

72 региональных (розничных) рынка электроэнергии, сформированных на территории республик и областей России (субъектов РФ) и монопольно обслуживаемых соответствующими АОэнерго.

Несмотря на имевшиеся сложности, в режим оптовой торговли были переведены 25 тепловых и гидравлических станций (из намеченных 51) общей установленной мощностью 43 млн. кВт, а также 8 АЭС общей установленной мощностью 21 млн«кВт (7 АЭС, объединенных в составе концерна «Росэнергоатом», и Ленинградская АЭС), оставшиеся в государственной собственности. Это позволило сформировать ресурсы электроэнергии и мощности для электроснабжения дефицитных энергосистем. В итоге участниками ФОРЭМ являются:

РАО «ЕЭС России» как организатор функционирования и развития ФОРЭМ с входящим в него АО «ЦДУ ЕЭС России», выполняющим функции оператора ФОРЭМ;

25 тепловых и гидравлических станций — дочерние компании и филиалы РАО «ЕЭС России»;

8 атомных электростанций;

АОэнерго и другие энергоснабжающие организации, расположенные в пределах функционирования ЕЭС России;

АО «Электроцинк» (первый крупный потребитель электрической энергии, который в порядке эксперимента был выведен на оптовый рынок).

Таким образом, ФОРЭМ имеет сегодня ограниченные масштабы. Доля поставок электроэнергии с ФОРЭМ в общем потреблении электроэнергии территориальных зон страны весьма различна и колеблется от 48–50% в энергозонах Центра и Северо-запада до 18–19% в энергозонах Урала и Сибири. Низкие показатели на Урале и в Сибири стали результатом неполной реализации Указа Президента. В частности, в режим оптовой торговли в уральской энергозоне переведено только 20% мощностей крупных ТЭС. В составе энергосистем остались работать наиболее экономичные крупные электростанции на газе: Рефтинская ГРЭС мощностью 3800 МВт и Сургутские ГРЭС-1 и 2 суммарной мощностью свыше 8 млн. кВт. В сибирской энергозоне в режим оптовой торговли выведена только Саяно-Шушенская ГЭС, а эффективные Братская, Усть-Илимская и Иркутская ГЭС с суммарным годовым производством электроэнергии около 50 млрд. кВт?ч остались в составе (и в собственности) АО «Иркутскэнерго». В энергозоне Дальнего Востока в режим оптовой торговли переведены только Зейская ГЭС и Приморская ГРЭС.

В технологии функционирования ФОРЭМ следует различать следующие две стадии: производства и передачи электроэнергии.

Стадия производства электроэнергии, в которой участвуют многие электростанции, не относится к естественной монополии и не подлежит регулированию со стороны государства. При этом целесообразно использовать конкуренцию между производителями (электростанциями), выбирая тех, которые вырабатывают электроэнергию по наиболее низкому тарифу, что приводит к общему снижению тарифа на поставляемую на оптовый рынок электроэнергию.

Стадия передачи электрической энергии — естественная монополия, поскольку строительство нескольких линий электропередачи изначально экономически неэффективно. В соответствии с федеральным законом «О естественных монополиях» этот вид деятельности относится к регулируемой со стороны государства сфере деятельности.

Обе стадии, характерные для ФОРЭМ, существуют также на уровне территории субъекта РФ и относятся к розничному рынку электроэнергии. Производство электрической энергии электростанциями АОэнерго не относится к сфере деятельности субъектов естественных монополий. На территории субъекта РФ тарифы на производство, передачу и распределение электрической энергии регулируются региональной энергетической комиссией (РЭК) соответствующего региона.

В соответствии с федеральным законом «О государственном регулировании тарифов на электрическую и тепловую энергию в Российской Федерации» тарифы на электрическую энергию (мощность) на ФОРЭМ устанавливает федеральная энергетическая комиссия (ФЭК) России, которая утверждает тарифы на электроэнергию для следующих субъектов оптового рынка:

тепловых, гидравлических и атомных электростанций, поставляющих электроэнергию на ФОРЭМ;

избыточных АОэнерго, поставляющих электроэнергию на ФОРЭМ.

ФЭК России также устанавливает размер абонентной платы за услуги по организации работы и развитию ЕЭС России.

В настоящее время ФОРЭМ функционирует в составе семи энергозон: Центра, Урала, Северо-запада, Волги, Юга, Сибири и Востока. Тариф на электроэнергию, отпускаемую с ФОРЭМ, усредняется для энергозон Центра, Урала, Северо-запада, Волги и Юга. Для Сибири и Востока утверждаются различные тарифы.

На оптовом рынке страны работают наиболее крупные и экономичные электростанции, и поэтому тариф оптового рынка более низкий, чем тариф на территории отдельных АОэнерго.

В развитии ФОРЭМ различают следующие два этапа.

Переходный (первый) этап, на котором ФЭК России осуществляет прямое государственное регулирование не только тарифов на электроэнергию, отпускаемую с оптового рынка, но и тарифов на электроэнергию, поставляемую на ФОРЭМ.

На этом этапе конкуренция между производителями электроэнергии носит ограниченный характер, поскольку тарифы для них утверждаются ФЭК России, а не формируются непосредственно в режиме работы диспетчера ЦДУ ЕЭС России, и осуществляется только при формировании баланса производства и поставок электроэнергии в рамках ЕЭС России по субъектам оптового рынка. Так, РАО «ЕЭС России» совместно с АО «ЦДУ ЕЭС России» на основании предложений поставщиков и покупателей ФОРЭМ разрабатывает годовой и квартальные балансы производства и поставок электрической энергии (мощности) по субъектам ФОРЭМ в рамках ЕЭС России. При составлении указанного баланса в первую очередь включают те электростанции и избыточные АОэнерго, у которых заявочный среднеотпускной тариф на электроэнергию, передаваемую на ФОРЭМ, наименьший. Баланс утверждается ФЭК России и служит основой для заключения коммерческих договоров на ФОРЭМ. В дальнейшем АО «ЦДУ ЕЭС России» в качестве оператора оптового рынка осуществляет контроль за исполнением субъектами ФОРЭМ балансов электрической энергии, утвержденных ФЭК России.

Однако трудности в топливообеспечении электростанций, а также их незаинтересованность в принятиии на себя дополнительной нагрузки (поскольку вся прибыль относится на установленную мощность, а не на электроэнергию) не дают возможности ЦДУ ЕЭС России вести оптимальный режим загрузки электростанций.

Среднеотпускные тарифы (совместно на мощность и электроэнергию), утвержденные ФЭК России, являются основой для финансовых расчетов на оптовом рынке для дефицитных и избыточных АОэнерго. АО «ЦДУ ЕЭС России» обеспечивает оптимальные режимы работы электростанций — субъектов ФОРЭМ в условиях их параллельной работы. При этом тарифы на электроэнергию и мощность, утвержденные ФЭК России для электростанций, используются не для финансовых расчетов, а служат только для оценки тарифов на электроэнергию, отпускаемую с ФОРЭМ. Распределение нагрузки между электростанциями, осуществляемое в режиме реального времени, а также изменение цены топлива приводят к тому, что тарифы на электроэнергию, отпускаемую электростанциями на оптовый рынок, приходится уточнять.

Таким образом, для каждого продавца электроэнергии ФЭК России устанавливает отдельный тариф исходя из фактических нормируемых затрат, включая допускаемую прибыль. Дефицитные АОэнерго покупают с ФОРЭМ электроэнергию но усредненному (в пределах одной или нескольких энергозон) тарифу, который в одних случаях выше тарифа продавца электроэнергии на оптовый рынок, а в других случаях ниже. ФЭК России с 1 августа 1996 г. установил единый тариф на электроэнергию, отпускаемую с ФОРЭМ, в пределах европейской части страны и Урала. Тарифы на электроэнергию для энергозон Сибири и Дальнего Востока не выравниваются.

При таком механизме формирования тарифов возникают следующие противоречия между субъектами оптового рынка:

в энергозонах с большим количеством крупных ГЭС, где затраты на производство электроэнергии низкие, как, например, в Сибири, местным потребителям невыгодно покупать электроэнергию по усредненному (более высокому) тарифу ФОРЭМ, и они стараются обойти оптовый рынок. Чтобы смягчить это противоречие, дефицитным АОэнерго, на территории которых расположены крупные электростанции, поставляющие дешевую электроэнергию на ФОРЭМ, предоставлено право покупать электроэнергию с ФОРЭМ по тарифам, сформировавшимся на этих электростанциях. Это положение закреплено в «Положении о государственном регулировании тарифов на электрическую и тепловую энергию в Российской Федерации на 1993 год»;

низкозатратные производители электрической энергии не могут заключать выгодные сделки с местными потребителями по своему более низкому тарифу. Они вынуждены вначале поставить свою дешевую электроэнергию на ФОРЭМ, и только потом эта электроэнергия по более высокому (усредненному) тарифу оптового рынка поступает к потребителю;

выгоды от производства дешевой электроэнергии распределяются между потребителями в энергозонах с более высокими затратами. Таким образом, потребители, расположенные в энергозонах с низкими затратами на производство электроэнергии, дотируют потребителей в энергозонах с высокими затратами на выработку электроэнергии;

в энергозонах с высокими затратами на производство электроэнергии потребители, получающие электроэнергию по сниженному по сравнению с фактическим тарифу, не заботятся о ее эффективном использовании;

у производителя электроэнергии с низкими затратами отсутствует стимул увеличивать ее выработку и снижать затраты, поскольку он получает регулируемую прибыль, исчисляемую в соответствии с фактическими затратами на производство электроэнергии.

Поэтому органы исполнительной власти субъектов РФ (например, в Иркутской области) удерживают электростанции с дешевой электроэнергией в составе своих территориальных АОэнерго, не допуская их выхода на оптовый рынок.

Второй этап — функционирование субъектов ФОРЭМ по правилам конкуренции производителей электроэнергии и государственного регулирования стоимости услуг естественных монополий, к которым относится передача электроэнергии по электрическим сетям ЕЭС России.

Главной целью рыночного механизма на этом этапе остается повышение надежности и эффективности функционирования ФОРЭМ. Однако эта цель достигается при помощи рыночного механизма формирования тарифов оптового рынка, а не их прямого государственного регулирования. Так, цена на электроэнергию в любой (например, получасовой или часовой) интервал времени принимается равной наибольшим переменным затратам замыкающей в данный интервал времени электростанции. Расчет за электроэнергию со всеми производителями — субъектами оптового рынка осуществляется по этой цене независимо от их фактических затрат на выработку электроэнергии. Все потребители также оплачивают единый для данного интервала времени тариф. При переходе к следующему получасовому (часовому) интервалу времени тариф оптового рынка изменяется.

Полный тариф оптового рынка складывается из цены на электроэнергию, платы за мощность, надбавок режимных ограничений и затрат на вспомогательные услуги. При наличии ограничений на передачу электроэнергии между энергозонами и потерь электроэнергии тарифы для различных энергозон будут отличаться с учетом указанных условий.

Плата за мощность устанавливается в зависимости от фактически складывающегося баланса спроса и предложения. Так, по мере приближения уровня спроса к уровню предложения плата за мощность возрастает, ограничивая тем самым спрос и преследуя цель обеспечить выработку электроэнергии в аварийных условиях.

Противоречия, которые характерны для первого этапа формирования оптового рынка, могут быть сняты с помощью рыночного ценообразования тарифов на втором этапе развития оптового рынка. У рыночного ценообразования есть следующие преимущества:

поскольку все потребители электроэнергии в пределах одной энергозоны платят за нее одинаковую (замыкающую) цену, отсутствует скрытое дотирование потребителей в высокозатратных энергозонах за счет потребителей в низкозатратных энергозонах;

производители электроэнергии получают возможность зарабатывать дополнительную прибыль путем снижения своих затрат и стремятся снизить тарифы;

электростанции с дешевой электроэнергией стремятся выйти на оптовый рынок, где расчеты с ними производятся по более высоким тарифам оптового рынка, тем самым понижая тариф оптового рынка.

Однако при рыночном формировании тарифов на отпуск электроэнергии в электрические сети оптового рынка возникают другие проблемы. В их числе следующие:

общее повышение тарифов оптового рынка по сравнению с регулируемыми государством, поскольку теперь потребитель платит более высокую (замыкающую) цену за электроэнергию;

получение производителями дешевой электроэнергии высоких прибылей.

Однако, если прибыль низкозатратных производителей окажется слишком большой, возможно удерживать часть этой прибыли без ущерба для общей эффективности системы.

В конкурентном рынке у электростанций появляется стимул к максимальному уточнению заявок цен на уровне своих переменных (топливных) затрат. Так, если электростанция заявит цену, превышающую ее переменные затраты, то она окажется незагруженной из-за более низкой цены других электростанций и не получит дохода. Если же электростанция, ставящая цель получить большую выработку, заявит цену ниже своих переменных затрат, она несет убытки от производства электроэнергии.

Полностью развитой оптовый рынок электроэнергии выглядит следующим образом. Потребители электрической энергии заключают прямые договоры с ее производителями (электростанциями) и (или) поставщиками. В договорах согласовывается тариф на электрическую энергию и мощность. В этом случае тариф на электроэнергию — это предмет договора между поставщиком и потребителем. Дополнительно потребитель оплачивает оптовому рынку его услуги по передаче электроэнергии по электрическим сетям оптового рынка от электростанции до распределительных сетей энергоснабжающей компании (АОэнерго), а также услуги энергоснабжающей компании (АОэнерго) по передаче электроэнергии по ее распределительным сетям.

В процессе работы производитель и потребитель сообщают диспетчеру данные соответственно о вырабатываемой и потребляемой мощности в установленный интервал времени. Диспетчеры суммируют все поступившие заявки, а затем на небаланс мощности устанавливают оптимальное распределение нагрузки между свободными мощностями электростанций. Таким образом, оператор оптового рынка формирует только текущий тариф на объем небаланса мощности, а расчет между производителями и потребителями, заключившими ранее договоры на поставку электроэнергии, производится по установленному в договоре тарифу. Такой рынок называется спотовым (от английского «on the spot», что переводится «на месте», т.е. расчет тарифа конкурентного оптового рынка ведется в режиме реального времени).

В январе 1994 г. был организован совместный российско-американский проект по реорганизации электроэнергетики России. В его рамках эксперты РАО «ЕЭС России» и «Хаглер Байи Консалтинг Инкорпорейтед» (США) разработали план преобразований российской электроэнергетики, который учитывался при формировании ФОРЭМ.

Был использован также опыт создания рынка электроэнергии в Великобритании.

Приватизация британской электроэнергетики была начата в 1989 г. До этого вся электроэнергетика была государственной и состояла из Центрального управления по производству электроэнергии (ЦУПЭ) и 12 небольших территориальных управлений (ТУ), ЦУПЭ несло ответственность за производство и передачу электроэнергии, а ТУ — за ее распределение по своим территориям. ТУ приобретали электроэнергию у ЦУПЭ по фиксированной цене, и их хозяйственная деятельность оказалась строго ограниченой. Электроэнергетика была жестко вертикально интегрирована.

С целью повысить эффективность электроснабжения путем развития конкуренции среди производителей электроэнергии ЦУПЭ было разбито на четыре отдельные генерирующие компании. Две из них — «Нэшенел Пауэр» и «Пауэр Джен» обеспечили выработку электроэнергии электростанциями на органическом топливе, а государственная компания «Ньюклеар электрик» взяла на себя ответственность за производство электроэнергии на АЭС.

Эксплуатация линий электропередачи высокого напряжения была возложена на компанию «Нэшенел Грид». Продажа ТУ, ответственных за распределение электроэнергии на отдельных территориях, проводилась отдельно. На их основе образовались 12 частных региональных электрических компаний.

Конкуренция в производстве электроэнергии и энергоснабжении в Великобритании проявилась уже в скором времени после приватизации электроэнергетики. Так, региональные электрические компании, обеспечивающие непосредственное энергоснабжение потребителей, стремясь уменьшить свою зависимость от крупных производителей, стали строить собственные электростанции, в основном с использованием парогазовых установок (ПГУ). Таким образом, региональные электрические компании, ответственные в первую очередь за распределение электроэнергии, а не за ее производство, сами стали конкурировать на оптовом рынке с главными производителями электроэнергии — «Нэшенел Пауэр», «Пауэр Джен» и «Ньюклеар электрик».

Теперь потребитель в Великобритании может покупать электроэнергию у любой коммерческой организации, включая крупные генерирующие компании, региональные электрические компании и новых независимых производителей электроэнергии. Передача же электроэнергии по линиям высокого напряжения осталась государственной монополией.

Основные результаты приватизации в Англии и Уэльсе следующие:

за последние 5 лет прибыль региональных электрических компаний возросла на 102%, «Нэшенел Пауэр» и «Пауэр Джен» — на 203% и «Нэшенел Грид компани» — на 42%;

цены на электроэнергию для потребителей почти не изменились.

Особенности создания оптового рынка электроэнергии в Великобритании, которые могут проявиться и в России:

1. Возникновение на рынке электроэнергии олигополии производителей (господства небольшого числа крупных компаний), сдерживает развитие конкуренции. В Великобритании эту проблему решают путем принуждения крупнейших производителей «Нэшенел Пауэр» и «Пауэр Джен» продавать другим электрокомпаниям 6 млн. кВт мощностей.

2. Жизнеспособность конкурентной электроэнергетики оказалась ниже той, которая обеспечивается при вертикальной схеме ее управления. Чтобы сохранить надежное функционирование электроэнергетики в рыночных условиях, необходимо обеспечить параллельную работу субъектов оптового рынка с помощью центра единого диспетчерского управления и создать систему правовой ответственности энергоснабжающих организаций за надежное энергоснабжение.

3. До реструктуризации британская электроэнергетика, как и российская, была полностью государственной. Приватизация электроэнергетики в Великобритании началась примерно в тот же период, что и в России, и также, как в нашей стране, на одних территориях она проходила успешно (в Англии и Уэльсе), а на других (в Шотландии) она вообще не была проведена из-за противодействия местных органов власти и осталась целиком государственной. Тем не менее британская электроэнергетика эффективно функционирует и при различных формах владения объектами электроэнергетики на разных территориях.

4. Создание рынка и появление конкуренции в производстве электроэнергии и энергоснабжении в Великобритании привели к интенсивному строительству электростанций с использованием ПГУ, что породило в стране «газовую лихорадку». Аналогичная ситуация может возникнуть и в России, поскольку экономические и ресурсные условия для этого существуют.

Создание конкурентного оптового рынка электроэнергии (мощности) в России может осложниться из-за следующих обстоятельств:

1. В СССР развитие электроэнергетики финансировалось централизованно, целиком из государственного бюджета и шло по пути сооружения крупных государственных районных электростанций (ГРЭС), ГЭС и АЭС, обеспечивающих электроснабжение больших территорий без создания дополнительных конкурирующих источников электроэнергии. И такой путь развития электроэнергетики при государственной форме ее владения был экономически эффективным. Избытки в производстве электрической энергии, появившиеся только в последние годы, обусловлены значительным снижением потребления электроэнергии в промышленности страны. При выходе России из экономического кризиса может возникнуть даже дефицит электроэнергии, и в этих условиях конкуренция производителей электроэнергии не возникнет.

2. Значительное число ТЭЦ в России также затрудняет конкуренцию производителей электроэнергии на оптовом рынке. В настоящее время ТЭЦ сохранены в составе АОэнерго, так как основным их назначением является теплоснабжение городов, а вырабатываемая электроэнергия выступает производным продуктом. ТЭЦ тесно связаны с теплоснабжением городов, и нарушать их сложившиеся технологические и хозяйственные связи с коммунальным хозяйством нецелесообразно.

3. В России формирование оптового рынка осложняется еще и тем, что АОэнерго, сохранив в своем составе большинство электростанций общим числом около 600 (против 25 находящихся в составе РАО «ЕЭС России»), стремятся загрузить прежде всего эти свои электростанции и только потом купить пусть даже более дешевую электроэнергию с оптового рынка. Крайне необходимы правила поставки электроэнергии на оптовый рынок, которые позволяли бы экономически заинтересовать АОэнерго в замещении выработки собственных неэкономичных электростанций электроэнергией с оптового рынка.

Существующий порядок расчета тарифов на электроэнергию для электростанций РАО «ЕЭС России» и для избыточных АОэнерго, поставляющих электроэнергию на оптовый рынок, содержит противоречия и не стимулирует развитие конкуренции. Так, среднеотпускной тариф на электроэнергию оптового рынка для электростанций РАО «ЕЭС России» включает в себя плату как за мощность, так и за электроэнергию. В то же время избыточные АОэнерго продают электроэнергию на оптовый рынок по тарифу, исчисляемому только по топливной составляющей производства электроэнергии. Поэтому тариф на электроэнергию, отпускаемую избы-

точными АОэнерго на оптовый рынок, всегда ниже тарифа для собственных потребителей АОэнерго, поскольку в последнем собственный потребитель АОэнерго всегда оплачивает постоянную составляющую.

Для полноценной конкуренции на оптовом рынке необходимо разработать методы расчета двухставочных тарифов как для электростанций РАО «ЕЭС России», АЭС концерна «Росэнергоатом», так и для избыточных АОэнерго.

Аналогично (по двухставочной составляющей) должны рассчитываться и тарифы на покупную мощность и электроэнергию с оптового рынка. Такие двухставочные (на мощность и электроэнергию) тарифы должны действовать на ФОРЭМ для расчетов между электроэнергией, продаваемой на оптовый рынок и покупаемой с оптового рынка.

5.6.2. АВТОМАТИЗИРОВАННАЯ СИСТЕМА ДИСПЕТЧЕРСКОГО УПРАВЛЕНИЯ ЕЭС РОССИИ

В начале 70-х годов в нашей стране развернулись работы по созданию автоматизированных систем диспетчерского управления (АСДУ). Так был назван комплекс технических средств функционального и программного обеспечения, предназначенный для повышения эффективности действующей системы диспетчерского управления на основе использования современных средств сбора, обработки и отображения информации.

К этому времени в ряде отечественных энергосистем (ЭЭС) и объединенных диспетчерских управлений (ОДУ), так же как и за рубежом, был накоплен опыт использования ЭВМ для долгосрочного и краткосрочного планирования режимов. На национальном диспетчерском центре (НДЦ) Англии и Уэльса, а также на диспетчерских центрах (ДЦ) двух энергообъединений (ЭО) США («Пенсильвания — Нью Джерси — Мериленд» и штата Мичиган), работающих в реальном времени (РВ) ЭВМ осуществляли функции оперативного управления по сбору, обработке и отображению информации (SCADA — System Control and Data Acquisition). Определим их, как первую очередь АСДУ. Одновременно те же ЭВМ осуществляли автоматическое регулирование частоты и активной мощности (АРЧМ).

В те годы внимание зарубежных (да и отечественных) специалистов к проблемам совершенствования средств и методов диспетчерского управления крупными ЭО резко усилилось в связи с происшедшей в конце 1965 г. в северо-восточных штатах США и юго-восточной части Канады катастрофой, названной в свое время «аварией века». Она вызвала погашение соответствующего ЭО и прекращение на длительный срок электроснабжения потребителей на огромной территории с населением около 30 млн. человек. Ущерб составил более 2 млрд. долл.

В нашей стране инициатива в постановке вопроса о создании АСДУ как важнейшего средства повышения надежности и эффективности функционирования Единой энергосистемы (ЕЭС) принадлежит Сибирскому энергетическому институту (Л.А. Мелентьев и Ю.Н. Руденко), Московскому энергетическому институту (В.А. Веников), институту «Энергосетьпроект» (Д.А. Кучкин, Б.А. Федоров). Концепция АСДУ была развита в работах Центрального диспетчерского управления (ЦДУ) ЕЭС (С.А. Совалов, В.А. Семенов, Г.А. Черня), ВНИИЭ (В.М. Горн-штейн, Е.В. Цветков, М.Г. Гутсон и др.), ИЭД АН Украины (Л.В. Цукерник и др.), Института электронных управляющих машин (ИНЭУМ) (B.C. Шаханов) и ряда других организаций.

В 1971 г. в ЦДУ ЕЭС и во всех 10 ОДУ эксплуатировались восемь ЭВМ второго поколения типов БЭСМ-4 и М-220, которые использовались для расчетов нормальных, утяжеленных и аварийных режимов по весьма упрощенным моделям, а также для расчета установок релейных защит (РЗ) и автоматической частотной разгрузки (АЧР).

Активизировалась разработка математических методов и программ, обеспечивающих решение задач прогнозирования, оптимизации режимов и надежности энергосистем и энергообъединений. В разработке принимали участие представители научно-исследовательских институтов, в том числе академических и проектных организаций (В.Н. Авраменко, В.А. Баринов, М.Х. Валдма, Н.И. Воропай, А.З. Гамм, В.М. Горнштейн, Б.И. Иофьев, Н.А. Качанова, Л.А. Крумм, Ю.Н. Руденко, Ф.И. Синьчугов, Е.В. Цветков, Л.В. Цукерник и др.).

Первые мини-ЭВМ типа «Видеотон-1010Б» венгерского производства, предназначенные для работы в РВ, были установлены в ЦДУ ЕЭС и двух ОДУ (Северо-запада и Урала) в 1973 г. Началось оснащение энергосистем ЭВМ второго поколения, которые к этому времени были установлены в 16 ЭЭС. На этих ЭВМ, так же как на ЭВМ, установленных в ЦДУ ЕЭС и ОДУ, внедрялись типовые комплексы программ, разрабатываемых ВНИИЭ, ИЭД АН УССР, а также другими организациями.

В 1974 г. в ЦДУ ЕЭС были внедрены оперативный комплекс программ и специальные средства телекоммуникации, позволившие трем ЭЭС Центра осуществлять оперативные расчеты потокораспределения с помощью ЭВМ М-220, установленной в ЦДУ ЕЭС. В том же году в ЦДУ ЕЭС была внедрена в эксплуатацию первая универсальная ЭВМ третьего поколения типа ЕС-1030.

Программой совершенствования системы диспетчерского управления предусматривалось сооружение центрального и девяти зональных управляющих вычислительных центров (ЗУВЦ), оснащенных современными средствами вычислительной техники, сбора и обработки информации. Эти ЗУВЦ, в состав которых входили и ДЦ соответствующих ОДУ, были призваны координировать деятельность по внедрению новых технических средств и программного обеспечения в регионах.

Первый ЗУВЦ (ОЭС Северо-запада) вступил в строй в 1975 г. В том же году были приняты в эксплуатацию первые очереди АСДУ ЦДУ ЕЭС и четырех ОДУ (Урала, Юга, Северо-запада и Казахстана). На этих объектах был освоен полный комплекс программ расчетов долгосрочных и краткосрочных режимов и введены в эксплуатацию мини-ЭВМ, реализующие в ограниченном объеме набор функций, аналогичный тому, который в зарубежных системах именуется термином SCADA. В двух ОДУ (Урала и Северо-запада) на базе мини-ЭВМ «Видеотон-1010Б» были внедрены в эксплуатацию упрощенные системы АРЧМ. Продолжалось оснащение ЭВМ второго поколения на ЭЭС, где они использовались для решения задач АСДУ и задач организационно-экономического управления. Общее число таких ЭЭС достигло 27. Разворачивалось освоение ЭВМ третьего поколения.

В 1976 г. был сдан в эксплуатацию новый ДЦ ЦДУ ЕЭС, а в 1978 г. ЗУВЦ ОЭС Урала.

В течение 80-х годов продолжалась работа по вводу в эксплуатацию ЗУВЦ: Средней Волги (1981 г.), Северного Кавказа (1987 г.), Закавказья (1988 г.), Украины (1989 г.). Все ЗУВЦ оснащались ЭВМ третьего поколения. В то же время развернулась широкая работа по сооружению новых и модернизации действующих ДЦ ЭЭС.

Таким образом, в 80-е годы начался второй этап создания АСДУ в ЕЭС, характеризующийся существенным совершенствованием средств диспетчерского управления на базе ЭВМ третьего поколения, дисплеев, средств отображения информации общего пользования (режимных щитов, информационных табло и др.), новых комплексов телемеханики.

В работы по созданию ЗУВЦ, оснащению их техническими средствами сбора, обработки и отображения информации большой вклад внесли В.И. Бердников, Ю.А. Вихорев, И.И. Вовченко, И.Я. Зейдманис, Н.Д. Кузнецов, УК. Курбангалиев, В.Г. Орнов, Е.И. Петряев, Г.А. Черня и др.

Центральной частью АСДУ стал оперативный информационно-управляющий комплекс (ОИУК), предназначенный для решения всех задач долгосрочного и краткосрочного планирования режимов оперативного и автоматического управления (за рубежом этот комплекс программ называется Energy Management System — EMS). В состав ОИУК входят четыре ЭВМ (две мини и две универсальные), образующие две подсистемы: информационно-управляющую (ИУП) и информационно-вычислительную (ИВП). Подсистема ИУП обеспечивает автоматический сбор и обработку оперативной информации, управление средствами ее отображения, выполнение сравнительно несложных оперативных расчетов, а также функции автоматического управления. Для реализации последних функций ИУП обычно дополняется еще двумя мини-ЭВМ или специальными ЭВМ повышенной надежности. При этом, по сути дела, происходит разделение ИУП на две информационно связанные подсистемы: информационную и управляющую. Реализуемая с помощью мини-ЭВМ ИУП оснащена соответствующими устройствами связи с объектом (ЭЭС).

Подсистема ИВП обеспечивает выполнение оперативных и плановых краткосрочных расчетов по планированию и анализу режимов, выбору установок РЗА. Подсистема строится на базе универсальных ЭВМ средней или большой производительности, позволяющих создавать необходимые архивы данных. Между подсистемами осуществляется обмен массивами информации.

Развитие АСДУ, усложнение функций диспетчерского управления потребовали значительного увеличения объема телемеханической информации: число телеизмерений, поступающих на ДЦ высших уровней управления (ЭЭС, ОДУ, ЦДУ ЕЭС), достигло 500–1000, а телесигналов — 500–1500. Это потребовало модернизации систем телемеханики на основе адаптивных методов передачи информации и центральных программируемых приемопередающих станций (ЦППС), выполненных на базе микроЭВМ типа RPT венгерского производства.

Эти ЦППС обладают следующими возможностями, отличающими их от традиционных приемных устройств телемеханики: взаимодействия с устройствами контролируемых пунктов и другими ЦППС различных типов (благодаря наличию перепрограммируемых канальных адаптеров); адаптивной ретрансляции информации на аналогичный и другие уровни управления без применения специальных ретранслирующих устройств; передачи цифробуквенной информации; подключения цифровых приборов, а также мнемосхемы диспетчерских щитов; простого сопряжения с ЭВМ ОИУК.

Эта работа проводилась совместно со специалистами фирмы «Видеотон» (Венгрия) при активном участии специалистов ВНИИЭ и ЦДУ В.А. Забегалова, В.И. Кочкарева, Г.П. Кутлера, В.Г. Орнова.

Для отображения информации в ОИУК использовались псевдографические, а в отдельных случаях и графические цветные дисплеи. Управление средствами отображения информации коллективного пользования осуществлялось от мини-ЭВМ ОИУК через специальную микроЭВМ.

В качестве средств отображения информации коллективного пользования наряду с традиционными диспетчерскими щитами, оснащенными новыми цифровыми приборами, применяются: информационные табло, режимные щиты с представлением обобщенных показателей режима для ОЭС (ЭЭС) и др.

Новые ОИУК АСДУ к 1990 г. были внедрены в 60 ЭЭС, а также на 42 предприятиях (ПЭС) и районах (РЭС) электрических сетей и на двух предприятиях тепловых сетей. ОИУК, внедрявшиеся в электрических и тепловых сетях, а также в небольших ЭЭС, имели упрощенную структуру и менее мощные ЭВМ.

На девяти ПЭС высокого напряжения на базе мини- и микроЭВМ были созданы автоматизированные системы технологического управления (АСУТП), не показавшие однако высокой эффективности и не получившие поэтому распространения.

Функционирование АСДУ обеспечивалось системой каналов связи, которая на верхних уровнях диспетчерского управления (ЦДУ ЕЭС, ОДУ ЭЭС) реализуется главным образом с помощью арендованных каналов связи, а также каналов по ВЛ высокого и сверхвысокого напряжения и ведомственным кабельным и радиорелейным линиям (РРЛ). Характерная для электроэнергетики связь по линиям 35–750 кВ представляет основной вид связи в звене управления ЭЭС — ЭС или ПЭС. В ЭЭС используются также малоканальные РРЛ. Основным видом связи с подвижными объектами в распределительных сетях является УКВ-радиосвязь. В создании сети связи диспетчерского и технологического управления важную роль сыграли работники служб телемеханики и связи ЦДУ и ОДУ М.А. Артибилов, В.Х. Ишкин и др.

С помощью ОИУК решается весь комплекс задач долгосрочного и краткосрочного планирования режимов, а также следующие задачи оперативного управления: сбор и первичная обработка (достоверизация) текущей технологической информации; формирование суточной ведомости; контроль и идентификация режима (контроль параметров режима, схемы сети, состояния оборудования; анализ ситуации; оценка изменения частоты и мощности; прогноз нагрузки); формирование модели текущего режима, оценка состояния; оценка надежности режима (расчет баланса активной мощности, оперативный расчет установившегося режима, контроль надежности режима по термической стойкости оборудования, оценка тяжести возможных аварийных нарушений схемы сети, оперативная оценка достаточности резерва по активной мощности, оперативная оценка режима по реактивной мощности с целью оценки опасности нарушения устойчивости по напряжению, оперативная оценка надежности режима по критериям статической устойчивости); ретроспективный анализ аварийных событий; контроль за состоянием средств оперативного и автоматического управления (каналов связи, средств телемеханики, устройств РЗ и ПА); оперативный контроль качества электроэнергии; оперативная коррекция режима по активной мощности; оперативный контроль за работой ГЭС и состоянием водохранилищ; формирование советов диспетчеру по реализации резервов ГЭС и по обеспечению надежности ЭЭС в текущем режиме и др.

В составе АСДУ распределительных сетей наряду с многими задачами, перечисленными выше, реализуются также следующие функции: контроль состояния схемы сети; оценка термической стойкости элементов сети (ЛЭП и трансформаторов); определение чувствительности РЗ и надежности действия плавких предохранителей; определение расстояния до места повреждения на ВЛ; расчеты уравнительных токов; моделирование режима сети и др.

Освоение методов искусственного интеллекта, и в первую очередь экспертных систем, позволили создать программы-советчики диспетчера по рассмотрению оперативных заявок на вывод оборудования и средств управления в ремонт, формированию рекомендаций по восстановлению полностью погашенной ЭЭС (энергорайона) и др.

ЭВМ, работающие в составе АСДУ, используются также для реализации функций автоматического управления, основными из которых являются АРЧМ, автоматическое предотвращение нарушения устойчивости (АПНУ), автоматическая корректировка настройки ПА и др.

Специальные программы, функционирующие в составе АСДУ, используются для реализации функций обучения и тренировки оперативного персонала. С помощью ЭВМ реализуются разные формы обучения: постановка вопросов и задач обучаемому; изложение кратких сведений по изучаемой проблеме с иллюстрацией диаграммами, графиками, схемами; моделирование и пересчет режимов в процессе обучения. Система тренажера может реализовать и справочные функции, отвечать на вопросы обучаемого по интересующим его проблемам.

Возможности машинных систем обучения и тренировки оперативного персонала существенно расширяются при использовании удаленных терминалов. Персонал при этом обучается не только выполнению функций управления определенным объектом (ПЭС, ЭЭС), но и использованию средств управления (работе с клавиатурой дисплея, поиску необходимой информации и т.д.). При необходимости в обучении (тренировке) принимает участие инструктор, для которого предусматривается специальный пульт. Подобная система может использоваться одновременно дежурными нескольких ПЭС, на которых установлены соответствующие терминалы.

В 90-х годах развернулись работы третьего этапа по переводу АСДУ на новую платформу (технические средства и программное обеспечение). Эти работы определяются необходимостью замены технически и морально устаревших средств вычислительной техники на ДЦ всех уровней управления. При этом предполагается поэтапный переход от централизованных ОИУК к децентрализованным сетевым структурам.

Вначале в качестве платформы новых ОИУК были выбраны локальные сети (ЛС) персональных ЭВМ (ПЭВМ) и программные средства MS DOS, Windows, Netware Novell, языки программирования С, Pascal, Fortran. В течение нескольких лет было переработано для ПЭВМ и существенно улучшено все прикладное программное обеспечение (ПО), реализованное ранее на ЕС ЭВМ и мини-ЭВМ. Разработано также ПО для ПЭВМ при работе их в реальном времени, коммуникаций между ОИУК разных уровней управления, современного интерфейса для пользователей и др.

На действующих ДЦ модернизация осуществляется без нарушения функций управления за счет стыковки старой и новой платформ, постепенного перевода задач АСДУ со старых технических средств на новые и последующего исключения из ОИУК старых ЭВМ. Практически во всех ОДУ и АОэнерго ЛС ПЭВМ используются для решения основных задач АСДУ, а около 40% ОИУК ЭЭС реализованы только на базе ЛС ПЭВМ (без использования старых универсальных и мини-ЭВМ). Кроме того, на базе ЛС ПЭВМ созданы ОИУК более чем 100 ПЭС и РЭС.

В состав сетевых ОИУК, как правило, входят одна-две ПЭВМ для приема и обработки информации, два файл-сервера и более, одна-две ПЭВМ-коммуникатора (для приема-передачи данных по телефонным и телеграфным каналам), а также необходимое количество ПЭВМ для автоматизированных рабочих мест (АРМ) диспетчеров и технологов. Все ПЭВМ работают под управлением MS DOS в сетевой среде Netware Novell.

Основное отличие модификаций ОИУК — способ ввода (вывода) телеинформации (функции ЦППС). Первый способ предусматривает использование специальных ЦППС (микроЭВМ RPT, приемные устройства телекомплексов). Первый вариант базируется на ЭВМ фирмы IBM System RS/6000. В состав комплекса технических средств входит четыре коммуникационных сервера, два файл-сервера для полнографического диалога и отображения информации. АРМ диспетчера оснащаются большими графическими мониторами. Все ЭВМ RS/6000 подключены к двойной ЛС Ethernet, которая в свою очередь, через мост (бридж) связана с существующей ЛС ПЭВМ. Каналы связи и телемеханики подключаются к программируемым адаптерам, имеющимся в двух коммуникационных серверах. Этот комплекс ориентирован в основном на применение в ЦДУ ЕЭС и ОДУ и является аналогом наиболее современных ОИУК ряда ЭЭС США и Европы. Первые четыре комплекса поставлены в ЦДУ ЕЭС России, ОДУ Урала, Центра и Северо-запада. В последующие годы планируется оснащение такими комплексами остальных ОДУ России.

Комплекс работает под управлением операционной системы OS AIX (UNIX), прикладное программное обеспечение ПО SCADA (основной объем информационных задач ОИУК) поставлено фирмой Siemens Empros. Освоение, адаптация ПО SCADA, подготовка информационного обеспечения осуществляются специалистами ВНИИЭ, ЦДУ ЕЭС и ОДУ Урала.

Второй вариант ОИУК базируется на ЭВМ фирмы «Motorola» или их аналогов «Сапсан Веста», работающих под управлением OS UNIX. Комплекс содержит две взаиморезервированные ЭВМ, включенные в ЛС и оснащенные канальными адаптерами для приема телеинформации и управления диспетчерским щитом. Эти ЭВМ выполняют основной объем задач SCADA, a диалог и отображение информации на первом этапе внедрения осуществляются с помощью ПЭВМ ЛС. В дальнейшем количество UNIX-ЭВМ может наращиваться по аналогии с комплексом на базе ЭВМ RS/6000. Программное обеспечения SCADA для этого комплекса разработано сотрудниками ВНИИЭ и ЦДУ ЕЭС, причем оно может работать и на других UNIX-ЭВМ (RS/6000, SUN и др.). Первые подобные комплексы апробированы и внедрены в ЦДУ ЕЭС, ОДУ Северного Кавказа и «Ленэнерго». Этот вариант ОИУК обладает меньшей производительностью, чем ОИУК на базе ЭВМ RS/6000, но проще и дешевле. Поэтому он рекомендован для большинства ЭЭС и крупных ПЭС.

ВНИИЭ совместно с Научно-техническим центром (НТЦ) ГВЦ РАО «ЕЭС России» разработан ОИУК DC-VAX на базе локальных и региональных вычислительных сетей, которые могут включать в свой состав VAX-ЭВМ, MS-DOS-ЭВМ, UNIX-ЭВМ OS-2 и WINDOWS-ЭВМ. В качестве ядра системы предусматривается использование VAX-совместимых ЭВМ (VAX и DEC-VAX) производительностью 10–24 млн. и 80 млн. операций в секунду соответственно. ЭВМ оснащены ОЗУ с объемом памяти 32–512 Мбайт и накопителями на магнитных дисках 3–5 Гбайт. Надежность ядра системы и сохранность информации обеспечиваются использованием кластерной структуры технических средств, «теневых» дисков и резервированием всех основных элементов комплекса технических средств. В качестве серверов АРМ в первой версии системы используются VAX-совместимые ЭВМ.

Приватизация и акционирование электроэнергетических предприятий России определяют необходимость расширения состава АСДУ за счет комплекса программ, поддерживающих функционирование федерального оптового рынка электрической энергии и мощности. Подобная подсистема под названием Billing and Accounting (Учет и банковские расчеты) успешно функционирует в составе комплекса EMS АСДУ стран с развитой электроэнергетикой.

Поскольку ФОРЭМ, функционирующий в основных сетях ЕЭС России, жестко регулируется и в перспективе его правила будут, безусловно, корректироваться в направлении дерегулирования и усиления конкуренции, представляет интерес изучение опыта ряда стран (Англии, Норвегии, США и др.), значительно продвинувшихся в этой области.

Коммерческие отношения между субъектами ФОРЭМ, в которых диспетчерские подразделения энергокомпаний (ЭК) участвуют во взаимодействии с другими подразделениями, ответственными за реализацию функций экономического управления, охватывают разные временные уровни: перспективное планирование (годы), долгосрочное планирование режимов (месяцы, год), краткосрочное планирование (сутки, неделя), оперативное управление (минуты, часы).

В процессе перспективного и долгосрочного планирования диспетчерские подразделения играют вспомогательную роль, давая оценку допустимости (с точки зрения надежности и пропускной способности соответствующих участков электрической сети) и эффективности реализации тех или иных контрактов и соглашений.

В процессе краткосрочного планирования и оперативного управления диспетчерские подразделения (в том числе дежурный персонал) непосредственно осуществляют функции оператора или брокера на оперативном оптовом рынке электроэнергии и мощности (ООРЭМ). При этом можно выделить следующие функции, реализуемые диспетчерским персоналом, выступающим в роли оператора ООРЭМ: формирование состава участников ООРЭМ (Англия); формирование цен на ООРЭМ [Англия; Норвегия; Нью-Йоркский пул (НП), США]; корректировка цен на ООРЭМ при изменении схемы, режима сети, состава работающих агрегатов; формирование на основании показаний счетчиков электроэнергии и других приборов расчетных документов на ООРЭМ (Норвегия, НП); претензионная работа с субъектами ООРЭМ по оформленным коммерческим документам; контроль оплаты по оформленным документам. Рассмотрим коротко, как реализуются перечисленные функции диспетчерскими подразделениями национальных сетевых компаний (НСК) Англии и Норвегии, а также службами НП (США).

Состав участников ООРЭМ формируется НСК Англии для 48 коммерческих (диспетчерских) интервалов продолжительностью 0,5 ч каждый накануне рабочих суток. При этом к работе в каждом диспетчерском интервале привлекаются агрегаты, владельцы которых предложили поставлять электроэнергию по наименьшим ценам. Если за электроэнергию, произведенную теми же агрегатами, ЭК или независимые производители запросили слишком высокую цену, диспетчер НСК эти агрегаты к работе не допускает, оставляя часть из них в резерве. Стоимость поставляемой производителями электроэнергии для каждого диспетчерского интервала определяется граничной стоимостью, предложенной за электроэнергию, поставляемую последним допущенным к работе агрегатом.

В Норвегии цена электроэнергии для каждого диспетчерского интервала (1 ч) определяется диспетчерской службой (накануне для суточного ООРЭМ или за неделю для недельного оптового рынка электроэнергии и мощности — ОРЭМ). Заметим, что почти вся электроэнергия в Норвегии производится на гидроэлектростанциях. Экономическая характеристика представляет собой данные о намерении субъекта рынка продавать или покупать электроэнергию в зависимости от цен, устанавливающихся на ОРЭМ. Естественно, что при малых ценах ЭК будет стремиться покупать электроэнергию, а при высоких — продавать. На основании этих данных диспетчерский персонал НСК — оператор рынка строит две обобщенные характеристики для ЭЭС в целом, отображающие зависимость суммарного значения предлагаемой к продаже (покупке) мощности (электроэнергии) от цены на нее. В точке пересечения двух кривых определяется цена на электроэнергию в соответствующем диспетчерском интервале. При отсутствии сетевых ограничений для всей ЭЭС определяется для каждого интервала одно значение цены. При наличии узких мест определяется несколько цен, по одной для каждого района, отделенного от остальной части ЭЭС ограничивающим перетоком мощности сечением.

В Англии к граничной цене на электроэнергию для каждого диспетчерского интервала, определяемой при формировании графика и уточняемой по результатам работы, добавляется ряд составляющих, учитывающих участие электростанций в поддержании требуемых значений частоты и напряжения в контрольных точках, их подготовку к «подъему с нуля», а также наличие в ЭЭС резервов мощности. Последняя составляющая может существенно влиять на цену, увеличивая ее в десятки раз. Диспетчер НСК оперативно информирует субъектов ООРЭМ о существенном повышении цены, что стимулирует их реагировать в нужную сторону на изменение режима: поставщиков — увеличивать производство электроэнергии, а потребителей — снижать ее потребление.

В Норвегии в случае возникновения в процессе работы узкого места в сети диспетчер оперативно изменяет региональные цены по обе стороны от узкого сечения, стимулируя увеличение производства электроэнергии в дефицитной части и снижение — в избыточной. В Норвегии также существует понятие о «регулировочном» ОРЭМ (РОРЭМ), под которым понимаются объявляемые диспетчером с целью поддержания нормального значения частоты в ЭЭС за 15–20 мин до наступления соответствующего диспетчерского интервала торги с целью увеличения (при пониженном значении частоты в ЭЭС) или уменьшения (при повышенном значении частоты в ЭЭС) поставок электроэнергии в сеть. Как первая, так и вторая операция реализуются и оплачиваются на конкурсной основе.

В НП США, в состав которого входят девять ЭК, предусмотрена оперативная (каждые 6 мин) оптимизация режима ЭО по активной мощности. Достигаемая при этом прибыль распределяется по граничным стоимостям. Оперативно фиксируются также согласуемые через диспетчера НП поставки по граничным ценам «аварийной» электроэнергии (в случае аварийного выхода из строя агрегата) и «дополнительной» электроэнергии и мощности (в случае оперативного вывода агрегата в ремонт).

Сложные взаиморасчеты между субъектами ОРЭМ, обусловленные изложенными стимулирующими конкуренцию способами назначения цен на электрическую энергию и мощность, определяют необходимость широкого использования в оперативных рыночных отношениях работающих в РВ ЭВМ АСДУ.

5.6.3. ЧЕЛОВЕКО-МАШИННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ СОВРЕМЕННЫМИ ЭЭС

Как было показано, оперативное управление ЭЭС осуществляется автоматизированной системой диспетчерского управления, и деятельность оперативно-диспетчерского персонала представляет собой совокупность связанных между собой функций.

Чтобы обеспечить нормальное функционирование системы, а также правильную реакцию на возникающие возмущения, оперативно-диспетчерскому персоналу необходимо решать такие задачи, как планирование, контроль, регулирование и диагностирование.

Процесс решения задач человеком при диспетчерском управлении В.Н. Пушкин назвал оперативным мышлением, показав, что оперативное мышление диспетчера — основное звено переработки информации в управляющей системе. По данным анализа функций оперативного мышления А.А. Башлыков и А.П. Еремеев построили структуру процессов оперативного

мышления, базирующуюся на понятии модели оперативного мышления для диспетчерского управления (рис. 5.12). Модель содержит всю информацию, характеризующую объект управления, и данные об операторах. Для целенаправленной обработки информации с помощью механизмов мышления организуется логическая последовательность процессов, характеризующих оперативное мышление. Индуктивные механизмы — это процессы обучения и адаптации. Дедуктивные механизмы — процессы анализа и классификации ситуаций, планирования, выбора, решения задач, диапазона, реактивной деятельности.

Единая энергетическая система Российской Федерации (ЕЭС России) представляет собой постоянно развивающийся автоматизированный комплекс электрических станций и сетей, объединенных общим режимом работы и единым централизованным оперативно-диспетчерским управлением.

Известные особенности энергосистемы (совмещенность во времени процессов производства, распределения и потребления электроэнергии, быстрота протекания переходных процессов, тесная режимная связь между электростанциями, удаленными на большие расстояния) обусловили высокий уровень автоматизации управления всем сложным технологическим комплексом от источника до потребителя электроэнергии и теплоты.

С развитием энергосистем, расширением объема автоматизации и телемеханизации энергетических объектов менялась не только структура оперативно-диспетчерского управления, но и сам характер и способ труда оперативного персонала. Теперь большинство подстанций работает без постоянного дежурного персонала, оперативный персонал снят с небольших гидроэлектростанций, уменьшена его численность на ГЭС средней и большой мощности, распространено дежурство на дому, созданы оперативно-выездные бригады, прибывающие на контролируемый объект по мере необходимости.

Каждый элемент энергосистемы находится в управлении оперативного руководителя только одной ступени управления. Однако он может находиться в ведении нескольких оперативных руководителей одной или разных ступеней управления.

Рис. 5.12. Модель оперативного мышления 

Состояние аварийности в отрасли подтолкнуло более предметно заниматься подготовкой персонала, в том числе выработкой определенных, диктуемых техническим прогрессом в энергетике требований к его квалификации. Здесь на первый план выступает правильность принимаемых решений, т.е. умение адекватно оценить режимную ситуацию (состояние среды и функционирование объекта), а также предвидеть последствия выполняемых действий: ведут ли они к достижению ожидаемого результата или будут отрицательными.

Не менее важна и своевременность вмешательства, т.е. оперативность действий в рамках функционирующей большой производственной системы.

Автоматизация управления объектами позволяет решить большинство из этих задач. Однако во всех случаях окончательное решение остается за человеком, несущим всю полноту ответственности за ошибочные действия как свои, так и средств автоматики. Человек ответственен перед другими за деятельность вверенного ему объекта, пусть и оснащенного самыми совершенными средствами автоматизации.

С точки зрения профессиональной подготовки эксплуатационный персонал должен владеть умением самостоятельно управлять производственным процессом, контролировать деятельность средств автоматики, знать особенности технологического оборудования и систем управления, с тем чтобы определять возможный диапазон изменения режимов работы оборудования и энергосистем, а также нести полную ответственность за принимаемое решение и за конечный результат.

Во всех случаях надежность человека зависит от следующих факторов:

степени инженерно-психологического согласования техники с психофизиологическими возможностями оператора при решении возникающих задач;

уровня обученности и тренированности;

психофизиологических особенностей личности, порогов чувствительности, в том числе физиологического состояния в данный момент.

Для всей системы диспетчерского управления сложным энергообъединением характерно то, что по мере перехода от низшего звена к высшему функции управления расширяются соответственно увеличению объема и усложнения задач по ведению режима. Объем же оперативных задач относительно сокращается, при этом ответственность не только не снижается, а, как правило, возрастает.

На низших звеньях диспетчерского управления в электрических сетях чисто оперативные функции считаются основными. В энергосистемах разработка и ведение режима составляют уже значительную часть функций Центральной

диспетчерской службы. На диспетчера энергосистемы возлагаются оперативные функции, которые не могут быть переданы подчиненному оперативному персоналу.

Наиболее ответственна работа оперативного персонала во время аварийных ситуаций, сопровождающихся психологическими и физиологическими стрессами, интенсивность которых связана с внезапностью и возможными тяжелыми последствиями для страны.

Анализ нарушений в работе энергетического оборудования показывает, что из множества причин (например, оперативный персонал не способен успешно ликвидировать аварийные ситуации) основные — профессиональная непригодность и низкий уровень подготовленности к действиям в аварийных ситуациях.

Программа обучения эксплуатационного персонала должна разрабатываться на базе квалификационных требований, должностных инструкций с учетом того, что подготовка эксплуатационного персонала для объектов энергетики — одно из главных направлений в обеспечении надежности энергетического производства, где скорость протекания технологического процесса очень велика, а последствия ошибочных действий в силу высокой взаимосвязанности энергетических процессов со всеми сторонами человеческой деятельности особенно масштабны.

Наиболее эффективны такие средства обучения, как специализированный тренажер-советчик при плановом изменении состояния, эксплуатационном обслуживании и обеспечении безаварийной и экономичной работы оборудования, а также комплексный (КТ) и специализированный (СТ) тренажеры при ведении режимов работы оборудования на всем протяжении технологических процессов.

Программно-технические комплексы (ПТК) специализированных тренажеров-советчиков, КТ и СТ используются как средства отработки навыков и как автоматизированные обучающие системы (АОС) для получения и углубления теоретических знаний.

Энергосистемы России имеют многообразную программную продукцию для тренинга персонала на базе ПЭВМ. На предприятиях создаются условия для реализации и функционирования системы подготовки персонала с использованием АОС и, в первую очередь, ПЭВМ.

Реализуется отраслевая система подготовки эксплуатационного персонала. По программе методологического и материального обеспечения планируется четырехуровневая система подготовки персонала на производстве: отраслевой тренажерный центр; региональные тренажерные центры; центры тренажерной подготовки и учебно-курсовые комбинаты энергообъединений; пункты тренажерной подготовки при энергопредприятиях.

Основные законы трансформаций и эволюции структур систем человек — машина — среда:

Первый закон взаимной адаптации (коадаптики) утверждает, что синтез и динамика развития любой системы есть процесс взаимной адаптации компонентов системы между собой и системы с внешней средой.

Для обозначения процесса повышения степени взаимной адаптации внутренних компонентов системы человек — машина — среда (СЧМС) целесообразно применять термин конвергенция, а для высокой степени — синхронизация. Обратные процессы — дивиргенция, десинхронизация. Состав системы, ее структура и стратегия относительны. Стратегия — это внешнее функциональное проявление закономерности процессов взаимной адаптации внутренних компонентов системы (структуры) при взаимной адаптации системы с внешней средой.

Второй закон определяет существование и развитие живой системы как процессы взаимной опережающей многоуровневой адаптации компонентов системы между собой и системы с внешней средой.

Применительно к СЧМС, если возникает динамика среды (изменяются процессы взаимной адаптации человека с машиной и средой), человек формирует прогноз и на его основе осуществляет процесс многоуровневой адаптации — внутренней и внешней.

Стратегия деятельности человека-оператора в СЧМС может быть выражена закономерной зависимостью показателей его взаимной адаптации с машиной и средой, имеющими динамические параметры.

Исследованиями Т.Б. Шеридана, У.Р. Феррела, А.Ф. Дьякова, В.Ф. Венды и др. установлено, что основная причина низкой эффективности деятельности оператора при авариях не задержка в опознании аварийных сигналов, а включение под действием стресса в число аварийных многих второстепенных и случайных сигналов, не относящихся к аварии. Возможности оператора взаимно адаптироваться с машиной и средой характеризуются его чувствительностью (сенсорный фактор), способностью прогнозировать (интеллектуальный фактор) и его пластичностью (трансформационный фактор).

Перечисленные факторы взаимосвязаны. Поэтому можно ожидать, что показатели деятельности оператора с СЧМС будут оптимальными и устойчивыми при условии такой взаимной адаптации между факторами, при которой они составили бы структуру, обеспечивающую требуемую стратегию.

Необходимо исследовать не динамику человека, машины и среды, а параметры процессов взаимной адаптации между ними, т.е. в СЧМС процесс взаимной адаптации человека с машиной и средой должен оцениваться только по интегральным оценкам (критериям оптимизации) этих процессов, ибо и показатели работы оператора, и показатели функционирования СЧМС неразрывно связаны с общими затратами ресурсов на отбор и обучение персонала, проектирование, создание и освоение технических средств.

Третий закон можно характеризовать как закон дискретных рядов структур-стратегий, сложных систем. Любая сложная система может быть реализована посредством одной из дискретного ряда ее возможных структур.

Человек в процессе адаптации с машиной и средой реализует структуру-стратегию из набора возможных для него структур-стратегий.

Каждая структура-стратегия Si (рис. 5.13) имеет свои характеристические кривые Qi(Fj), где Qi — эффективность системы при i-й структуре-стратегии; Fjj-й фактор процесса взаимной адаптации человека с машиной и средой.

Рис. 5.13. Структура-стратегия сложной системы
Sa — отдельные элементы; Sb — малые группы; Sc — большие группы; Q — эффективность восприятия; F — число фиксаций глаза при разных стратегиях восприятия 

Правило инвариантности интегральной эффективности системы: при постоянном составе компонентов и их активности интегральная эффективность системы при всех ее возможных структурах-стратегиях постоянна:

т.е. площади под кривыми Sa, Sb, Sc с учетом дисперсии равны.

Четвертый закон (закон трансформаций) утверждает, что трансформация одной структуры-стратегии системы в другую может происходить только через общее для обеих структур-стратегий состояние системы.

При рассмотрении закона трансформаций следует учесть, что состав компонентов системы при изменении ее структуры сохраняется. Новая структура возникает только на базе предыдущей путем ее частичной дезадаптации. Такая декомпозиция должна быть достаточной для получения дополнительных, необходимых для постройки новой структуры степеней свободы компонентов системы. При этом сохраняется достигнутая при прежней структуре взаимная адаптация части компонентов, соответствующая новой структуре.

Пятый закон (закон базовых дивергентных структур-стратегий) отражает способность живой системы формировать и реализовывать базовую дивергентную структуру-стратегию для сохранения жизнеспособности и подготовки к значительным трансформациям своей конвергентной структуры-стратегии в неадекватно возникших условиях.

В искусственных системах подобные структуры могут быть выполнены как модульные, агрегатные и блочные конструкции, а также гибкие автоматизированные производственные системы, перестраивающиеся через базовые дивиргентные к новым специализированным структурам.

По определению Международной эргономической ассоциации человеческий фактор есть комплекс психофизических, психологических и физиологических особенностей поведения человека в производственной среде (в частности, в системе управления).

Наиболее распространенная причина ошибок операторов — неадекватное обеспечение их информацией: сигналов поступает либо слишком мало, либо слишком много. При этом оператор теряется в них, не может сосредоточиться на главном, т.е. оказывается перегруженным информацией. Таким образом, необходимы регулирование, оптимизация интенсивности потока сигналов, поступающих к оператору, с целью индивидуальной адаптации их числа к реальным возможностям конкретного человека.

Задача комплексного управления энергосистемой в том, чтобы не только в нормальном, но и в аварийном состоянии принимались рациональные методы и алгоритмы управления, обеспечивающие заданное качество электроэнергии при минимальном ущербе у потребителей. При этом особое значение имеет применение компьютерных моделей для исследования и прогнозирования динамики технико-экономических показателей работы энергетических объектов и систем в широком спектре условий при качественном изменении технологических параметров. Компьютерные модели важно использовать и при модернизации оборудования и систем автоматического управления, и при обучении и переподготовке оперативного персонала.

Определение необходимого специалисту запаса стратегий деятельности для успешной работы во всем диапазоне динамики управляемых процессов, а также реверсивных (обратных) трансформаций этих стратегий при смене режимов работы оборудования (в том числе при возникновении и ликвидации аварийных ситуаций) — важное условие создания фундаментальной теории и практических методов ускоренного и качественного обучения операторов.

В связи с этим особое значение приобретает поиск путей повышения эффективности тренажно-моделирующих комплексов (в частности, путем более точного воспроизведения на них динамики состояний энергообъектов, параметров реальной физической среды, оперативных задач, условий и процессов взаимодействия операторов между собой, с ЭВМ, другими автоматическими устройствами и системами).

Безопасность энергетических объектов и их технико-экономическая эффективность в значительной степени зависят от учета эргономических и психологических факторов управления на всех стадиях проектирования, создания и освоения технологического оборудования и объекта в целом (включая средства автоматизации, информационное обеспечение операторов, конструирование и применение тренажеров и других технических средств обучения персонала).

Безопасность человеко-машинных систем снижается при качественной структурной трансформации управляемых объектов и процессов, если операторы не успевают синхронно с динамикой объекта трансформировать свое состояние и структуру деятельности, своевременно перейти от нормальной стратегии управления к аварийной.

Для обеспечения оператора информацией по объекту управления (ОУ) в номинальных и аварийных режимах реализованы системы поддержки принятия решения (СППР) оператором объекта. Наиболее эффективны экспертные СППР, отличающиеся от традиционных систем обработки информации тем следующим:

они ориентированы на классы задач, для решения которых известные математические методы и модели трудноприменимы или неприменимы вообще;

строятся в условиях, когда алгоритм поиска решений в каждом из определенных классов задач может быть заранее неизвестен; имеют возможность накапливать знания в процессе обучения;

обладают способностью анализировать найденные решения и объяснять ход их получения;

обеспечивают «дружественный», как правило, естественно-языковый интерфейс с пользователем.

Особенность экспертных СППР заключается в том, что они имеют механизм включения в модель проблемной области различных способов решения задач. Эти способы решения экспертная СППР получает от различных специалистов в области управления (экспертов), обобщает их и учится применять для решения задач в оперативном режиме функционирования.

Типовая архитектура экспертной СППР (рис. 5.14) включает в себя ядро экспертной системы, а также подсистемы приобретения знаний, подсистемы объяснения и подсистемы взаимодействия с пользователем и объектом. В ядро экспертной системы входят базы данных и знаний, а также решатель, который на основе информации из базы данных и базы знаний осуществляет поиск решения. Подсистема приобретения знаний используется при настройке экспертной системы на решение задач в конкретной проблемной области, а также при корректировке базы знаний. Подсистема объяснения поясняет по требованию пользователя, каким образом экспертная система получила решение. Подсистема организации взаимодействия с пользователем включает в себя один или несколько лингвистических процессов, предназначенных для организации диалогового взаимодействия с различными категориями пользователей (экспертом, оперативным персоналом) на привычном для них языке. Важное требование к этой подсистеме — поддержание диалога в режиме реального времени. В задачу этой подсистемы входит и получение информации непосредственно от объекта.

Рис. 5.14. Типовая архитектура экспертной СППР 

В отечественной энергетике нашли применение и успешно используются в диспетчерском управлении энергосистемами так называемые интеллектуальные системы поддержания принятия решения, построенные на базе разработанной во ВНИИЭ (Ю.Я. Любарский) инструментальной системы малой информационной модели интеллектуальных решений. Успешно эксплуатируются интеллектуальные системы для краткосрочного планирования ремонтов, интеллектуальные тренажерные системы, интеллектуальные системы для оперативной работы с инструктивно-справочной информацией. Прорабатываются возможности использования интеллектуальных систем для задач долгосрочного планирования баланса активной мощности энергообъединения. Разработана экспертная система СПРИНТ, помогающая диспетчеру в решении задач, связанных с управлением текущим режимом работы энергосистемы.


5.7. ЭЛЕКТРОТЕХНИКА В ВОЕННОМ ДЕЛЕ

5.7.7. ИСТОЧНИКИ ЭЛЕКТРОЭНЕРГИИ, ЭЛЕКТРИЧЕСКИЕ СЕТИ И ФОРМИРОВАНИЕ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ ВОЕННОГО НАЗНАЧЕНИЯ

Еще во второй половине XIX в. на кораблях появились первые электрические станции мощностью в несколько киловатт на напряжение 30–50 В постоянного тока для питания прожекторов и систем освещения. Генераторы приводились во вращение с помощью паровых машин. В 90-х годах в связи с активным внедрением корабельных электроприводов мощность корабельных электроэнергетических систем (ЭЭС) существенно увеличивается и достигает сотен киловатт при напряжении 110 В постоянного тока. Для повышения живучести системы на кораблях начинают использовать несколько генераторных агрегатов, а на крупных кораблях — две взаимно резервирующие электростанции. Рост электрификации кораблей и мощности их электростанций происходит и в последующие годы. В качестве основных источников электроэнергии стали применяться турбо- и дизель-генераторы. К 1914 г. в значительной степени были электрифицированы корабли всех классов. В 1911–1915 гг. на линейных кораблях стали сначала частично, а затем и полностью выполнять ЭЭС на трехфазном переменном токе с частотой 50 Гц, напряжением 220 В. Для питания электроприводов башенной артиллерии и некоторых других электроприемников использовались электромашинные преобразователи переменного тока в постоянный. Корабли других классов в этот период и в последующие годы имели системы на постоянном токе при напряжении ПО и 220 В.

В 30-х годах XX в. в связи со значительным ростом мощностей электрифицируемых механизмов и систем вновь возник вопрос о выборе рода тока для военных кораблей. После ряда опытных разработок, подтвердивших эффективность, высокую надежность и живучесть электроустановок переменного тока, началось планомерное внедрение трехфазных ЭЭС напряжением 220 и 380 В на кораблях всех классов.

Особая задача возникла в области электрификации подводных лодок. Уже в начале XX в., как основной, выявился дизель-аккумуляторный тип лодок, использующий для надводного хода дизель, а для подводного — аккумуляторную батарею. Это потребовало создания особо мощных лодочных аккумуляторов, многократно превышающих по емкости аккумуляторы, широко применяемые в различных видах техники, в том числе и для военных объектов.

Активная электрификация кораблей привела к изменению требований к их базированию. Выявилась задача береговой энергетики флота, связанная с организацией электроснабжения кораблей с берега при их стоянке у причалов. Обусловлена она целесообразностью максимального сохранения ресурса автономных источников электроэнергии кораблей для боевой службы в море. Стали создаваться специализированные системы электроснабжения причального фронта, а сами причалы оборудоваться специальными колонками для подключения кораблей к береговым источникам энергии постоянного и переменного тока.

Обязательным элементом пунктов базирования подводных лодок в 30-х годах становятся зарядно-питательные станции, оборудованные мощными преобразователями переменного тока в постоянный и предназначенные не только для питания электроэнергией подводных лодок во время стоянки у причала, но и для зарядки лодочных аккумуляторных батарей.

К началу Великой Отечественной войны многие военно-морские базы имели весьма развитые ЭЭС с собственными постоянно действующими резервными и автономными электростанциями, развитыми сетями и разнообразными потребителями.

В качестве примера, характеризующего развитие береговой энергетики флота, может служить главная (позднее — тыловая) база Балтийского флота город — крепость Кронштадт. Еще в 1900 г. была введена в действие первая тепловая электростанция Кронштадта мощностью 552 кВт. Три однофазных генератора напряжением 220 В приводились в движение поршневыми паровыми машинами мощностью по 250 л.с. Генераторное напряжение трансформаторами поднималось до 2000 В и воздушными линиями передавалось к потребителям, где снижалось до 220 В.

В 1912 г. в Кронштадте была построена новая электростанция с шестью паровыми турбинами мощностью по 300 кВт, на валу каждой из которых располагались два генератора — однофазного и трехфазного тока. К 1914 г. станция была реконструирована, число агрегатов увеличилось до 11, а мощность станции достигла 4 тыс. кВт. Одновременно реконструировалась сеть с переходом на кабельные линии, число трансформаторных подстанций возросло до 69.

В 1929 г. для электроснабжения кораблей с берега постоянным током на западной дамбе «Усть-Рогатка» построили первую преобразовательную подстанцию с электромашинными преобразователями. В 1933–1938 гг. вошли в строй преобразовательные подстанции с ртутными выпрямителями мощностью 50 и 100 кВт. В те же годы в Кронштадте была сооружена зарядовая станция.

В середине 30-х годов ЭЭС Кронштадта была связана с системой Ленэнерго двумя кабельными линиями 35 кВ, проложенными на остров Котлин с южного и северного берегов Финского залива. В Кронштадте соорудили подземную трансформаторную подстанцию 35/6 кВ. Началось снабжение Кронштадта от централизованной государственной системы, а собственная электростанция перешла в режим резервной и пиковой.

В годы Великой Отечественной войны, несмотря на постоянные ожесточенные бомбардировки и артобстрелы, приводящие к повреждению энергетических объектов, Кронштадтская ЭЭС не только обеспечивала боевую деятельность всей военно-морской базы, но и работала во время блокады Ленинграда параллельно с единственной действующей городской электростанцией мощностью всего 3000 кВт, подавая спасительные киловатт-часы для поддержания жизни и обороны города. В то же время через подводный кабель Кронштадт постоянно обеспечивал электроэнергией защитников знаменитого Ораниенбаумского «пятачка», отрезанного от других источников энергии.

Аналогичный путь прошли электроэнергетические системы сухопутных и, особенно, приморских крепостей (фортов). Сначала электрическое освещение и электрические средства связи, затем электрификация механизмов жизнеобеспечения и артиллерии. В качестве источников энергии на первых этапах использовались локомобили и паровые машины, затем, как правило, только дизель-генераторы мощностью от десятков до сотен киловатт.

Крепостные электроэнергетические системы были первыми стационарными системами военного назначения. Наиболее развитыми в электроэнергетическом отношении были береговые башенные артиллерийские батареи, строительство которых началось в 1909 г. (форты Александровский (Красная Горка) и Николаевский (Ино) на Финском заливе), активно продолжалось в годы первой мировой войны, и наибольший размах получило в тридцатых годах на всех флотах нашей страны.

5.7.2. ПЕРЕДВИЖНЫЕ ЭЛЕКТРОСТАНЦИИ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

Развитие электроэнергетики в полевых частях сухопутных войск в значительной мере определялось основополагающим требованием мобильности. Первая русская передвижная электростанция была создана в 1913 г. для электрического освещения минных галерей. Генератор постоянного тока мощностью 2,4 кВт и напряжением 110 В приводился во вращение карбюраторным двигателем с водяным охлаждением. Агрегат был съемным и транспортировался гужевым транспортом. Станции придавался специальный двужильный кабель.

В годы первой мировой войны в армии передвижные электростанции использовались также для радиотелеграфных и прожекторных установок, для освещения штабов. К концу войны имелись на вооружении пять типов зарядно-осветительных станций постоянного тока мощностью от 0,4 до 12 кВт и напряжением от 80 до 210 В.

С начала 20-х годов передвижные электростанции для армии пришлось создавать заново. В 1925 г. была разработана первая комплектная передвижная зарядно-осветительная станция для полевых войск мощностью 2,75 кВт напряжением 120 В с бензиновым двигателем. Станция имела в комплекте 80 электроламп и транспортировалась гужевым способом. В 1930 г. станцию стали транспортировать автомобилем и снабдили новым двигателем мощностью 3 кВт, и она получила наименование АЭС-1 (автомобильная электрическая станция первого типа).

В 1931 г. промышленность выпустила силовую передвижную станцию постоянного тока мощностью 10 кВт и напряжением 120 В (АЭС-2) для питания электрифицированных инструментов при производстве военно-инженерных работ, а в 1935 г. — аналогичную станцию мощностью 12 кВт переменного тока 230/133 В (АЭС-3). В обоих случаях привод генератора осуществлялся от автомобильного привода через специальный редуктор. В том же году была создана силовая станция переменного трехфазного тока мощностью 24 кВт для тех же целей, транспортируемая вместе с инструментом, осветительными средствами и сетями на двух тракторных прицепах (ТЭС-1). В качестве первичного двигателя в них использовался автомобильный двигатель типа ЗИС-5. В 1936 г. была выпущена такая же станция на трехосных автомобилях ЗИС-6 (АЭС-4).

Эти типы передвижных электростанций были основными в сухопутных войсках в предвоенные годы и в годы Великой Отечественной войны. Они широко использовались инженерными войсками, войсками связи и другими родами сухопутных войск.

Наряду с разработкой и совершенствованием передвижных электростанций средней мощности (12 и 24 кВт) создавались и специализированные электростанции малой мощности. Так, в 1937 г. на вооружение армии поступила вьючная электростанция с трехфазными генераторами мощностью 1,5 кВт, напряжением 230/133 В для горных частей, а в 1939 г. — переносная электростанция типа ДРП-1 с ручным приводом для освещения полевых медицинских пунктов. Одновременно решался вопрос и о временном электроснабжении крупных групп военных потребителей. В 1934 г. был построен первый в мире энергопоезд мощностью 700 кВт на базе тепловоза, состоящий из нескольких вагонов, в которых располагалось машинное оборудование и распределительные устройства высокого и низкого напряжения. Два таких энергопоезда поступили на вооружение по заказу инженерного управления Советской Армии в 1937 г. Это были первые передвижные станции на высоком напряжении (6 кВ). Распределительная сеть выполнялась воздушными линиями, у потребителей использовались стационарные и передвижные трансформаторные подстанции.

Передвижные войсковые трансформаторные подстанции типа ТП-30 и ТП-75 мощностью 30 и 75 кВ?А напряжением 6000/230 В, предназначались для электроснабжения войск от местных сетей высокого напряжения, начали выпускаться с 1935 г. Эти подстанции вместе с кабельной сетью, принадлежностями для подключения к местным сетям и инструментам монтировались сначала на тракторных, а позднее на автомобильных прицепах.

В годы Великой Отечественной войны передвижные электростанции активно использовались всеми родами войск и службами, обеспечивающими боевые действия войск.

Опыт Великой Отечественной войны доказал острую потребность войск в передвижных электростанциях и послужил базой для ее существенного развития в послевоенные годы.

5.7.3. СОВРЕМЕННЫЙ ЭТАП ЭЛЕКТРОСНАБЖЕНИЯ ВОЕННЫХ ОБЪЕКТОВ

Современный этап электроснабжения военных объектов непосредственно связан с развитием ракетно-ядерного оружия, начавшимся в середине столетия. Это привело к коренным изменениям структуры и технического оснащения войск. В нашей стране были созданы новые виды вооруженных сил — ракетные войска стратегического назначения (РВСН) и войска противовоздушной обороны страны (ПВО). Качественные изменения претерпели другие виды вооруженных сил и рода войск. Главной ударной силой военно-морского флота стали ракетоносные атомные подводные лодки и военная авиация, резко повысились требования к базированию флота и авиации. Полностью механизированными стали сухопутные войска. Вооруженные силы оснащались новейшим вооружением и боевой техникой, отвечающей современным требованиям и условиям ведения войны.

Изменения в военном деле происходили на фоне общей научно-технической революции, связанной, в частности, в рассматриваемый период с бурным развитием радиоэлектроники, прежде всего полупроводниковой техники, микроэлектроники, электронной вычислительной техники, лазерной техники, а также с развитием ядерной энергетики.

Одно из характерных последствий изменений в военном деле — резко возросшая роль в обеспечении обороноспособности страны стационарных военных объектов различного назначения, заблаговременно возводимых в мирное время методами капитального строительства. Такие объекты, содержащие в своем составе сооружения боевого и технического назначения, обеспечивающие выполнение объектом боевых задач, можно обобщенно назвать специальными военными объектами (СВО). К их числу относятся: позиционные районы РВСН, содержащие пусковые установки ракет, пункты управления подразделениями, частями и объединениями, сооружения для хранения и приготовления оружия и пр.; объекты противоракетной и противовоздушной обороны с радиолокационными станциями различного назначения, стартовыми сооружениями зенитных ракет и антиракет; военно-космические комплексы; командные пункты управления различного ранга, оснащенные необходимыми средствами боевого управления, оповещения, сбора и обработки информации, различными средствами связи; узлы проводной связи, радиоприемные и радиопередающие центры различного назначения; пункты базирования кораблей ВМФ, аэродромы военной авиации и многие другие.

СВО оснащаются сложной и разнообразной боевой техникой и вооружением, средствами жизнеобеспечения личного состава, требующими для своего функционирования постоянного снабжения электроэнергией. Роль электроснабжения в обеспечении боевой деятельное! и таких объектов принципиально важна.

Большая, иногда исключительная, важность СВО вынуждает предъявлять к их ЭЭС особо жесткие требования по надежности и живучести при воздействии оружия противника, поскольку отказ или поражение ЭЭС практически равносильно выходу из строя или боевому поражению самого объекта. Требования высокой надежности и живучести для ЭЭС СВО являются доминирующими и функциональными, а не экономическими, как для ЭЭС гражданского назначения. Для ЭЭС СВО фактор экономичности — важный, но подчиненный тактическим требованиям надежности и живучести.

Как правило, СВО сооружаются на удалении от энергетически развитых промышленных и гражданских районов, а сами элементы боевых порядков СВО (площадки, сооружения) рассредоточиваются на местности так, чтобы уменьшить ущерб от воздействия оружия противника. Вследствие этого СВО характеризуются развитыми электрическими, преимущественно кабельными, сетями.

Потребители электроэнергии на СВО весьма разнообразны по функциональному назначению, особенностям режимов, требованиям к электроснабжению и т.п. На СВО применяются потребители как трехфазного, так и однофазного тока с частотой 50 Гц напряжением до и выше 1 кВ, а также потребители переменного тока повышенных частот (200, 400, 1200 Гц) напряжением до 1 кВ, и постоянного тока в широком диапазоне напряжений. В ЭЭС СВО в связи с этим широко представлены трансформаторные и преобразовательные подстанции и установки различного типа. Преобладают электроприемники с высокими требованиями к надежности электроснабжения, что вынуждает резервировать как источники энергии, так и электрические сети.

Для многих ЭЭС СВО характерен длительный, часто многолетний, режим боевого дежурства с постоянной готовностью к немедленному переходу в режим автономности или боевой работы, отличающийся, как правило, наибольшей энергоемкостью. Присущая СВО ограниченная численность обслуживающего персонала и экстремальные условия его деятельности в боевых режимах требуют автоматизации как элементов, так и ЭЭС в целом, способности их длительного функционирования без вмешательства человека.

Эти особенности СВО как потребителей энергии обусловили принцип их построения в виде трехуровневой структуры.

Система (подсистема) внешнего электроснабжения объекта, включающая в себя питающие линии и пункты приема электроэнергии от государственной или региональной электрической системы, обеспечивает длительное и экономичное электроснабжение объекта в режиме боевого дежурства.

Система (подсистема) внутреннего электроснабжения объекта, включающая в себя распределительные сети и резервные электростанции, обеспечивает замещение системы внешнего электроснабжения при ее плановых и аварийных отключениях.

Для СВО, размещаемых вне зоны централизованного электроснабжения, вместо резервной предусматривается объектовая сильно резервированная постоянно действующая незащищенная электростанция наиболее экономичного для местных условий типа (чаще на базе тихоходных дизелей с большим моторесурсом, реже — паротурбинная или атомная ТЭЦ).

Система (подсистема) автономного электроснабжения специальных фортификационных сооружений, включающая электрические сети и защищенную автономную электростанцию, обеспечивает живучесть электроснабжения потребителей, непосредственно выполняющих боевую задачу.

Надежность и живучесть ЭЭС СВО обеспечивается большим комплексом организационно-технических мероприятий, важнейшими из которых являются широкое использование резерва, применение электрооборудования повышенной надежности, а также оборудования повышенной стойкости к воздействию поражающих факторов современного оружия в сочетании с мерами и средствами защиты от воздействия этих факторов.

Основа электроэнергетики СВО — стационарные быстроходные компактные комплексно автоматизированные дизель-электрические установки, выпускаемые промышленностью в широком диапазоне мощностей (от 12 до 5600 кВт), а также установки гарантированного питания (УГП), обеспечивающие не только бесперебойность, но и высокую надежность, а также высокое качество электроэнергии во всех режимах работы.

Главной особенностью развития «корабельной энергетики» следует считать разработку ядерных энергетических установок подводных лодок и крейсеров, обеспечивающих высочайший уровень энерговооруженности кораблей, возможность существенного увеличения длительности автономного плавания. Береговая энергетика флота оснастилась передвижными средствами (электростанциями, подстанциями, комплектами кабельных сетей и др.), способными обеспечить электроснабжение кораблей с необорудованного побережья в пунктах маневренного базирования.

5.7.4. ЭЛЕКТРИФИКАЦИЯ ОСНОВНЫХ МЕХАНИЗМОВ ВОЕННОЙ ТЕХНИКИ

На 3-й электротехнической выставке в Петербурге в 1885 г. демонстрировалась электропередача постоянного тока, приводившая в действие несколько различных станков и показывающая важные для промышленности возможности группового электропривода. Инициатором и создателем этой демонстрационной установки было Военно-артиллерийское ведомство, а передача электроэнергии на нее осуществлялась из мастерской патронного завода этого ведомства, удаленной от выставки более чем на 1,5 км. Объясняется это тем, что в рассматриваемый период осуществлялась модернизация вооружения русской армии и флота, и большая программа казенных артиллерийских заводов требовала расширения их производства и использования в технологических процессах новейших достижений науки и техники. Не случайно, что электрическое освещение, позволяющее организовать ведение ночных работ, появилось на артиллерийских заводах раньше, чем на других предприятиях.

В конце 80-х годов для судовых вентиляторов военных кораблей был применен электропривод постоянного тока. В 1892 г. на броненосце «12 апостолов» установили первый рулевой электропривод. В период с 1897 по 1903 гг. значительное число судов русского флота получили электрифицированные шпилевые, рулевые, грузоподъемные и другие механизмы. С 1908 г. для привода водоотливных насосов и вентиляторов на многих кораблях начинают применяться асинхронные двигатели переменного тока. Аналогичный процесс электрификации основных механизмов осуществлялся и в крепостях.

Значительным шагом в применении электротехники в военном деле явилось создание артиллерийских электроприводов и приборов управления стрельбой. Вторая половина и, особенно, конец XIX в. характеризовались бурным развитием броненосного кораблестроения, переходом от гладкоствольных орудий к нарезным, резким возрастанием роли артиллерии как главного боевого средства тех времен.

В начале XX в. во многих странах появились корабли дредноудного типа (линкоры) с особо мощной артиллерией главного калибра (305–406 мм) и соответствующим бронированием. Необходимость обороны баз флота и других военных береговых объектов от этих кораблей потребовала адекватного развития морской береговой артиллерии.

Эффективность артиллерийского огня зависит не столько от массы (калибра) снаряда, сколько от массы металла, поражающего неприятеля в единицу времени, т.е. от совокупности калибра и скорострельности артиллерии.

Необходимость повышения скорострельности орудий, особенно тяжелых орудий крупного калибра, стимулировала развитие артиллерийского электропривода и систем управления стрельбой.

Электрификация артиллерийских систем началась в 90-х годах XIX в. и непрерывно развивалась. Сначала электрифицировалась подача боезапаса из погребов к орудиям, затем вращение башни и вертикальное наведение орудий и, наконец, заряжение орудий снарядом и двумя полузарядами. К артиллерийскому приводу предъявлялись очень сложные требования: кратковременность циклов работы, строгая взаимная замкнутость и последовательность операций, преобладание динамической нагрузки, необходимость эффективного торможения и точности остановки, для некоторых приводов — регулирование частоты вращения в широких пределах. Вследствие специфики требований артиллерийский привод осуществлялся, как правило, на постоянном токе.

Важное значение имела также разработка приборов управления стрельбой, обеспечивающих повышение скорости и точности наводки орудий на цель. Первыми приборами, которые предложил известный морской артиллерист-изобретатель А.П. Давыдов в 1867 г. для усовершенствования залповой стрельбы, был кренометр, замыкающий электрическую цепь при прохождении палубы через «ноль», и электромагнитное приспособление для производства выстрела из орудия. В 1870 г. он создал «Систему аппаратов автоматической стрельбы», состоящую из гальванического индикатора, гальванического кренометра, спусковых и сигнальных приборов и действовавшую посредством электрического тока от гальванических батарей. Эта система с 1872 по 1876 гг. проходила испытания на русской броненосной плавучей батарее «Первенец», после чего была принята на вооружение кораблей флота и береговых артиллерийских батарей.

С тех пор системы управления стрельбой (артиллерийской, торпедной, а впоследствии и ракетной) непрерывно совершенствуются. Такие системы обеспечивают централизованное дистанционное автоматическое или полуавтоматическое непрерывное наведение орудий при стрельбе по быстродвижущимся целям, резко повышают быстроту и точность наводки на цель.

Своеобразным направлением использования электротехники в военном деле являются электрические заграждения. Первая попытка использовать такие препятствия была сделана в русско-японскую войну в Порт-Артуре, а в войне 1914–1917 гг. электрические заграждения, питаемые источниками тока высокого напряжения, использовались уже достаточно широко. Руководство работами по их созданию осуществлял известный русский электротехник профессор М.А. Шателен, прибывший для этого в действующую армию.

Активно использовались электрифицированные заграждения и в Великой Отечественной войне. Так, под Ленинградом в районе Красное Село — Петергоф было построено около 80 км препятствий из проводов, уложенных в грунт, на которых неоднократно попадали под смертельный ток наступающие на Ленинград немецко-фашистские захватчики.

В 1936–1938 гг. возникли еще два важных направления в использовании электротехники в военном деле — радиолокация, получившая в последующем исключительно большое развитие, и размагничивание кораблей флота. Последняя проблема была связана с появлением неконтактных морских мин, реагирующих на магнитное поле корабля. Задача защиты кораблей от этих мин решалась уже в годы Великой Отечественной войны. В этом большую роль сыграли советские ученые: будущий президент Академии наук СССР А.П. Александров и академики АН СССР И.В. Курчатов и В.М. Тучкевич.

5.7.5. ЭЛЕКТРООСВЕТИТЕЛЬНЫЕ УСТРОЙСТВА ДЛЯ ВОЕННЫХ ЦЕЛЕЙ

Инициатором активного внедрения электричества в военное дело был В.Н. Чиколев. В 1877 г. он написал статью «Электрический свет в крепостной, осадной, береговой и полевой войне», а в 1879 г. — руководство для артиллерийских электротехнических команд «Применение электрического освещения для военных целей». Эти труды В.Н. Чиколева, в которых он предлагал подразделить прожекторы на береговые, крепостные, полевые и осадные, явились руководящими для последующего развития прожекторной техники.

Тяжелые стационарные береговые и крепостные прожекторы активно внедрялись уже в 1880–1890-х гг. Осадные прожекторы, т.е. смонтированные на передвигаемых основаниях и питаемые агрегатами в виде колесных локомобилей, появились в конце XIX в. Полевые прожекторы с копной тягой стали применяться в русско-японскую войну, благодаря освоению в промышленности легкого бензинового двигателя. Крепостные прожекторы хорошо проявили себя при обороне Порт-Артура.

Прожекторы дальнего света, заливающего света и сигнальные стали также широко применяться на кораблях флота. Более широкому применению прожекторов в военном деле способствовал переход от линзовой к отражательной оптике, существенно облегчившей прожекторы.

В войну 1914–1918 гг. во всех саперных батальонах уже действовали так называемые прожекторные роты. В полевой войне прожекторы освещали переправы, подступы к позициям, создавали световые завесы, использовались для дальней сигнализации. Днем прожекторные агрегаты заряжали аккумуляторные командирские фонари.

К концу первой мировой войны, с появлением авиации, началась разработка зенитных прожекторов. В тридцатые годы они стали комбинироваться со звуко- и радиопеленгаторами. Поступавшие на вооружение войск ПВО зенитные прожекторы сыграли большую роль в Великой Отечественной войне. Эффективность использования прожекторов в боевых операциях ярко проявилась в знаменитом прорыве укрепленной полосы под Берлином весной 1945 г.

В конце 70-х годов прошлого века электроосвещение пришло в морской флот. В 1878 г. свеча Яблочкова зажгла марсовы огни на корабле «Петр Великий». С 1882 г. для освещения военных кораблей («Адмирал Лазарев», «Дмитрий Донской» и др.) использовались уже лодыгинские лампы накаливания. После общего признания преимущества ламп накаливания и разработки Е.П. Тверитиновым рациональных схем корабельных сетей русский флот с 1886 г. полностью переходит на электрическое освещение.

Применение электрического освещения в полевых армиях сдерживалось отсутствием легких передвижных источников энергии. Появление их в начале XX в. изменило ситуацию. Уже в годы первой мировой войны электрические лампы использовались для освещения минных галерей и штабов полевой армии. В дальнейшем электрическое освещение штабов, командных пунктов различного ранга, мест размещения войск, мест проведения военно-инженерных работ, полевых медицинских пунктов и других объектов в полевых условиях стало использоваться очень широко.

СПИСОК ЛИТЕРАТУРЫ

5.1. История энергетической техники СССР. Том 2. Электротехника. М.-Л.: Госэнергоиздат, 1957.

5.2. Смуров А.А. Электротехника высокого напряжения и передача электрической энергии. Л., 1925.

5.3. Сушкин Н.И., Глазунов А.А. Центральные электрические станции и их оборудование. М.: Госиздат, 1927.

5.4. Глазунов А.А. Расчет электрических распределительных сетей. М., 1923.

5.5. Горев А.А. Высоковольтные линии передач электрической энергии. Л., 1927.

5.6. Глазунов А.А. Линии электропередачи. М., 1928.

5.7. Лебедев С.А., Жданов П.С. Устойчивость электрических систем. М.: Госэнергоиздат, 1-е изд. 1933, 2-е изд. 1937.

5.8. Горев А.А. Введение в теорию устойчивости параллельной работы электрических станций. Ч. I. M.: Госэнергоиздат, 1936.

5.9. Устойчивость электрических систем и динамические перенапряжения / С.А. Лебедев, П.С. Жданов, Д.А. Городский, P.M. Кантор. М.: Госэнергоиздат, 1940.

5.10. Вейтков Ф.Л., Мешков В.К. Диспетчерское управление энергосистемами. М.: Стандартгиз, 1936.

5.11. Мельников Н.А., Рокотян С.С., Шеренцис А.Н. Проектирование электрической части воздушных линий электропередачи 330–500 кВ. М.: Энергия, 1974.

5.12. Тиходеев Н.Н. Передача электрической энергии / Под ред. В.И. Попкова. 2-е изд. Л.: Энергоатомиздат, 1984.

5.13. Проектирование линий электропередачи сверхвысокого напряжения / Под ред. Г.Н. Александрова и Л.Л. Петерсона. Л.: Энергоатомиздат, 1983.

5.14. Веников В.А. Применение теории подобия и физического моделирования в электротехнике. М.: Госэнергоиздат, 1949.

5.15. Сиротинский Л.И. Перенапряжения и защита от перенапряжений в электрических установках. М., 1923.

5.16. Смуров А.А. Электротехника высокого напряжения и передача энергии. М.: Гостехиздат, 1931.

5.17. Акопян А.А. Исследование защитного действия молниеотводов // Труды ВЭИ. Госэнергоиздат, 1940. Вып. 36.

5.18. Базелян Э.М., Горин Б.Н., Левитов В.И. Физические и инженерные основы молниезащиты. Л.: Гидрометеоиздат, 1978.

5.19. Костенко М.В. Атмосферные перенапряжения и грозозащита высоковольтных установок. Л.: Госэнергоиздат, 1949.

5.20. Разевиг Д.В. Атмосферные перенапряжения на линиях электропередачи. М.-Л.: Госэнергоиздат, 1959.

5.21. Дмоховская Л.Ф. Инженерные расчеты внутренних перенапряжений в электропередачах. М.: Энергия, 1972.

5.22. Перенапряжения и защита от них в воздушных и кабельных электропередачах высокого напряжения / М.В. Костенко, К.П. Кадомская, М.Л. Левинштейн, И.А. Ефремов. Л.: Наука, 1988.

5.23. Попков В.И. Коронный разряд и линии сверхвысокого напряжения. М.: Наука, 1990.

5.24. Гройс Е.С. Трубчатые разрядники. М.: Госэнергоиздат, 1941.

5.25. Безруков Ф.В., Галкин Ю.П., Юриков П.А. Трубчатые разрядники. М.: Энергия, 1964.

5.26. Вентильные разрядники высокого напряжения / Д.В. Шишман, А.И. Бронфман, В.И. Пружинина, В.П. Савельев. Л.: Энергия, 1971.

5.27. Сапожников А.В. Уровни изоляции электрооборудования высокого напряжения. М.: Энергия, 1969.

5.28. Щедрин Н.Н. Токи короткого замыкания высоковольтных систем. М.: Госэнергоиздат, 1935.

5.29. Ульянов С.А. Короткие замыкания в электрических системах. ОНТИ, 1937.

5.30. Соловьев И.И. Автоматизация энергетических систем. М.: Госэнергоиздат, 1950.

5.31. Электроэнергетика России / Под ред. А.Ф. Дьякова. М.: Информэнерго, 1997.


Глава 6.
ЭЛЕКТРОМЕХАНИКА

6.1. ЭЛЕКТРОМЕХАНИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ ЭНЕРГИИ

Электромеханика — часть электротехники, занимающаяся электромеханическим преобразованием энергии. Устройства, преобразующие электрическую энергию в механическую и обратно, называются электромеханическими преобразователями (ЭП) или электрическими машинами.

Несколько ЭП, работающих в генераторном или двигательном режимах, линии электропередачи и различные функциональные аппараты образуют электромеханическую систему.

Большинство ЭП работает в объединенных энергетических системах. Мощность объединенной системы России достигает 160 млн. кВт.

XX в. по праву можно считать веком электричества. Практически вся электрическая энергия на Земле вырабатывается электрическими машинами, а затем две трети ее снова преобразуется в механическую энергию электрическими двигателями. Можно считать, что электрические машины совершили техническую революцию. Теория электромеханики на всех этапах была неразрывно связана с практическим электромашиностроением. Эта связь обеспечила прогресс во всех областях техники, изменив условия существования человека за время жизни одного поколения.

Среди выдающихся достижений ученых XIX в. А. Ампера, Г. Ома, Д. Джоуля, Э. Ленца и др. особое место занимают работы Д. Максвелла, обобщающие достижения в электродинамике и изложенные в «Трактате об электричестве и магнетизме» (1873 г.). Д. Максвелл разработал теорию электромагнитного поля и написал уравнения, составляющие теоретическую основу электромеханики.

Первой публикацией по проектированию электрических машин можно считать работу Э. Арнольда по теории и конструированию обмоток электрических машин, вышедшую в 1891 г.

В середине 90-х годов прошлого века М.О. Доливо-Добровольский, Г. Каппа и др. создали основу теории и методики проектирования трансформаторов.

В 1894 г. А. Гейланд теоретически обосновал круговую диаграмму асинхронной машины.

К. А. Круг в 1907 г. дал точное описание круговой диаграммы.

К концу 20-х годов XX в. вышли фундаментальные книги Э. Арнольда, Р. Рихтера, К.И. Шенфера по теории и проектированию машин постоянного и переменного тока. К 30-м годам в трудах Э. Арнольда, А. Блонделя, М. Видмара, Л. Дрейфуса, М.П. Костенко, К.А. Круга, В.А. Толвинского и других ученых была достаточно глубоко разработана теория установившихся режимов электрических машин.

Методы теории цепей исторически раньше начали использоваться для анализа и расчета электрических машин, чем методы теории электромагнитного поля. Ярким достижением первого подхода явилось создание общей теории электромеханического преобразования энергии, часто называемой обобщенной или матричной теорией. Последнее подразумевает, что в ее изложении используется математический аппарат дифференциальной геометрии многомерных пространств, тензорного анализа и матричной алгебры.

В обобщенной теории любая электрическая машина рассматривается как совокупность магнитно-связанных, взаимно перемещающихся электрических цепей с сосредоточенными параметрами. В допущениях обычно пренебрегают такими физическими явлениями, как насыщение, гистерезис, магнитные потери, высшие гармоники. Это оправдано, если рассматриваются динамические режимы, в особенности, когда электрическая машина работает в сложной электромеханической или энергетической системе.

Ключевыми элементами теории являются так называемая обобщенная машина — математическая модель электрических машин практически всех типов, ее дифференциальные уравнения и их координатные преобразования. Дифференциальные уравнения дают более универсальное описание электрических машин, чем алгебраические: они содержат мгновенные значения переменных и справедливы как для переходных, так и для установившихся режимов.

В теорию электромеханического преобразования энергии органически вошли ставшие классическими метод двух реакций, трехфазных и двухфазных симметричных составляющих, метод вращающихся магнитных полей и др. Она создавалась трудами многих ученых из разных стран. Первым следует назвать французского ученого А. Блонделя, который в 1895 г. предложил метод двух реакций для анализа синхронных машин. Его основные работы по аналитическому обоснованию и применению метода были опубликованы во французских журналах позднее — в 1922 и 1923 гг. [6.1; 6.2].

В 1918 г. американский ученый С.Л. Фортескью разработал метод трехфазных симметричных составляющих [6.3], практическая ценность которого сразу была высоко оценена специалистами. Первой обобщающей работой по этому методу была вышедшая на русском языке в 1936 г. книга электротехников из США К.Ф. Вагнера и Р.Д. Эванса [6.4].

Разложение несимметричных двухфазных систем на симметричные составляющие впервые было осуществлено американцем Ю.Г. Ку в 1929 г. [6.5] одновременно для комплексных векторов синусоидальных переменных и для мгновенных значений переменных, созданных двухфазными обмотками электрических машин. Наиболее глубокое изложение теории однофазных микромашин, построенной на методе двухфазных симметричных составляющих, принадлежит Ю.С. Чечету [6.6].

Изучением электромагнитных переходных процессов в электрических машинах и трансформаторах начали заниматься в середине 20-х годов XX в. Первые случаи нарушения устойчивости линий электропередачи произошли в 20-х годах. Исследование устойчивости энергосистем привело к необходимости исследования электромеханических переходных процессов.

Первой фундаментальной работой по переходным процессам в энергетических системах была монография Р. Рюденберга, вышедшая в 1923 г. в Германии и переведенная на русский язык в 1931 г. [6.7]. Р. Рюденберг показал возможность представления мгновенных значений переменных в многофазных обмотках электрических машин едиными пространственными векторами [6.7]. Они определяются в координатах комплексной плоскости, наложенной на поперечное сечение машины, и у разных авторов называются по-разному: обобщенными, отображающими, изображающими и другими терминами. Позже такой подход позволил венгерским электротехникам К.П. Ковачу и И. Рацу компактно изложить теорию переходных процессов в электрических машинах переменного тока [6.8].

Значительной вехой в развитии теории была публикация в 1929 г. Р.Г. Парка [6.9], который вывел, используя метод двух реакций, дифференциальные уравнения синхронной машины, часто называемые его именем. Независимо от него существование этих уравнений вскоре доказал и А.А. Горев [6.10].

Первой фундаментальной работой по переходным процессам в трансформаторах была работа Г.Н. Петрова, вышедшая в 1934 г. [6.11].

Основоположником тензорного и матричного анализов электрических цепей и машин, создателем обобщенной теории электрических машин и метода расчета сложных систем путем деления их на элементарные составные части (метода диакоптики) по праву считается Г. Крон, опубликовавший свои пионерские работы в американских журналах в 1938–1942 гг. Объединенные в монографию, они были изданы в 1955 г. на русском языке [6.12], что послужило импульсом для широкого распространения и дальнейшего развития метода в СССР.

Полученные Г. Кроном дифференциальные уравнения идеализированной обобщенной электрической машины сыграли выдающуюся роль в теории переходных процессов.

К обобщенной электрической машине сводятся все ЭП с синусоидальным магнитным полем в воздушном зазоре. Г. Крон первым положил в основу электромеханического преобразования энергии магнитное поле в зазоре машины, а уравнения записал на основе теории цепей. До него уравнения поля и цепей использовались многими учеными раздельно, и до сих пор бытует мнение, что уравнения поля более строго отражают физические явления в электрических машинах. Только в последнее десятилетие появились программы ЭВМ для расчета и проектирования ЭП с одновременным использованием уравнений поля и цепей.

Дифференциальные уравнения, описывающие переходные и установившиеся процессы в электрических машинах, без упрощающих допущений не имеют аналитического решения, и только применение ЭВМ для решения задач электромеханики привело к бурному развитию теории и практики динамических процессов в ЭП и электромеханических системах.

Обобщающей и, по существу, последней фундаментальной работой по применению аналитических методов решения дифференциальных уравнений электромеханического преобразования энергии была вышедшая в 1962 г. работа Е.Я. Казовского [6.13].

Д.А. Городский [6.14] развил метод симметричных составляющих, ввел системы основных и сопровождающих переменных, что позволило исследовать переходные и установившиеся режимы электрических машин, обладающих одновременно электрической и магнитной несимметрией.

Очень ценную монографию [6.15] выпустил в 1953 г. Л.Н. Грузов, представив в ней систематизированное изложение особенностей применения векторного анализа к исследованию электрических машин и электромеханических систем, сравнение различных преобразований координат с целью получения наиболее рациональных форм дифференциальных уравнений и их решений.

При разработке теории предложенной им машины с внешнезамкнутым магнитным потоком А.Г. Иосифьян критически пересмотрел ряд вопросов общей теории синхронной машины. Ему принадлежат труды по системам преобразований токов следящего электропривода, а также труды по теории режимов работы сельсинов [6.16].

В 1963 г. И.П. Копыловым была предложена математическая модель обобщенного электромеханического преобразователя, которая описывается дифференциальными уравнениями для несинусоидального магнитного поля в воздушном зазоре, при учете любого числа контуров обмоток на статоре и роторе, для симметричных и несимметричных машин с учетом нелинейного изменения их параметров [6.17].

Следует отметить позитивную роль, которую сыграла публикация в 1964 г. русского перевода монументального труда ученых из США Д. Уайта и Г. Вудсона по всем аспектам теории электромеханического преобразования энергии [6.18].

Значительный вклад в развитие обобщенной теории и ее использование для анализа переходных и установившихся режимов работы электрических машин, устойчивости электромеханических и энергетических систем внесли отечественные ученые: Р.А. Лютер [6.19], И.Д. Урусов [6.20], Н.Н. Щедрин [6.21], С.В. Страхов [6.22], А.А. Янко-Триницкий [6.23], А.И. Важное [6.24], И.И. Трещев [6.25], В.А. Веников [6.26], А.В. Иванов-Смоленский [6.27], Л.Г. Мамиконянц [6.28], И.А. Глебов [6.29].

До середины XX в. электромеханика развивалась в земных условиях, но в 50–60-х годах электрические машины, а за ними и человек вышли в космос. Для этого потребовалось создать теорию космической электромеханики и электромеханические системы, воплотившие в себе все новейшие достижения классической земной электромеханики.

Если классическая электромеханика одномерная, т.е. она имеет дело с ЭП, у которых вращается одна часть машины — ротор, то космическая электромеханика — шестимерная: ротор и статор ЭП могут перемещаться в трехмерном пространстве. Уравнения космической электромеханики значительно сложнее, так как они имеют шесть уравнений движения и дополнительное уравнение скоростей, учитывающее движение ЭП по шести степеням свободы.

Трудами больших научных коллективов в СССР, США и других странах теория космической электромеханики обеспечила движение космических кораблей как в околоземном, так и в далеком космосе. Технические достижения крупных научных коллективов обеспечили решение уникальнейших проблем бортовой космической электромеханики. Эти вопросы освещены гл. 8.

Зарождение технической электромеханики произошло в земных условиях в университетах, исследовательских и учебных институтах и на заводах. В послевоенные годы бурными темпами развивалась космическая электромеханика. В последние годы появилось новое направление в космической электромеханике — геоэлектромеханика — электромеханика планеты Земля, показывающее, что движение спутников вокруг Земли и Земли вокруг Солнца подчиняется одним и тем же законам, а электродинамические процессы в электрической машине — планете являются источником глобальных энергетических процессов на Земле [6.30].

История электромеханики продолжает развиваться бурными темпами и на рубеже второго и третьего тысячелетий мы являемся свидетелями зарождения новых направлений, которые дадут новые источники электроэнергии и послужат мощным импульсом для развития цивилизации.

Без электрических машин и трансформаторов невозможно производство, распределение и применение электрической энергии. Поэтому во всех главах этого издания есть место для истории электромеханики. В этой главе более подробно излагается история электромашиностроения, промышленных электроприводов, высоковольтных и низковольтных аппаратов.

Чтобы правильно оценить значение отдельных изобретений и теоретических разработок в области электромеханики, нужно время. Поэтому объективно можно оценивать историю электромеханики XX в. до послевоенных лет, а последние два-три десятилетия еще требуют осмысливания, так как только время есть критерий истины.


6.2. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ДЛЯ ЭЛЕКТРОЭНЕРГЕТИКИ И ОБЩЕГО НАЗНАЧЕНИЯ

6.2.1. ОБЩИЕ СВЕДЕНИЯ

Производство электрической энергии осуществляется в основном электромашинными генераторами, а потребляют ее преимущественно электродвигатели. Поэтому вращающиеся электрические машины имеют важнейшее значение в электротехнике. Многие выдающиеся специалисты России внесли в развитие электрических машин решающий творческий вклад. Вот примеры:

создание самых мощных в мире турбо- и гидрогенераторов;

применение водяного охлаждения в крупных электроэнергетических машинах;

создание систем возбуждения синхронных машин сначала со ртутными, а затем с полупроводниковыми преобразователями;

разработка и выпуск автоматических регуляторов возбуждения сильного действия для турбо- и гидрогенераторов;

применение преобразователей частоты для регулирования частоты вращения электродвигателей;

разработка и освоение наиболее совершенных серий электрических машин постоянного и переменного тока с широкой механизацией и автоматизацией производственных процессов;

разработка и освоение производства генераторов и двигателей постоянного тока, имеющих рекордную мощность.

Развитие электротехники привело к образованию крупных электротехнических фирм в Западной Европе, США и Японии, которые развивали электромашиностроение. В условиях конкурентной борьбы происходило объединение мелких фирм с целью создания в крупных фирмах более совершенного технологического оборудования, механизации и автоматизации производственных процессов, интенсивного развития исследовательских и конструкторских работ, создания крупной лабораторной базы. Такое объединение сопровождалось специализацией и концентрацией производства. Так, например, производство крупных электрических машин на небольших заводах мелких фирм было передано в крупные электромашиностроительные предприятия объединенных фирм: в Западной Европе

— «Сименс», ABB, «Альстом-атлантик», «Дженерал электрик» (лимитед), «Парсонс», в США

— «Дженерал электрик», «Вестингауз», в Японии — «Тосиба», «Хитачи», «Мицубиси». В области энергетического оборудования французская фирма «Альстом-атлантик» и английская фирма «Дженерал электрик» (лимитед) образовали общую компанию «Дженерал электрик — Альстом», причем в интересах более глубокой специализации производства и уровня НИОКР статоры турбогенераторов выполняются в Белфоре (Франция), а роторы — в Бирмингеме (Англия).

Вполне естественно, что работы в области электрических машин в СССР велись не изолированно, а во взаимодействии с зарубежными странами. Производственные связи сначала осуществлялись главным образом с германскими фирмами, а затем и с фирмами Англии, Франции, Швеции, США и других стран. Особое значение имеет участие русских специалистов в международных организациях, таких как СИГРЭ (Международная организация в области электроэнергетики) и МЭК (Международная электротехническая комиссия). Признанием высокого уровня наших специалистов служит избрание В.И. Попкова президентом МЭК (1974–1977 гг.) и И.А. Глебова председателем комитета по вращающимся электрическим машинам СИГРЭ (1968–1976 гг.). На протяжении многих лет в руководящих органах СИГРЭ работал Л.Г. Мамиконянц, а в последние годы А.Ф. Дьяков.

Для подготовки инженеров и кадров высшей квалификации, практической работы специалистов в области электрических машин важное значение имеет специальная литература. К выдающимся книгам зарубежных авторов относятся курсы электрических машин: Э. Арнольда и Дж.Л. Лакура (1919 г.), Р. Рихтера (1924 г.), М. Лившица (1926 г.). Эти труды сохранили свое значение до настоящего времени.

К классическим книгам, публикация которых началась еще в предвоенные годы, относятся труды отечественных авторов В.А. Толвинского, М.П. Костенко, Л.М. Пиотровского, Д.А. Завалишина, А.Е. Алексеева, К.И. Шенфера, Б.П. Апарова, Г.Н. Петрова. К выдающимся публикациям последних десятилетий относятся учебники и учебные пособия А.Н. Вольдека, А.В. Иванова-Смоленского, И.П. Копылова, В.В. Хрущева. Их книги получили заслуженно высокую оценку и международную известность. Следует отметить основополагающие труды Е.Я. Казовского в области переходных процессов электрических машин переменного тока.

6.2.2. МАШИНЫ ПОСТОЯННОГО ТОКА ЕДИНЫХ СЕРИЙ

Без существенного изменения конструктивных черт машины постоянного тока к 30-м годам нашего столетия стали более мощными, значительно расширился диапазон регулирования их частоты вращения. Как правило, машины постоянного тока создавались по индивидуальным проектам либо небольшими партиями.

В 1930–1931 гг. в СССР была поставлена задача создания единых серий электрических машин. При проектировании был использован опыт, накопленный к тому времени на наших заводах, по расчету, конструированию и технологии производства электрических машин, а также по привлечению к работе лучших специалистов вузов и научно-исследовательских институтов. Значительную научно-теоретическую, исследовательскую и организаторскую работу по производству серий машин постоянного тока и асинхронных двигателей с различными системами охлаждения провел академик М.П. Костенко в качестве шеф-электрика Харьковского электромашиностроительного завода (ХЭМЗ). В основу проектирования серий был положен геометрический ряд машин, подобных в отношении их электрических, тепловых и вентиляционных характеристик. Основополагающие принципы проектирования серий были отражены в монографии В.А. Трапезникова [6.31].

В 1932 г. советские машиностроители разработали и освоили первые серии машин постоянного тока: ПН мощностью до 200 кВт и МП 550 мощностью свыше 200 кВт. Эти серии отличались меньшей массой, лучшим использованием активных материалов, закономерно изменяющимися показателями и удовлетворяли всем требованиям научной методологии проектирования. Об этом свидетельствует тот факт, что серия ПН, созданная как временная, просуществовала в производстве свыше 30 лет.

В 1954–1956 гг. была разработана первая единая серия П машин постоянного тока 1–11-го габаритов[6] мощностью 0,3–200 кВт и частотой вращения 1500 об/мин, а затем единая серия П машин 12–17-го габаритов мощностью свыше 200 кВт. Впервые в стране для двигателей постоянного тока была применена твердая шкала мощностей с фиксированными значениями частот вращения; на базе основного исполнения разработана широкая номенклатура как электрических, так и конструктивных модификаций с высоким уровнем унификации деталей и сборочных единиц. Двигатели имели улучшенные динамические характеристики: момент инерции якоря по сравнению с двигателями серии ПН ниже в среднем на 34%.

Возросшие технические требования к машинам постоянного тока были удовлетворены после разработки новой единой серии 2П машин постоянного тока мощностью до 200 кВт, которая была осуществлена под руководством В.А. Кожевникова во ВНИИэлектромаше (г. Ленинград) в 1968–1972 гг. в содружестве с Прокопьевским (И.А. Волкомирский) и Харьковским (Ю.П. Сердюков) заводами «Электромашина». При разработке серии не только были решены задачи повышения технического уровня машин (повышения мощности в габарите, снижения удельной массы на 10%, момента инерции якоря на 22%), но и осуществлена стандартизация установочно-присоединительных размеров в соответствии с рекомендациями МЭК, обеспечена возможность питания электродвигателей от тиристорных преобразователей. Был сделан переход к оценке габаритов по значениям высот осей вращения. Изменилось соотношение основных размеров машины, впервые были созданы электродвигатели с отношением длины якоря к его диаметру выше единицы, что позволило удовлетворить требования заказчиков по встраиваемости электродвигателя в механизмы станков.

В 1976–1978 гг. была разработана, а затем внедрена в производство на электромашиностроительных заводах «Электросила» (В.М. Миничев) и ХЭМЗ (М.Н. Курочкин) серия электродвигателей П2 12–15-го габаритов. С учетом требования современного быстродействующего тиристорного электропривода магнитная система электродвигателей была выполнена шихтованной, а корпус восьмигранным, применены изоляция на основе полиимидных и полиамидных материалов класса нагревостойкости F и электротехническая сталь улучшенных марок. Масса электродвигателей серии П2 снижена в среднем на 21%, момент инерции якоря — на 45%. Особое внимание было уделено повышению надежности электродвигателей. На базе двигателей серии П2 разработана специализированная серия экскаваторных генераторов 2ГПЭ мощностью 75–630 кВт, которая была освоена в производстве на Карпинском электромашиностроительном заводе.

В 80-х годах во ВНИИэлектромаше (В.А. Кожевников, В.Н. Антипов, Л.В. Гамаюнов) была решена задача создания серии 4П машин постоянного тока, которая заменяла все ранее выпускавшиеся на заводах отрасли серии машин постоянного тока, с одновременным снижением трудоемкости их изготовления путем внедрения современного технологического оборудования. К разработке серии было привлечено свыше 20 организаций, в том числе специалисты Всесоюзного научно-исследовательского института технологии электромашиностроения (ВНИИТэлектромаш, г. Харьков) во главе с В.Г. Костроминым для разработки специализированного технологического оборудования.

Серия 4П включает в себя общепромышленные двигатели с нормальными регулировочными свойствами (габариты 80–280 мм), широко-регулируемые двигатели 4ПБ закрытого исполнения (габариты 80–180 мм), широкорегулируемые двигатели 4ПФ специализированного назначения с независимой вентиляцией (габариты 112–250 мм) и крупные двигатели для тяжелых условий эксплуатации (габариты 280–450 мм).

В электродвигателях габаритов 80–112 мм завода «Псковэлектромаш» реализована нетрадиционная, унифицированная с асинхронными двигателями конструкция с распределенной обмоткой статора, что позволило освоить механизированную технологию производства обмоток и использовать технологическое оборудование, разработанное для массового выпуска асинхронных двигателей. При этом трудоемкость изготовления снижена в 2–3 раза, достигнута существенная экономия обмоточной меди.

Для приводов главного движения станков и автоматизированного оборудования ВНИИ-электромаш (г. Ленинград) разработал специальные бескорпусные электродвигатели постоянного тока 4ПФ, оснащенные датчиками скорости, положения, системами температурной защиты и принудительной вентиляции. Электродвигатели выполнены в габаритах 112–250 мм с n-гранной шихтованной станиной, обладают диапазоном регулирования частоты вращения при постоянной мощности не менее, чем 1:4, высокими значениями удельной мощности и хорошими эргономическими показателями.

Крупные электродвигатели серии 4П (габариты 280–450 мм) по сравнению с аналогичными машинами серии П2 имеют увеличенный в 1,6 раза вращающий момент, большую в 1,5–2,0 раза единичную мощность и выше на 30–50% максимальную частоту вращения. Для серии проведена максимальная унификация конструкции и уменьшено количество типоисполнений, что привело к повышению уровня механизации производства и к снижению себестоимости изготовления. На базе крупных двигателей серии 4П развивается экскаваторное электромашиностроение, а также выпускаются электрические машины для нефтебуровых установок.


6.2.3. ТЯГОВЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА

Пионером советского тягового электромашиностроения был завод «Электрик» (г. Санкт-Петербург), который в начале 1924 г. изготовил десять двигателей мощностью 110 кВт при частоте вращения 660 об/мин для тепловоза с электрической передачей системы проф. Я.М. Гаккеля. В том же году на заводе «Электросила» была выпущена разработанная под руководством А.Е. Алексеева серия ПТ трамвайных двигателей пяти модификаций на мощности от 33 до 54,5 кВт, напряжением 550 В и частотой вращения 560–600 об/мин. Серия имела высокий КПД и хорошие массогабаритные показатели. В 1928 г. производство тягового оборудования было сосредоточено на специально приспособленном для этого московском заводе «Динамо». Применительно к разнообразным нуждам тягового хозяйства страны завод разработал ряд серий и типов тяговых электродвигателей: мощностью от 320 до 450 кВт с напряжением на коллекторе 750 и 1500 В — для магистральных электровозов; мощностью от 23,5 до 250 кВт с напряжением на коллекторе 230, 600, 750 В — для промышленных электровозов; смешанного возбуждения — для рудничных электровозов и трамваев; двигатели различных типов для пригородных железных дорог, метрополитена, троллейбуса, тепловозов. В успешном освоении этих серий несомненная заслуга принадлежит А.Б. Иоффе.

В послевоенные годы центром электровозостроения стал Новочеркасский электровозостроительный завод (НЭВЗ), который осуществил серийный выпуск электровозов, оснащенных тяговыми двигателями своего изготовления.

В 1957 г. вступил в строй электровозостроительный завод в г. Тбилиси (ТЭВЗ). Тяговые двигатели для электропоездов стал выпускать также Рижский электромеханический завод (РЭЗ).

Если для магистральных железных дорог применяются электровозы, то для дорог меньшей протяженности и неэлектрифицированных используются тепловозы. Выпуск электрооборудования для тепловозов был освоен на харьковском заводе «Электротяжмаш». В состав оборудования входят генераторы и тяговые электродвигатели серий ГП и ЭД соответственно. Главными конструкторами здесь были В.Е. Верхогляд и О. Р. Мандрыка.

Принципиально новые тяговые двигатели для городского транспорта были спроектированы на заводе «Динамо» и начали внедряться в производство в 1946–1948 гг. Конструкция их была в значительной степени унифицирована, серия из двух типоразмеров включала двигатели для трамвая, троллейбуса, метрополитена, а также генератор и двигатель для автобуса с электрической трансмиссией. Для новых двигателей трамвая и метрополитена вместо осевой была применена независимая подвеска, при которой полностью подрессоренный тяговый двигатель не испытывает значительных усилий, вызываемых неровностями пути. Независимая подвеска позволила почти в 2 раза увеличить передаточное число редуктора, повысить частоту вращения двигателей и снизить их массу.

Следующим этапом развития тягового электромашиностроения городского транспорта следует считать модернизацию серии, проведенную в 1974–1977 гг. Для троллейбуса и метрополитена были созданы новые двигатели с восьмигранной формой корпуса в поперечном сечении и петлевой обмоткой на якоре, что позволило резко повысить их мощность и обеспечить эффективное торможение подвижного состава при максимальной скорости движения. Мощность трамвайных двигателей также была повышена, появилась возможность использовать их на подвижном составе с тиристорно-импульсной системой управления, что привело к увеличению частоты вращения на 10–15% и экономии электроэнергии на 3–5%. Достигнутые результаты получены благодаря применению новых изоляционных материалов для обмотки якоря, введению ваку-умно нагнетательной пропитки в кремнийорганическом компаунде, а также использованию холоднокатаной изотропной электротехнической стали с изоляционным покрытием, нового материала коллектора и новой марки щеток.

В 70-е годы на базе новых технологий и материалов была создана серия совершенно новых тяговых двигателей, предназначенных для встраивания в пневматические колеса большегрузных автосамосвалов грузоподъемностью 75–180 т. Производство этих двигателей и трамвайного двигателя с завода «Динамо» было передано на новый завод «Татэлектромаш» в г. Набережные Челны. Освоение двигателей было проведено под руководством А.Д. Григоровича.

На заводе «Динамо» еще с 30-х годов было начато производство серий краново-металлургических и экскаваторных электродвигателей постоянного тока. В 1975 г. была разработана и внедрена в производство новая серия краново-ме-таллургических двигателей, которая по техническим данным и габаритно-установочным размерам соответствует нормам МЭК.

6.2.4. КРУПНЫЕ МАШИНЫ ПОСТОЯННОГО ТОКА

Еще до войны производство крупных машин постоянного тока было сосредоточено на заводах «Электросила» и ХЭМЗ и развивалось ускоренными темпами. На заводе «Электросила» в предвоенные годы было изготовлено свыше 200 единиц крупных электрических машин постоянного тока общей мощностью около 350 тыс. кВт. Из числа наиболее крупных поставок следует отметить электродвигатели для привода блюмингов (5150 кВт, 750 В, 50/120 об/мин) и слябингов (3700 кВт, 750 В, 50/100 об/мин; 1850 кВт, 750 В, 100/270 об/мин) и генераторы единичной мощностью 3500 кВт. ХЭМЗ совместно с заводом «Электросила» также освоил новую серию крупных машин постоянного тока мощностью до 7500 кВт с одним якорем.

Разработка серий прокатных реверсивных электродвигателей в диапазоне мощностей от 1850 до 6000 кВт и серии регулируемых электродвигателей в диапазоне от 110 до 4500 кВт с регулированием частоты вращения в пределах 1:3 была продолжена после войны. Завод «Электросила» произвел пересмотр расчетов и конструкций крупных машин постоянного тока с компенсационными обмотками и добился существенного повышения удельной мощности и экономии черных и цветных металлов. Коллектив работников завода в составе В.Т. Касьянова, А.А. Кашина, Р.А. Лютера, И.Н. Рабиновича и Д.В. Шапиро в 1948 г. получил высокую государственную оценку за создание крупных машин постоянного тока.

Важным этапом на пути повышения технического уровня машин постоянного тока явилась разработка в 1957 г. двухъякорного электродвигателя мощностью 19 600 кВт для привода гребных винтов атомного ледокола «Ленин» с двухходовой обмоткой якорей. Изучению особенностей работы двухходовых обмоток было посвящено много теоретических (В.В. Фетисов, П.М. Ипатов) и экспериментальных (О.Г. Вег-нер) работ, в результате которых были предложены рекомендации, позволившие заводу «Электросила» внедрить двухходовые обмотки якоря. Таким образом было преодолено ограничение мощности машины постоянного тока по значению допустимого напряжения между смежными пластинами. В 1958 г. был изготовлен электродвигатель мощностью 8840 кВт, напряжением 900 В, частотой вращения 65/90 об/мин, в 1977 г. — соответственно 12 500 кВт, 930 В, 63 /90 об/мин, а в 1985 г. — 10 000 кВт, 750 В, 32/63 об/мин. В итоге рост мощности реверсивного прокатного двигателя привел к реализации самого большого в мире вращающего момента 300 т-м.

Рис. 6.1. Электродвигательный агрегат, состоящий из четырех двигателей постоянного тока типа 2МП 25000–750 (25 МВт, 750 об/мин) 

Значительный прогресс был достигнут в создании двухъякорных двигателей мощностью 11 000–14 000 кВт для электропривода нереверсивных прокатных станов. Характерными для этих машин, имеющих сравнительно высокую частоту вращения, являются показатель предельности, равный произведению мощности на частоту вращения, и коэффициент регулирования магнитного потока. Самый мощный из выпущенных нереверсивных прокатных электродвигателей мощностью 14 200 кВт с частотой вращения 200 об/мин имеет показатель предельности 5,8—10 кВт?об/мин на один якорь. Необходимо отметить, что за рубежом двигатели для аналогичных прокатных станов изготовлялись не двухъ-, а трехъякорными даже при меньшей мощности. Дальнейшее повышение показателя предельности было возможно при переходе на трехходовые обмотки якоря. В 1973–1974 гг. были проведены исследования двух опытных машин с трехходовыми петлевыми обмотками, а в 1975–1976 гг. опытной двухъякорной машины мощностью 25 МВт с частотой вращения 750 об/мин, которые создали основу для изготовления уникального агрегата, состоящего из четырех двухъякорных электродвигателей постоянного тока такого типа с трехходовыми обмотками, соединенными на валу последовательно, что позволило получить мощность 100 МВт при частоте вращения 750 об/мин (рис. 6.1).

Гребные винты атомных ледоколов «Сибирь», «Арктика» и «Россия» оснащены электродвигателями мощностью 2x8800 кВт, напряжением 1000 В и частотой вращения 130/185 об/мин.

Выпускаемый с 70-х годов объединением «Электросила» генератор постоянного тока для питания прокатных двигателей мощностью 9500 кВт, напряжением 930 В и частотой вращения 375 об/мин по мощности превосходит все существующие типы генераторов постоянного тока как у нас в стране, так и за рубежом. Использование в конструкции генератора новых технических решений обеспечивает равномерное распределение крутящего момента между дисками якоря и гарантированное усилие на главный полюс, способствуя повышению надежности генератора в эксплуатации.

Успехи в производстве крупных машин постоянного тока достигнуты не только объединением «Электросила», но и заводами ХЭМЗ и «Электротяжмаш» (Харьков). На ХЭМЗ под руководством М.Н. Курочкина разработаны реверсивные двигатели постоянного тока 21–25-го габаритов серии П2 номинальной мощностью до 12 500 кВт, а также двигатели постоянного тока 21–25-го габаритов для электроприводов шахтоподъемных машин мощностью 1600–5000 кВт. Помимо обычной конструкции двигателей шахтного подъема с двумя стояковыми подшипниками разработаны и находятся в эксплуатации двигатели консольного исполнения. При такой конструкции якорь двигателя насаживается на вал барабана шахтного подъемника, что позволяет снизить массу машины в 1,2–1,4 раза.

Крупные машины постоянного тока находят широкое применение для приводов шагающих экскаваторов и роторных комплексов. Они устанавливаются в закрытом неотапливаемом кузове экскаватора и могут работать в заданном режиме при наличии вибрации, крена, воздействия инерционных сил и одиночных ударов. Наиболее интересен электродвигатель мощностью 500 кВт, напряжением 440 В и частотой вращения 32 об/мин, предназначенный для безредукторного привода механизма поворота платформы шагающего экскаватора.

6.2.5. ТИРИСТОРНЫЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА

В электроприводах постоянного тока различных механизмов еще с 20-х годов наряду с системами «генератор — двигатель» стали находить применение системы «преобразователь — двигатель», основанные на ионных (ртутных) вентилях. Однако широкое развитие статических управляемых и неуправляемых преобразователей переменного тока в постоянный относится к 60-м годам, когда на смену ионным приборам пришли кремниевые диоды и тиристоры. Тиристорные преобразователи достаточно быстро, и в первую очередь в широкорегулируемом электроприводе, заменили генераторы постоянного тока и электромашинные усилители. Замена источников питания с практически «гладким» напряжением на источники пульсирующего напряжения и тока, с одной стороны, осложнили работу электродвигателя постоянного тока, с другой стороны, значительно повысили производительность автоматизированного привода за счет расширения диапазона регулирования частоты вращения, быстродействия и динамики регулирования.

Среди первых отечественных тиристорных преобразователей для электропривода постоянного тока следует отметить разработки Чебоксарского электротехнического НИИ (ЧЭТНИИ) для саранского завода «Электровыпрямитель», Всесоюзного электротехнического института (ВЭИ) для Запорожского электроаппаратного завода, Экспериментального научного института металлорежущего станкостроения (ЭНИМС) для станкостроения с диапазоном регулирования частоты вращения 1:1000.

Развитие тиристорных преобразователей было связано с освоением полупроводниковых вентилей на большие токи. На базе тиристоров со средним током 160 А и напряжением 2600 В в 70-х годах были созданы агрегаты:

для питания якорных цепей и обмоток возбуждения как реверсивных, так и нереверсивных машин на токи от 25 до 1000 А и выпрямленное напряжение 230 и 460 В при напряжении первичных обмоток трансформаторов 380 В и 6–10 кВ;

для питания якорных цепей с током от 800 до 6300 А и выпрямленным напряжением 230, 460, 660 и 825 В при напряжении сети переменного тока 6–10 кВ.

В дальнейшем ограничение по токам было снято. Электротехническая промышленность освоила выпуск тиристорных выпрямителей с системами управления на интегральных схемах, с защитой и диагностикой неисправностей. Установки «преобразователь — двигатель» для станков обеспечивают диапазоны регулирования 1:10 000 для механизмов подач и 1:1000 для механизмов главного движения. Развитие тиристорных выпрямителей сопровождалось уменьшением габаритов, упрощением наладочных работ и повышением надежности.

Кроме тиристорных преобразователей переменного тока в постоянный в тяге получили развитие тиристорные импульсные преобразователи постоянного тока. Завод «Динамо» разработал тиристорно-импульсную систему управления (ТИСУ) для двигателей постоянного тока метрополитена, а Московский энергетический институт — для двигателей трамвайных вагонов.

В перспективе при освоении промышленного выпуска запираемых тиристоров с требуемыми параметрами (ток порядка 1000 А и обратное напряжение 2400–2800 В) комплекты электрооборудования на основе импульсных тиристорных преобразователей могут быть значительно упрощены.

6.2.6. ТУРБОГЕНЕРАТОРЫ

Турбогенераторы являются основной в мире машиной, вырабатывающей электроэнергию переменного тока. Впервые турбогенераторы трехфазного тока с цилиндрическим ротором появились в 1900–1901 гг. После этого шло их быстрое развитие как по конструкции, так и по росту единичных мощностей. Крупнейшие турбогенераторы в период 1900–1920 гг. изготавливались шестиполюсными из-за ограниченных возможностей металлургии по изготовлению поковок для роторов. В 1920 г. в США был изготовлен самый мощный для того времени турбогенератор мощностью 62,5 МВт, частотой вращения 1200 об/мин. Двухполюсные турбогенераторы выполнялись мощностью лишь до 5,0 МВт.

Рис. 6.2. Макет турбогенератора мощностью 1200 МВт с частотой вращения 3000 об/мин Костромской ГРЭС 

После 1920 г. основное развитие получили двух- и четырехполюсные турбогенераторы. Единичные мощности этих машин быстро росли. Ведущими странами в области турбогенерато-ростроения были и остаются Англия, Германия, Россия, США, Франция, Швейцария, Япония.

Первый турбогенератор в нашей стране мощностью 500 кВт был изготовлен в 1924 г. заводом «Электросила». В том же году были изготовлены еще два турбогенератора мощностью по 1500 кВт. Эти первые машины послужили основой для создания в последующие годы серии турбогенераторов в диапазоне мощностей от 0,5 до 24 МВт при частоте вращения 3000 об/мин. За 1926 и 1927 гг. было сделано 29 таких турбогенераторов. Эти машины создавались под руководством выдающегося инженера — организатора производства А.С. Шварца.

В начале 30-х годов на заводе «Электросила» была создана новая серия турбогенераторов с мощностями от 0,75 до 50 МВт. Существенное значение имело то, что при создании этой серии был широко использован опыт Западной Европы и США в турбогенераторостроении. По сравнению с предшествующей серией удалось снизить массу меди в обмотке статора на 30%, а электротехнической стали на 10–15%. При этом была уменьшена трудоемкость изготовления машин. Все электромагнитные, тепловые, вентиляционные и механические расчеты были выполнены по новым расчетным методикам. Машины изготовлялись из отечественных материалов. Уже к 1 января 1935 г. на отечественных тепловых электростанциях было смонтировано 12 таких турбогенераторов мощностью по 50 МВт.

На основе турбогенераторов последней серии были проведены разработки и началось изготовление быстроходных турбодвигателей мощностью от 1 до 12 МВт с частотой вращения 3000 об/мин для турбовоздуходувок и турбокомпрессоров.

Особое значение имеет цикл исследований и разработок, завершившихся изготовлением в 1937 г. самого мощного в мире турбогенератора на 100 МВт с частотой вращения 3000 об/мин и косвенным воздушным охлаждением. Основные трудности были связаны с ротором. Металлурги справились с созданием поковки больших размеров из высококачественной стали, а электромашиностроители — с ее механической обработкой, потребовавшей исключительно высокой точности.

Под руководством Р.А. Лютера и А.Е. Алексеева были выполнены расчеты и разработаны конструкции предвоенных серий турбогенераторов и отдельных машин.

В последующие годы возникла необходимость в освоении турбогенераторов большей мощности — 200 и 300, а в последующие годы 500, 800, 1000 и даже 1200 МВт при частоте вращения 3000 об/мин (рис. 6.2). Основные проблемы при создании турбогенераторов таких мощностей создает ограничение диаметра ротора и расстояния между его опорами. В первом случае ограничение обусловлено механической прочностью, а во втором случае — вибрациями. В этих условиях увеличение мощностей достигается за счет применения более интенсивных способов охлаждения, позволяющих повысить плотность тока в обмотках. Сложность при этом состоит в необходимости не только сохранения, но и некоторого повышения КПД, а также уменьшения вибраций. Все это потребовало очень большого объема теоретических и экспериментальных исследований, создания опытных машин и строительства уникальных испытательных стендов.

Исследования, разработки и производство мощных турбогенераторов проводились в СССР на трех заводах: «Электросила» (г. Ленинград), «Электротяжмаш» (г. Харьков) и «Сибэлектромаш» (г. Новосибирск). На каждом заводе создавались свои конструкции и технологические процессы.

На заводе «Электросила» впервые в мировой практике было предложено и освоено водородное охлаждение роторов с заборниками и дефлекторами, а также водяное охлаждение обмотки статора. Все работы проходили вначале под руководством главного инженера завода Д.В. Ефремова, главных конструкторов Е.Г. Комара и Н.П. Иванова, а затем главного инженера Ю.В. Арошидзе, главного конструктора турбогенераторов Г.М. Хуторецкого и руководителя научно-технических и опытно-конструкторских работ завода Л.В. Куриловича. Водород является лучшим хладагентом по сравнению с воздухом. Использование водорода началось с турбогенератора мощностью 100 МВт и частотой вращения 3000 об/мин, который был изготовлен в 1946 г. Он имел косвенное водородное охлаждение для роторной и статорной обмоток. Вполне естественно, что система охлаждения сердечника статора была в принципе такой же, как и при воздушном охлаждении. Потребовался переход от косвенного охлаждения обмоток к непосредственному. В катушках ротора выполнялись диагональные каналы, подача водорода в которые осуществлялась заборниками, а отвод — дефлекторами. Заборники и дефлекторы — клинья для крепления обмотки с профильными отверстиями для прохождения газа. При увеличении мощностей требовалось повышение давления водорода. Таким образом, газ непосредственно соприкасался с медью ротора. Стержни обмотки статора выполнялись из полых медных проводников, между которыми укладывались сплошные проводники. Вода, протекая по полым проводникам, обеспечивала непосредственное охлаждение статорной обмотки.

Для радикального снижения вибраций корпусов машин применялась эластичная связь между сердечником и корпусом. Это достигалось с помощью продольных прорезей в ребрах прямоугольного сечения, на которых собирается сердечник.

Особые трудности возникли при создании турбогенератора мощностью 800 МВт. В связи с очень большими электродинамическими силами и условиями работы, близкими к резонансным, оказались неприемлемыми обычные способы крепления лобовых частей обмоток. Монолитное крепление было достигнуто с помощью новых крепящих материалов: мягкого материала, формирующегося при комнатной температуре, т.е. в процессе изготовления машины, и твердеющего при повышенной температуре, а также самоусаживающихся лавсановых шнуров.

Под руководством А.Б. Шапиро и И.А. Кади-Оглы были разработаны оригинальные турбогенераторы с еще более интенсивным водяным охлаждением обмоток ротора и статора, сердечника статора и некоторых конструктивных элементов. Первый турбогенератор с полностью водяным охлаждением мощностью 63 МВт и частотой вращения 3000 об/мин был введен в эксплуатацию в 1969 г. В дальнейшем были сделаны еще три таких машины. В 1980 г. был включен турбогенератор мощностью 800 МВт и частотой вращения 3000 об/мин. В дальнейшем начали работать еще четыре машины. В их конструкции подача и слив воды осуществлялись помимо вала. Вода из неподвижной трубы поступает в зону фасонного кольца на роторе и удерживается в нем центробежными силами. Далее вода идет в нижние выводы катушек из прямоугольных проводов с отверстиями и под действием центробежных сил попадает в верхние выводы и сливное кольцо. Такая система называется самонапорной. Следует заметить, что во всем мире подача воды в обмотку ротора и ее отвод происходят через отверстия в валу, что делает конструкцию очень сложной и менее надежной. Преимуществом этого класса турбогенераторов является исключение водорода и заполнение корпуса воздухом при атмосферном давлении.

На заводе «Электротяжмаш» (г. Харьков) разработки и изготовление турбогенераторов мощностью 200, 300 и 500 МВт и частотой вращения 3000 об/мин проводились главным конструктором завода Л.Я. Станиславским, заместителем главного конструктора B.C. Кильдишевым, главным инженером Н.Ф. Озерным и начальником производства И.Г. Гринченко. Методы расчета турбогенераторов, особенно торцевой зоны, были развиты заведующим отделом Института электродинамики Академии наук УССР И.М. Постниковым.

В машине мощностью 200 МВт ротор с водородным, а статор — с водяным охлаждением. В турбогенераторе мощностью 300 МВт используется непосредственное водородное охлаждение как для роторной, так и для статорной обмоток. В роторе используется аксиально-радиальная вентиляция. В стержне статорной обмотки прокладываются тонкостенные стальные трубки, по которым проходит газ. В турбогенераторах мощностью 500 МВт обмотки статора и ротора образованы из полых и сплошных проводников. Вода подается в обмотку ротора и отводится из нее через отверстия в валопроводе.

На заводе «Сибэлектротяжмаш» (г. Новосибирск) был освоен турбогенератор мощностью 500 МВт и частотой вращения 3000 об/мин с масляным охлаждением обмотки статора и сердечника и водяным охлаждением обмотки ротора. Внутрь расточки статора вводится и герметично закрепляется в щитах цилиндр из стеклоленты. Масло с одной стороны статора проходит в другую через каналы в стержнях обмотки и через аксиальные отверстия в сердечнике. Вода к обмотке ротора поступает через валопровод. Напряжение статорной обмотки равно 35 кВ, что существенно облегчает токоподводы от генератора к повышающему трансформатору.

В организацию производства, методы расчета, технологические процессы и конструкции рассмотренных уникальных турбогенераторов решающий вклад внесли П.Е. Базунов, К.Ф. Потехин и К.Н. Масленников.

Существенные работы были проведены на Лысьвенском турбогенераторном заводе (г. Лысьва, Пермской обл.) в области турбогенераторов средней мощности. Особенно высокую оценку получили синхронные двухполюсные двигатели мощностью 630–12 500 кВт, напряжением 6 и 10 кВ. Они применяются в приводах нефтяных насосов магистральных нефтепроводов, нагнетателей магистральных газопроводов, воздуходувок доменных печей, газовых компрессоров химических производств и др. Их освоение было закончено в 1980 г.

По сравнению с предыдущей серией масса двигателей новой серии снижена в 1,5–2 раза, повышен КПД на 0,5–2%, снижена трудоемкость изготовления в 1,5 раза и увеличен объем выпуска в 3 раза без увеличения производственных площадей. По своему техническому уровню двигатели превысили показатели лучших мировых образцов. Наиболее существенный вклад в расчеты и конструкции двигателей внесли Э.Ю. Флейман и В.П. Глазков, а в системы возбуждения — С.И. Логинов.

Подводя итоги исторического развития турбогенераторов в послевоенные годы, следует отметить успехи научно-технической деятельности коллективов нескольких заводов, в результате чего были созданы и освоены в производстве турбогенераторы различных конструкций. Однако наличие различных конструкций усложняет проектирование и строительство электростанций, монтажные, наладочные и ремонтные работы, а также обеспечение запасными частями. Поэтому в рамках одной страны становится желательным выпуск машин единой конструкции. В зарубежной практике (Франция, Англия, Швеция, Швейцария) эта проблема решается путем объединения электротехнических фирм и специализации производства. В нашей стране с целью создания единой унифицированной серии турбогенераторов для всех заводов была разработана и выполнена обстоятельная программа исследований и разработок машин единой серии (научный руководитель И.А. Глебов, зам. научного руководителя Я.Б. Данилевич, главный конструктор Г.М. Хуторецкий, главный технолог Ю.В. Петров). Требования к новой серии формулировались с участием специалистов стран-членов Совета экономической взаимопомощи. В основу серии были положены турбогенераторы с водоводородным охлаждением производства объединения «Электросила», поскольку их число было наибольшим и имелся положительный опыт их эксплуатации во всем диапазоне мощностей от 63 до 800 МВт при частоте вращения 3000 об/мин. Освоение турбогенераторов единой унифицированной серии началось в 1990 г.

К наиболее крупным достижениям зарубежных фирм в области турбогенераторов относятся следующие. Фирма «Альстом-атлантик» выпустила серию четырехполюсных турбогенераторов мощностью 1600 MB?А для атомных электростанций; предельная мощность четырехполюсных турбогенераторов для атомных электростанций фирмы «Сименс» составляет около 1300 MB?А. Фирма ABB освоила выпуск турбогенераторов мощностью 1500 MB?А, 1800 об/мин, 60 Гц и турбогенераторов мощностью 1230 MB?А, 3000 об/мин, 50 Гц. Американские и японские фирмы выпускают турбогенераторы наибольшей мощностью около 1100 MB?А. Все фирмы, за исключением «Сименс», используют водородно-водяное охлаждение. Фирма «Сименс» применяет водяное охлаждение для обмоток не только статоров, но и роторов.

Рис. 6.3. Общий вид ударного турбогенератора (инерционного накопителя энергии)
1,2,3 — подшипник, статор и вал ротора турбогенератора 200 МВт соответственно; 4,5,6 — подшипник, вал, кожух маховика соответственно; 7 — асинхронный двигатель; 8 — фундаментные плиты 

Необходимо обратить внимание на все увеличивающийся выпуск турбогенераторов средних мощностей — до 250 МВт для тепловых электростанций с комбинированным циклом (две газовые турбины и одна паровая).

В последние годы началось использование парогазовых установок. Поскольку предельная мощность газовых турбин в настоящее время составляет 150–200 МВт, то парогазовая система мощностью 450–600 МВт состоит из трех блоков: два с газовыми турбинами и один с паровой. Поскольку для таких блоков нужны турбогенераторы сравнительно небольших мощностей (150–200 МВт), для упрощения их конструкции вернулись к воздушному охлаждению. Первый турбогенератор мощностью 150 МВт и частотой вращения 3000 об/мин с воздушным охлаждением изготовлен для Северо-западной ТЭЦ в 1996 г. в АО «Электросила».

К особому классу относятся ударные турбогенераторы кратковременного действия. Они применяются для испытания выключателей, для экспериментальных установок термоядерного синтеза на базе токамаков, крупных плазмотронов, установок ускорения масс и др. Для экспериментального токамака со сверхсильным полем были разработаны и выполнены четыре двухполюсных турбогенератора мощностью по 200 МВт (242 MB?А). Такие турбогенераторы созданы впервые в мировой практике (рис. 6.3). В них применяется косвенное воздушное охлаждение. С целью снижения габаритов генераторы выполнены с повышенным насыщением магнитной цепи. На общем валу с генератором находится инерционный накопитель, сделанный на основе ротора турбогенератора мощностью 800 МВт. Запасенная энергия в генераторе равна 100, а в маховике — 800 МДж. Удельная энергоемкость ротора генератора составляет 5, а маховика — 10 Дж/г. Длительность импульса равна 5 с. Во время выдачи накопленной энергии частота вращения уменьшается до 70%. Таким образом, используется 50% энергии. Удельная стоимость накопленной энергии получается наименьшей по сравнению со стоимостью энергии других видов накопителей. Количество энергии может быть доведено до 2500 МДж за счет использования более прочной стали и увеличения диаметра маховика. Пуск установки осуществляется асинхронным двигателем с фазным ротором на валу агрегата или преобразователем частоты с питанием от сети. И.А. Глебовым, Э.Г. Кашарским и Ф.Г. Рутбергом разработаны методы расчета, выполнены технические проработки различных вариантов и их сопоставление, обоснование турбогенераторного исполнения в отличие от гидрогенераторного, применяемого в зарубежной практике [6.32]. Проект был выполнен Г.М. Хуторецким, а металлургические проблемы решены A.M. Шкатовой.

Следует заметить, что в начале 20-х годов XX в. русские ученые М.П. Костенко и П.Л. Капица сделали проект и осуществили первый ударный генератор для создания сильных магнитных полей.

В Томском политехническом институте под руководством и при непосредственном участии Г.А. Сипайлова была создана научная школа в области электромашинного генерирования импульсных мощностей в автономных режимах [6.33, 6.34]. Были проведены многочисленные исследования, разработаны методы расчета и создан ряд импульсных генераторов. К числу оригинальных решений относятся электромашинные генераторы с неявнополюсным шихтованным ротором и импульсной форсировкой возбуждения за счет намагничивания в несимметричных режимах при последовательных коммутациях обмоток статора и ротора.

Принципиально новым направлением являются сверхпроводниковые турбогенераторы, имеющие в 2 раза меньшую массу и потери. Вполне естественно, что вначале создавались опытные сверхпроводниковые машины небольшой мощности (синхронные, униполярные, постоянного тока) [6.35–6.37].

Во ВНИИэлектромаше были созданы следующие сверхпроводниковые машины: коллекторный двигатель постоянного тока мощностью 3 кВт, синхронный генератор мощностью 18 кВт, униполярный генератор с током 10 кА при напряжении 24 В и синхронный генератор мощностью 1200 кВт. Первые четыре машины были созданы под руководством и при непосредственном участии В.Г. Новицкого и В.Н. Шахтарина. В разработку и исполнение двигателя постоянного тока 3 кВт существенный вклад внес также Г.Г. Борзов. Синхронный генератор мощностью 1200 кВт был разработан и выполнен под руководством В.В. Домбровского.

Рис. 6.4. Испытательный стенд со сверхпроводниковым турбогенератором мощностью 20 MB?А (в центре рисунка) 

Первый генератор средней мощности (20 MB?А) был создан во ВНИИэлектромаше в 1979 г. (рис. 6.4) [6.38]. Машина была подробно исследована и испытана на стенде института и при работе в Ленэнерго [6.39, 6.40]. Ротор имеет обмотку из ниобий-титанового сплава. Она охлаждается жидким гелием (4,2 К), который поступает внутрь ротора через неподвижную трубку в центральном отверстии вала. Возврат гелия в газообразном состоянии происходит также через вал. Для защиты сверхпроводящей обмотки от теплопритока из внешней среды ротор имеет три цилиндра, пространство между которыми вакуумировано.

Научно-исследовательские и опытно-конструкторские работы во Всесоюзном научно-исследовательском институте электромеханики (ВНИИЭМ) завершились созданием ряда сверхпроводниковых машин [6.35]. Первая машина имела мощность 600 Вт. Это был генератор со сверхпроводящей обмоткой возбуждения на статоре и трехфазной обмоткой на роторе. Следующей машиной был коллекторный электродвигатель мощностью 25 кВт, а далее генератор переменного тока мощностью 100 кВт со сверхпроводящим индуктором, криодвигатель переменного тока 200 кВт с неподвижным криостатом, модельные синхронные генераторы с вращающимся криостатом, уникальный синхронно-асинхронный двигатель с передачей вращающего момента без механических сочленений машин. Руководителем, организатором производства и соисполнителем исследований и разработок был Н.Н. Шереметьевский. Основным разработчиком сверхпроводящих индукторов являлся А.С. Веселовский, а якорей — A.M. Рубенраут.

Создателем синхронного сверхпроводникового неявнополюсного генератора мощностью 200 кВт на харьковском заводе «Электротяжмаш» был В.Г. Данько.

В Физико-техническом институте низких температур (ФТИНТ, г. Харьков) инициатором, организатором и научным руководителем всех работ в области использования явления сверхпроводимости был Б.И. Веркин [6.36]. Существенное значение для исследований, разработок и исполнения машин имели труды Ю.А. Кириченко, А.В. Погорелова и Г.В. Гаврилова.

Во ФТИНТ были созданы: криотурбогенератор мощностью 200 кВт с неподвижной обмоткой возбуждения и теплым вращающимся якорем, турбогенератор мощностью 2 и 3 МВт со сверхпроводниковыми роторами (совместно с объединением «Электросила»). Последние две машины создавались с участием специалистов объединения «Электросила» И.Ф. Филиппова и И.С. Житомирского. Большая работа проведена в области униполярных сверхпроводниковых машин: двигатель с якорем дискового типа мощностью 100 кВт, машина мощностью 150 кВт с цилиндрическим ротором, а затем двигатели мощностью 325 и 850 кВт.

Существенный вклад в теорию и методы расчета электрических машин с использованием явления сверхпроводимости внесли ученые Московского авиационного института А.И. Бертинов, Б.Л. Алиевский, Л.К. Ковалев и др. [6.37].

В генераторе 20 MB?А внешний цилиндр ротора имеет комнатную температуру, внутренний — температуру жидкого гелия, а средний — 70 К. Обмотка образована рейстрековыми катушками разной ширины и находится при вращении в гелиевой ванне, образованной внутренним цилиндром и торцевыми частями. В связи с очень большой МДС отпадает необходимость в использовании для ротора стали. В этих условиях статор можно делать беспазовым, что увеличивает количество меди и мощность приблизительно в 2 раза. Для малой внешней магнитной индукции в статоре применяется ферромагнитный экран. Исследования, разработка методов расчета и технологических процессов, изготовление и испытания проводились под руководством и при непосредственном участии И.А. Глебова, Я.Б. Данилевича, А.А. Карымова, Л.И. Чубраевой и В.Н. Шахтарина.

И.А. Глебов был научным руководителем, Я.Б. Данилевич — главным конструктором, А.А. Карымов — автором новых методов механических расчетов, Л.И. Чубраева — специалистом, ответственным за изготовление статора и испытания сверхпроводникового турбогенератора в энергосистеме, В.Н. Шахтарин — специалистом, ответственным за разработку и изготовление ротора. Поскольку низкие температуры получаются с помощью криогенной техники, то творческое участие в разработках и испытаниях генератора мощностью 20 MB?А специалистов НИИ «Гелиймаш» И.П. Вишнева, А.И. Краузе имело очень важное значение.

И.П. Вишнев осуществил разработку и руководство работами по созданию устройств криогенной техники, А.И. Краузе провел наладочные работы и испытания криогенных устройств. Особое значение имело их участие в работах по определению минимальной длительности захолаживания ротора, допустимой по условиям механической прочности его элементов.

Под руководством И.Ф. Филиппова как разработчика методов расчета теплофизических процессов и руководителя работ по созданию уникального криогенного стенда и Г.М. Хуторецкого как главного конструктора в объединении «Электросила» был создан сверхпроводниковый турбогенератор мощностью 300 МВт, и частотой вращения 3000 об/мин. Статор и ротор прошли успешные испытания при температуре жидкого азота. Однако недостаточная газоплотность наружного цилиндра не позволила иметь нужный вакуум и выйти на расчетный режим с жидким гелием.

Сверхпроводниковые турбогенераторы относятся к будущему поколению турбогенераторов. Работы в этом направлении ведутся в ряде стран.

США, государства Западной Европы и Япония имеют существенные успехи в области исследований и разработок сверхпроводниковых электрических машин. Наибольших успехов в области сверхпроводниковых турбогенераторов достигли Япония и США. В ФРГ были созданы основные элементы сверхпроводникового турбогенератора мощностью 800 MB?А. В Японии имеется национальная программа с конечной задачей завоевания мирового рынка в области турбогенераторостроения на основе использования явления сверхпроводимости. В настоящее время в Японии в стадии изготовления находятся три сверхпроводниковых турбогенератора мощностью по 70 MB?А каждый. К наибольшим достижениям в области униполярных сверхпроводниковых машин относятся результаты работы английской фирмы IRD (униполярный двигатель мощностью 2,42 МВт).

Проведенный выше обзор в области сверхпроводниковых машин, и в первую очередь турбогенераторов, показывает, что наша страна находится на передовых позициях в мире.

6.2.7. ГИДРОГЕНЕРАТОРЫ

Создателем первого трехфазного синхронного гидрогенератора мощностью 220 кВт и частотой вращения 150 об/мин в 1891 г. был М.О. Доливо-Добровольский. Генератор был изготовлен в Швейцарии и установлен на ГЭС в Лауфене; он имел горизонтальный вал и был сочленен с вертикальной гидротурбиной конической зубчатой передачей. В 1900 г. фирма ASEA (Швеция) изготовила шесть гидрогенераторов вертикального исполнения мощностью 200 кВ?А каждый для ГЭС в г. Вестерос. В 1907 г. эта же фирма поставила в Норвегию самый крупный в мире в то время гидрогенератор мощностью 10 500 кВ?А.

В СССР первая крупная работа по гидрогенераторам связана с Волховской ГЭС. Четыре гидрогенератора для этой станции под руководством А.Е. Алексеева, Р.А. Лютера и А.С. Шварца по собственным чертежам изготовлял завод «Электросила», параллельно шведская фирма ASEA выполняла четыре аналогичные машины. Мощность каждого генератора равнялась 8750 кВ?А, наружный диаметр 10 м, масса 250 т. Это были первые машины такого класса в Европе. Наши машины оказались лучше шведских по КПД, нагреву и массе.

Следующим этапом в развитии гидрогенераторостроения явился выпуск гидрогенераторов для Нижнесвирской и Верхнесвирской ГЭС.

Особое значение для производства гидрогенераторов имел уникальный заказ для Днепровской ГЭС: пять машин выполнялись американской фирмой «Дженерал электрик», а четыре — заводом «Электросила». Мощность каждой машины 62 МВт, масса 825 т. Изготовление генераторов было завершено в 1933 г. Под руководством технического директора завода А.Е. Алексеева был произведен разгон первого сварного ротора гидрогенератора до двойной частоты вращения в специально построенном на заводе разгонном устройстве с бетонной ямой. При восстановлении Днепрогэса после войны три генератора были заказаны фирме «Дженерал электрик», а шесть — заводу «Электросила». Использование лучших материалов и технических решений позволило увеличить мощность генератора до 72 МВт.

В послевоенные годы интенсивное строительство ГЭС проводилось в европейской части страны. Особое значение для страны имел каскад Волжских ГЭС. Разработка гидрогенераторов на заводе «Электросила» велась под руководством А.С. Еремеева. В связи с интенсивным развитием гидроэнергетики началось производство машин на заводах «Уралэлектротяжмаш» (г. Свердловск, ныне Екатеринбург), «Сибэлектротяжмаш» (г. Новосибирск) и «Электротяжмаш» (г. Харьков). Здесь необходимо отметить большой творческий вклад главных конструкторов гидрогенераторов указанных заводов: К.Ф. Костина, В.П. Лошкарева («Уралэлектротяжмаш»), B.C. Кильдишева («Электротяжмаш»), А.С. Постникова и Е.Е. Фишкина («Сибэлектротяжмаш»).

Как известно, мощные гидрогенераторы имеют низкие номинальные частоты вращения, и поэтому они превосходят все другие машины по габаритам, массам вращающихся частей и вращающим моментам. Элементы и узлы машин выполняются на заводе, а сборка — на электростанции. Генераторы обычно имеют вертикальное исполнение. В зависимости от расположения подпятника они могут быть зонтичного и подвесного типов. Использование гидроресурсов сибирских рек привело к созданию наиболее мощных ГЭС в мире. К таким относятся Братская, Усть-Илимская, Красноярская и Саяно-Шушенская ГЭС, на которых работают гидрогенераторы мощностью соответственно 200, 500 и 640 МВт.

Обычно гидрогенераторы имеют воздушное охлаждение. Однако для машин большой мощности с целью уменьшения их размеров и масс применяется водяное охлаждение обмотки статора и форсированное воздушное охлаждение обмотки ротора. Впервые в мире (1965 г.) водяное охлаждение обмотки статора было применено на гидрогенераторах мощностью 500 МВт и частотой вращения 93,8 об/мин Красноярской ГЭС. В дальнейшем оно было использовано как в более мощных машинах (640 МВт, 142,8 об/мин, Саяно-Шушенская ГЭС), так и в менее мощных (300 МВт, 200 об/мин, Нурекская ГЭС).

Повышение плотности тока в обмотке статора в связи с водяным охлаждением приводит к необходимости увеличения плотности тока и в обмотке ротора. Для этого требуется интенсивное охлаждение последней, что достигается с помощью форсированного воздушного или водяного охлаждения. В системе форсированного воздушного охлаждения воздух омывает обе боковые поверхности и проходит поперек проводников обмотки. Для этого между сердечником и катушкой делается круговой зазор, куда воздух идет из обода. Из этого зазора воздух поступает через поперечные каналы в межполюсное пространство. Это дает возможность теплового расширения сердечника в процессе эксплуатации. Более совершенный сердечник и новое крепление лобовых частей позволили добиться уникального результата: максимальная вибрация (двойная амплитуда) лобовых частей при номинальном токе статора составила 40 мкм.

Экспериментальные исследования гидрогенераторов Саяно-Шушенской ГЭС, проведенные Г.В. Карповым, показали, что максимальная длительная мощность генератора равна не расчетной 711 MB?А, а 820 MB?А. Следует заметить, что крупнейшие в мире гидрогенераторы ГЭС Итайпу (Бразилия, Парагвай) имеют мощность 823,6 MB?А. Эти машины созданы фирмами «Броун Бовери» и «Сименс». Таким образом, генераторы Саяно-Шушенской ГЭС относятся к самым мощным в мире гидрогенераторам (рис. 6.5).

Рис. 6.5. Макет гидрогенератора Саяно-Шушенской ГЭС 

Разработка и производство гидрогенераторов для сибирских рек потребовали очень больших творческих усилий специалистов объединения «Электросила», работавших под руководством главного конструктора Н.П. Иванова, главного инженера П.М. Ипатова, конструкторов А.А. Дукштау и Ю.А. Дегусарова, а также руководителя расчетов Г.Б. Пинского.

Для применения более интенсивного охлаждения ротора ПО «Уралэлектротяжмаш» на Нурекской ГЭС последний, девятый генератор сделан с полностью водяным охлаждением. Здесь решающее значение имели совместные разработки машин главного конструктора В.П. Лошкарева, главных инженеров А.И. Казанцева и Ю.П. Глазкова.

В гидрогенераторах большой мощности (500 МВт и более) возникают очень большие электромагнитные силы. При обычных способах крепления частей появляются недопустимо высокие вибрации и повреждения обмоток. Такая аварийная ситуация произошла в 1969 г. на Красноярской ГЭС, когда от нагрузок до 300 МВт перешли к нагрузкам 400–500 МВт. Тогда еще не были ясны причины этой ситуации. На электростанции были собраны крупнейшие специалисты страны под руководством министра электротехнической промышленности А.К. Антонова. Причины аварий были найдены и определены пути их устранения. Они заключались в разработке новой системы крепления лобовых частей, улучшении системы водяного охлаждения и отказе от однослойной обмотки. В объединении «Электросила» были проведены исследования генератора, который являлся фактически натуральной моделью. На этой основе удалось найти технические и технологические решения, реализация которых на заводе и ГЭС позволила поднять уровень надежности гидрогенераторов.

К числу новых решений для улучшения вибрационных характеристик относится сборка сердечника статора на месте установки. Обычная конструкция статора из секторов создавала определенные трудности, связанные с их стыками. Поэтому сборка в кольцо была использована на самых мощных машинах — генераторах Саяно-Шушенской ГЭС.

Подпятник в гидрогенераторе является наиболее ответственным узлом. На протяжении десятилетий совершенствовались теория и расчет подпятников. Тем не менее этот узел очень труден для наладки и эксплуатации. В нашей стране и за рубежом применяются сегменты подпятника, состоящие из стальной основы и баббитового покрытия. Казалось, трудно было предложить что-то новое, более совершенное в этой хорошо освоенной области. И все-таки это оказалось возможным.

Крупным достижением отечественного гидрогенераторостроения явилось применение сегментов подпятника, облицованных фторопластом вместо баббита, которые разработал и внедрил Ю.Н. Байбородов. Сегмент такого типа, получивший название эластичного металлопластмассового (ЭМП) сегмента, состоит из стального основания и антифрикционного элемента. Антифрикционный элемент, образованный из опрессованной бронзовой проволоки с нанесенным на нее покрытием из фторопласта Ф4 толщиной 1,5–2,5 мм, припаивается к стальному основанию оловянным припоем. ЭМП сегменты характеризуются высокими противозадирными свойствами, при этом обеспечивается пуск без подачи масла под давлением. Генератор с такими сегментами может работать при самых малых скоростях. Удельное давление в подпятнике по данным испытаний на Братской ГЭС может быть доведено до 10 МПа. В настоящее время все гидрогенераторы страны выпускаются с такими подпятниками.

Следует обратить внимание еще на один этап в развитии гидрогенераторостроения. Для обеспечения необходимого уровня устойчивости работы дальних электропередач (от Волги до Москвы) потребовалось уменьшение индуктивных сопротивлений. Так как активный объем машины обратно пропорционален корню квадратному из синхронного сопротивления обмотки якоря, то гидрогенераторы были сделаны с повышенными массами. В дальнейшем работы ВНИИэлектромаша (И.А. Глебов, В.Е. Каштелян, Н.С. Сирый) и других организаций показали, что проблема устойчивости решается с помощью быстродействующей системы возбуждения, имеющей повышенную кратность форсирования и автоматическое регулирование возбуждения (АРВ) сильного действия. Поэтому при сооружении ГЭС на сибирских реках гидрогенераторы выполнялись не с уменьшенными, а с нормальными параметрами, не требующими увеличения массогабаритных показателей.

Гидрогенераторы вертикального исполнения для гидроаккумулирующих электростанций работают как в генераторном, так и в двигательном режимах. В последнем случае возникает проблема их пуска. Существует несколько способов. Один из них — использование преобразователя частоты со звеном постоянного тока. Частота изменяется от нулевой до промышленной. Такой преобразователь мощностью 10 МВт был выполнен во ВНИИэлектромаше (В.Н. Левин) и поставлен на Загорскую ГАЭС для пуска агрегатов 200 МВт.

Гидрогенераторы с горизонтальным валом применяются в быстроходных агрегатах с ковшовыми турбинами на горных реках с большими напорами, в капсульных агрегатах и для малых ГЭС (МГЭС).

Я.Б. Данилевич (ВНИИэлектромаш) разработал, а тираспольский завод «Электромашина» изготовил два образца гидрогенераторов горизонтального типа для Эшкаконской МГЭС и вертикального типа для Курской МГЭС. Первый генератор имел мощность 750 кВ?А, напряжение 6,3 кВ и коэффициент мощности 0,8, номинальную частоту вращения 1000 об/мин и угонную 2000 об/мин. Ротор неявнополюсного исполнения, его сердечник собран из листовой электротехнической стали. На валу машины с одной стороны консольно насажено рабочее колесо радиально-осевой турбины, с другой — маховик для обеспечения устойчивой параллельной работы машины и для устранения гидроудара в трубопроводе в связи с быстрым закрытием направляющего аппарата турбины. Демпферная обмотка образована медными полосами под клиньями пазов, замкнутыми в зоне лобовых частей. Клинья обмотки статора — магнитные. Второй генератор характеризовался следующими показателями: мощность 625 кВ?А, напряжение 6,3 кВ, коэффициент мощности 0,8, номинальная частота вращения 428,6 об/мин, угонная 1070 об/мин. Генератор соединен с поворотно-лопастной турбиной. В полюсных наконечниках уложена замкнутая продольно-поперечная демпферная система.

К самым крупным зарубежным достижениям в области гидрогенераторостроения относится создание фирмой ABB машин для гидроэлектростанции Итайпу мощностью в единице 824 MB?А, частотой вращения 90,9 об/мин, 60 Гц.

К отдельному виду гидрогенераторов относятся асинхронизированные машины. В сущности, это машины двойного питания. Частота вращения ротора может быть меньше или больше синхронной в зависимости от направления вращения его собственного магнитного поля. Первый гидрогенератор такого типа мощностью 40 МВт и частотой вращения 136,4 об/мин был предложен в нашей стране М.М. Ботвинником и введен в эксплуатацию на Иовской ГЭС в 1962 г. Он отличается от обычного тем, что имеет неявнополюсный ротор с двумя симметричными распределенными обмотками волнового типа, смещенными на 90°. В отличие от обычного генератора асинхронизированный может иметь несинхронную частоту вращения, определяемую частотой двухфазного преобразователя и задаваемую автоматическим регулятором. При коротких замыканиях машина переходит на работу с другим скольжением относительно синхронного магнитного поля. Наряду с преимуществами режимного плана есть и недостатки: несколько большие размеры, стоимость, а также необходимость выемки ротора при ремонте.

Асинхронизированные машины другого типа — турбогенераторы мощностью 200 МВт были созданы на заводе «Электротяжмаш» (г. Харьков).

В последние годы выявилась возможность повышения КПД гидроагрегата за счет работы в зоне максимального КПД по универсальной характеристике при различных частотах вращения в зависимости от напора. Такая возможность особенно важна для низконапорных ГЭС при суточном регулировании, а также для гидроаккумулирующих электростанций.

К числу оригинальных решений гидрогенераторов относятся высоковольтные машины. Под руководством А.В. Иванова-Смоленского был разработан гидрогенератор мощностью 14,5 МВт, напряжением 121 кВ, изготовленный заводом «Уралэлектротяжмаш» и установленный на Сходненской ГЭС, где он прошел испытания. Накопленный опыт позволил внести ряд конструктивных усовершенствований и разработать проект гидрогенератора мощностью 103,5 МВт, напряжением 165 кВ для Днепровской ГЭС-2. К сожалению, этот интересный проект не получил реализации из-за неподготовленности производства, особенно высоковольтных обмоток.

6.2.8. СИНХРОННЫЕ КОМПЕНСАТОРЫ

Повышение коэффициента мощности в системах электропотребления достигается установкой конденсаторных батарей и применением синхронных двигателей в режиме генерации реактивной мощности. По мере развития энергетических систем наряду с синхронными двигателями стали применяться синхронные машины без активной нагрузки на валу, т.е. лишь для выработки реактивной мощности. Такие машины получили название синхронных компенсаторов. За счет выдачи и потребления реактивной мощности синхронные компенсаторы способствуют поддержанию напряжения в местах их подключения. Сначала синхронные компенсаторы выполнялись с воздушным охлаждением, а затем для более мощных машин был сделан переход на водородное охлаждение.

Применение синхронных компенсаторов позволяет снизить потери электроэнергии в линиях электропередачи. Для этого необходимо уменьшать передаваемую через линию реактивную мощность за счет источников такой мощности на приемном конце. Такими источниками в нашей стране и за рубежом стали синхронные компенсаторы. Наибольших успехов в создании таких машин добился завод «Уралэлектротяжмаш» и его главный конструктор по синхронным компенсаторам В.З. Пекне. Установленная мощность синхронных компенсаторов достигала 20–30% мощности линий. Наиболее мощные синхронные компенсаторы в нашей стране были: 1940 г. — 30 MB?А, 1956 г. — 75 MB?А, 1963 г. — 100 MB?А и 1969 г. — 160 MB?А.

Применение водородного охлаждения привело к снижению вентиляционных потерь на 25–35% с одновременным увеличением мощности в тех же габаритах. С точки зрения стоимости строительства решающее значение имел переход на наружную установку компенсаторов. Расчетно-теоретические исследования показали целесообразность использования частоты вращения 750 об/мин и применения явно-полюсной конструкции. Пуск компенсаторов осуществляется от сети через реактор.

Возбуждение компенсаторов осуществлялось от генераторов постоянного тока, сочлененных с асинхронными короткозамкнутыми двигателями и маховиками. Агрегат размещался в здании подстанции и был связан с компенсатором кабелями.

В 60-х годах для повышения эффективности действия синхронных компенсаторов вместо электромашинных возбудителей впервые в мире у нас в стране стали применять системы возбуждения с ртутными выпрямителями, получившие название ионных систем возбуждения. Однако радикальное упрощение системы возбуждения было достигнуто после освоения мощных кремниевых диодов и создания на их основе бесщеточных возбудителей. Такие возбудители, состоящие из обращенной синхронной машины и вращающегося выпрямителя, удалось разместить в объеме щеточно-контактно го аппарата. Разработка бесщеточных систем возбуждения была выполнена В.З. Пекне, В.Ф. Федоровым и В.К. Воробьем.

В 90-е годы получили развитие статические тиристорные компенсаторы. Их преимущество состоит в меньших потерях по сравнению с электромашинными компенсаторами, а недостаток — в несинусоидальности напряжения. Пока количество статических компенсаторов мало, поэтому в эксплуатации по-прежнему остаются синхронные компенсаторы.

Использование явления сверхпроводимости в электротехнике привело к разработке сверхпроводникового синхронного компенсатора. Его преимуществами являются: малые потери, синусоидальная кривая напряжения, низкое индуктивное сопротивление и возможность создания машин большой мощности. Испытание сверхпроводниковой машины в режиме синхронного компенсатора было проведено при мощности 20 MB?А на стенде ВНИИэлектромаша. Особенно перспективны такие компенсаторы в случае использования высокотемпературных сверхпроводников (на уровне температуры жидкого азота). Разработка таких компенсаторов выполнена под руководством Л.И. Чубраевой. Следует заметить, что в связи с беспазовой конструкцией статора имеется возможность выполнения обмотки статора на напряжение 110 — 220 кВ. Наши работы вызвали большой интерес в зарубежных странах, в частности в Японии и США. В Японии проблема разработки сверхпроводниковых синхронных компенсаторов входит в государственную программу создания сверхпроводниковых электрических машин, а в США в последнее время образована фирма по производству компенсаторов, основанных на применении высокотемпературных сверхпроводников.

6.2.9. КРУПНЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА (КЭМ)

Эта группа машин всегда была важной составной частью отечественного электромашиностроения. Крупные электрические машины обеспечивают привод вспомогательного оборудования электростанции — насосов, мельниц, дымососов и вентиляторов, широко применяются в металлургии, нефте-, газо- и угледобыче, химической промышленности, ирригационных системах и многих других отраслях и объектах. Для производства КЭМ специально строились и развивались электромашиностроительные заводы.

Первый толчок к развитию крупного отечественного электромашиностроения был связан с осуществлением плана ГОЭЛРО. Завод «Электросила» в 20-х годах XX в. провел модернизацию асинхронных и синхронных двигателей, ранее выпускавшихся по технической документации иностранных фирм.

В 30-е годы были разработаны основные методики расчетов и проектирования КЭМ. Большой вклад в их создание внесли ученые Ленинградского политехнического института, Московского энергетического института, Всесоюзного электротехнического института (ВЭИ), заводов «Электросила» и ХЭМЗ. Выдвинулась целая плеяда ученых-электромашиностроителей: М.П. Костенко, А.Е. Алексеев, Б.П. Апаров, Р.А. Лютер, В.Т. Касьянов и др., работы которых заложили основы создания крупных машин переменного тока на многие годы вперед. Радикальное развитие получили теория, методы расчета и проектирования. Особое внимание уделялось новым конструкциям и материалам, автоматизации производственных процессов, и электросварочных работ, проектированию уникальных электрических машин.

В эти годы были спроектированы и освоены производством серии крупных машин переменного тока AM, С и СМ. Это позволило обеспечить потребность в двигателях на частоты вращения от 1500 до 375 об/мин и мощностью до 8000 кВт. В этих машинах была достигнута определенная степень унификации, применены двухслойные обмотки, типоразмеры распределены по габаритам. Было образовано два участка серии: 11–15-го и 16–20-го габаритов. Были созданы также специализированные машины и дизельные генераторы. В конце 30-х годов на «Электросиле» начали выпускать асинхронные двигатели частотой вращения 3000 об/мин серии ATM мощностью до 3500 кВт, которые предназначались для привода турбонасосов, турбокомпрессоров, воздуходувок и других быстроходных механизмов. Таким образом, завод «Электросила» стал родоначальником и первым разработчиком большинства серий крупных машин.

В 1943 г. изготовление крупных электрических машин было начато на заводе «Уралэлектротяжмаш», где в короткий срок была доработана и освоена широкая номенклатура асинхронных и синхронных двигателей.

В конце 40-х — начале 50-х годов производство крупных электрических машин начали Ленинградский электромашиностроительный завод (ныне ОАО «Сила»), Лысьвенский турбогенераторный завод (ныне ОАО «Привод») и Новосибирский турбогенераторный завод (ныне ОАО ЭЛСИБ). На этих предприятиях были созданы, в значительной степени с помощью завода «Электросила», собственные научно-технические и конструкторские подразделения. К этому времени назрела необходимость специализации производства, обобщения опыта разработки отдельных типов и серий крупных электрических машин. Важнейшую роль в дальнейшем развитии электромашиностроения, особенно в исследовании новых направлений развития технического прогресса в этой области сыграл созданный в 1950 г. Институт электромеханики АН СССР, ныне ВНИИэлектромаш.

В конструировании двигателей активно участвовали ведущие заводские специалисты, среди которых следует отметить В.К. Федорова и Л.П. Клеймона.

В 1952 г. была начата работа по проектированию единой серии крупных электрических машин переменного тока. В создании единой серии участвовали многие заводы и институты — ВНИИЭМ и Институт электромеханики АН СССР. Теоретические и экспериментальные исследования возглавил И.Д. Урусов. На Ленинградском электромашиностроительном заводе была организована исследовательская лаборатория, а также проектная группа, позднее преобразовавшаяся в Центральное конструкторское бюро крупных электрических машин (ныне ОАО ЦКБ КЭМ). Большой вклад в создание единой серии внесли И.М. Радин, В.Е. Матюков, В.М. Бизня.

В единую серию крупных электрических машин вошли синхронные двигатели серии СДН (14–20-го габаритов), асинхронные двигатели серии АКН (с фазным ротором) и АН (с коротко-замкнутым ротором). В новых сериях была принята жесткая шкала мощностей и частот вращения, которая позже стала основной для стандартизации. Был теоретически обоснован оптимальный ряд внешних диаметров сердечников статоров, разработаны современные подходы к унификации, типовые решения по конструкции обмоток и вылету лобовых частей, сборке и креплению магнитопровода, вентиляционным схемам и элементам. Единая серия не имела аналогов в мировой практике. Она позволила в несколько раз сократить номенклатуру оснастки, применяемых материалов и вместе с тем обеспечивала высокое качество электрических машин.

В 1960 г. правительство приняло решение о внедрении единой серии на всех заводах крупного электромашиностроения. К производству этих машин были подключены новые заводы в Молдавии (г. Тирасполь), на Украине (г. Новая Каховка), а также электромашиностроительный завод им. Владимира Ильича (Москва).

Единая серия дала толчок к созданию других специализированных серий КЭМ. Были разработаны и внедрены серия синхронных двигателей типа СДК и СДКП для привода компрессоров, мельниц, экскаваторов и др., дизельные генераторы СГД на частоту вращения 300 и 375 об/мин.

На Новосибирском турбогенераторном заводе большие работы были проведены по совершенствованию конструкции и технологии изготовления роторов, развитию номенклатуры серии асинхронных турбодвигателей типа АТД, в которых принимали участие К.Н. Масленников, Ю.В. Аргунов. В дальнейшем этот завод разработал новые высокочастотные преобразователи частоты для индукционных печей.

Завод «Уралэлектротяжмаш» на базе единой серии освоил выпуск асинхронных электродвигателей типа ВАН (АВ) и синхронных типа ВСДН (СДВ) для гидравлических насосов. Машины имели упорные подшипники (подпятники), что позволяло воспринимать значительные осевые нагрузки от реакции воды и массы вращающихся частей насоса.

Важным достижением стало создание синхронных двигателей на частоту вращения 1500 об/мин с массивными полюсами (З.Б. Нейман и Ю.Н. Герасименко).

Заводом «Электросила» взамен двигателей ДАМСО были разработаны серии асинхронных двигателей типа А и ДАЗО (12–13-го габаритов, мощностью до 1000 кВт). Эти машины стали самыми массовыми в производстве (Ленинградский электромашиностроительный завод). На этом заводе внедрены алюминиевые сварные обмотки роторов асинхронных короткозамкнутых двигателей, давшие очень большой экономический эффект и поднявшие надежность конструкций обмоток и роторов.

На заводе «Электросила» были разработаны также и более крупные асинхронные электродвигатели ДАЗО 15–19-го габаритов, в том числе двухскоростные с самостоятельными обмотками на каждую частоту вращения; синхронные генераторы для морского флота.

Таким образом, в 50–60-е годы были заложены основы создания современных серий, разработана и внедрена широкая номенклатура крупных электрических машин, созданы новые производственные мощности для их изготовления. В этот период выпуск КЭМ увеличился более чем в 2 раза, что позволило практически полностью обеспечить потребность в них всех отраслей народного хозяйства.

Следующий период развития крупного электромашиностроения был связан с совершенствованием технико-экономических показателей машин, внедрением новых прогрессивных систем высоковольтной изоляции и полупроводниковых систем возбуждения.

На заводе «Сибэлектротяжмаш» (г. Новосибирск) были разработаны высокоэффективные серии асинхронных турбодвигателей АТД2 и в последующем АТД4 мощностью до 8000 кВт. Там же были созданы новые преобразователи частоты, в которых удалось разместить в одном корпусе двигатель и генератор, а за счет вертикального исполнения уменьшить габариты агрегатов.

Рис. 6.6. Крупный асинхронный двигатель закрытого исполнения с обдувом мощностью 800 кВт, частотой вращения 1500 об/мин, напряжением 6 кВ (серия ДАЗО 4) 

На базе новых материалов и технологий были разработаны ЦКБ КЭМ серии асинхронных электродвигателей А4 и ДА304 (рис. 6.6). Выбор параметров, уровня нагрузок и проведение расчетов выполнил С.А. Макаровский, а отработку схем вентиляции и охлаждения — В.Н. Васильев, максимальную степень унификации конструкции обеспечил Л.М. Миттельман, координацию работ по новой серии, включая технико-экономические обеспечение, стандартизацию, организацию и оптимизацию производства, осуществил Г.С. Васильев. Эти серии на многие годы стали определять технический уровень электрических машин напряжением 6000 В, мощностью от 200 до 2000 кВт. В настоящее время эти двигатели выпускаются на АО «Сила», АО «Сафоновский электромашиностроительный завод» и АО «Привод».

В последние годы темпы создания новых серий и типов машин и исследований в области крупных электрических машин замедлились. В настоящее время ведутся исследования в области электродвигателей с регулируемой частотой вращения, выпускаются опытные образцы и отдельные партии.

В связи с тем что некоторые заводы крупного электромашиностроения из-за распада СССР оказались в других странах, а российские заводы имеют резервы мощностей, то научно-исследовательскими институтами, конструкторскими бюро и заводами были проведены работы по разработке и освоению производства серий и типов машин, ранее изготавливавшихся вне России. Наиболее существенной работой является создание новой серии асинхронных двигателей типа АОД для привода вспомогательных механизмов электростанций. Двигатели этой серии отличаются удачной компоновкой, повышенной надежностью и высокими энергетическими показателями. Разработка велась в ТОО НеоКЭМ и ОАО ЦКБ КЭМ. Наибольший вклад в создание этой серии внесли Г.С. Васильев, В.Н. Васильев, А.И. Лапигин. Серия выпускается ОАО «Сила».

6.2.10. ВЕНТИЛЬНЫЕ ЭЛЕКТРОДВИГАТЕЛИ

Вентильные электродвигатели представляют собой синтез электрической машины (двигателя) и полупроводникового преобразователя. Они позволяют регулировать частоту вращения в широких пределах. По конструкции вентильный электродвигатель подобен синхронной машине. На его валу имеется датчик положения, выходные сигналы которого воздействуют на устройства управления полупроводниковыми приборами преобразователя постоянного тока в переменный (инвертора) или переменного тока одной частоты в переменный ток другой частоты (преобразователя с непосредственной связью). Преобразователь подключается к обмотке статора. Ротор двигателя может быть выполнен в виде двухполюсного электромагнита или постоянного магнита. В результате двигатель с полупроводниковым коммутатором имеет характеристики коллекторного двигателя постоянного тока. Если источник питания имеет переменное напряжение и в качестве коммутатора используется инвертор, то система дополняется выпрямителем.

Идея создания вентильного двигателя, который должен был стать бесколлекторным аналогом электрической машины, снабженной механическим коллектором и щетками, возникла в 30-е годы XX в. в СССР. Эта идея связана с именем Д.А. Завалишина. В те же годы работы велись М.М. Губановым, О.Г. Вегнером и Б.Н. Тихменевым, исследовавшими вопросы теории и принципы функционирования вентильных двигателей и предложившими ряд новых схем. Несколько позже Ф.И. Бугаев и Е.Л. Эттингер занимались вопросами электропривода с вентильными двигателями и регулированием частоты вращения вентильных двигателей.

Работы этих лет ориентировались на применение громоздких ионных приборов, входивших в состав коммутаторов вентильных двигателей, что ограничивало их практическое применение.

Толчком к развитию работ по бесконтактным двигателям постоянного тока послужило появление транзисторов, обладающих хорошими переключающими свойствами и компактностью, а также острая потребность космонавтики и авиационной техники в двигателях, способных надежно работать длительное время в сложных условиях без обслуживания.

Во ВНИИэлектромаше (г. Ленинград) под руководством И.Е. Овчинникова и Н.И. Лебедева в начале 60-х годов были начаты интенсивные работы в области теории, методов расчета схем и конструкций бесконтактных двигателей постоянного тока, их компонентов, а также полупроводниковых коммутаторов [6.41]. Были опубликованы первые научные статьи и получены первые авторские свидетельства. В течение 60-х и начала 70-х годов создается работоспособный коллектив специалистов, внесших заметный вклад в развитие вентильных двигателей. Здесь следует упомянуть таких специалистов, как Н.П. Адволоткин (вопросы конструкции и прочности роторов с постоянными магнитами высокоскоростных вентильных двигателей), В.Т. Гращенков (вентильные двигатели для приборной автоматики), В.Н. Ганжу (электромагнитные расчеты вентильных двигателей малой и средней мощности), Я.Н. Явдошак (вентильные двигатели для бытовой электротехники).

Рис. 6.7. Вентильный электродвигатель с ротором из редкоземельных постоянных магнитов 

Параллельно и приблизительно в это же время развивалась и московская школа по бесконтактным двигателям постоянного тока. Бесспорным ее лидером стал И.А. Вевюрко (ВНИИЭМ). Его работы были направлены на внедрение бесщеточных двигателей в различные области специальной техники. Эти задачи успешно решались.

Следует упомянуть и заметную роль вузовских ученых, внесших серьезный вклад в развитие вентильных двигателей. Это А.А. Дубенский (Московский авиационный институт), Л.Я. Зиннер, А.И. Скороспешкин (Куйбышевский, ныне Самарский, политехнический институт), В.А. Балагуров и В.К. Лозенко (Московский энергетический институт), которые опубликовали ряд книг и учебных пособий по вентильным двигателям, а также принимали участие в разработках некоторых типов этих двигателей.

Внедрение в массовое производство бесконтактных двигателей постоянного тока на электротехнических заводах было осуществлено в начале 70-х годов ВНИИэлектромашем. Это были двигатели серий БДС-1 и БДС-02 для аппаратуры звукозаписи. В свою очередь, ВНИИЭМ внедряет в конце 60-х и начале 70-х годов отдельные исполнения, а затем и серию вентильных двигателей для специальной техники.

Впоследствии с ростом мощности выпускаемых силовых транзисторов и появлением современных постоянных магнитов И.Е. Овчинниковым с Н.П. Адволоткиным и А.Г. Вдовиковым были разработаны более мощные вентильные двигатели (до 20 кВт) для станкостроения и роботехники (рис. 6.7) серий ДВУ, 2ДВУ (цилиндрические), ЗДВУ (дисковые), освоенные промышленностью (Днепропетровский электромеханический завод).

Большой вклад в создание вентильных двигателей внес Всесоюзный научно-исследовательский институт релестроения (ВНИИР, г. Чебоксары) во главе с А.Д. Поздеевым, под руководством которого были разработаны и внедрены в промышленность транзисторные коммутаторы (преобразователи) серии ЭПБ и системы управления.

Параллельно развивалась и техника мощных вентильных двигателей с коммутаторами на тиристорах. В Москве Центральный научно-исследовательский институт Министерства путей сообщения (ЦНИИ МПС) (Б.Н. Тихменев, Н.Н. Горин, В.А. Кучумов, В.А. Сенаторов) разрабатывает и пускает в опытную эксплуатацию вентильный двигатель с электромагнитным возбуждением мощностью 900 кВт для электровозов. Во ВНИИэлектромаше (И.Е. Овчинников, В.Н. Рябов) совместно с Лысьвенским турбогенераторным заводом разрабатываются мощные быстроходные вентильные двигатели (6–20 МВт) для нефте- и газоперекачивающих агрегатов; выполнены мощные (100–500 кВт) тихоходные вентильные двигатели (Н.И. Лебедев), созданы пусковые тиристорные устройства по схеме вентильного двигателя (В.И. Левин, В.И. Климов, Е.А. Крутяков).

В объединении «Электросила» были выполнены интересные проекты по гребным вентильным двигателям и тихоходным вентильным двигателям для мельниц.

Интересные работы по теории вентильных двигателей с электромагнитным возбуждением и коммутацией на тиристорах были опубликованы в 70–80-х годах А.К. Аракеляном, А.А. Афанасьевым, И.Е. Овчинниковым, Б.Н. Тихменевым [6.42–6.45].

Развитие вентильных двигателей происходит в настоящее время настолько интенсивно, что многие специалисты прогнозируют в некоторых областях почти полное вытеснение ими в будущем традиционных машин постоянного тока.

6.2.11. СИСТЕМЫ ВОЗБУЖДЕНИЯ И АВТОМАТИЧЕСКИЕ РЕГУЛЯТОРЫ ВОЗБУЖДЕНИЯ

Синхронная машина, система возбуждения и автоматический регулятор возбуждения представляют собой единый комплекс, обеспечивающий эффективную работу генераторов и двигателей. На протяжении длительного времени в качестве возбудителя крупных синхронных машин использовались коллекторные генераторы постоянного тока. Они обычно размещались на общем валу с главной машиной. Реже возбудитель входил в состав отдельного агрегата, состоящего из генератора и асинхронного двигателя. Коллекторы генераторов постоянного тока требовали систематического ухода. Генераторы имели значительную электромагнитную инерционность.

В послевоенные годы в нашей стране начались пионерские работы по использованию управляемых вентилей вместо механических коммутаторов-коллекторов. Сначала исследования проводились на лабораторных установках, а затем были созданы и проверены в эксплуатации опытно-промышленные ионные возбудители. В Ленэнерго такая установка была выполнена для гидрогенератора мощностью 33 MB?А Нижнесвирской ГЭС. Разработка и испытания проходили под руководством И.А. Глебова и С.Ф. Зонова. Авторство и руководство в создании и испытании опытно-промышленной системы ионного возбуждения турбогенератора мощностью 3 МВт на ТЭЦ № 7 Мосэнерго принадлежат Ю.А. Шмайну. Опытно-промышленная установка гидрогенератора мощностью 55 МВт для Рыбинской ГЭС была создана и испытана с участием В.Я. Масольда. В первых двух установках использовались ртутные вентили — игнитроны, а в третьей — откачные ртутные вентили. В первой и третьей установках выпрямители подключались к вспомогательным синхронным генераторам, а во второй установке — к трансформатору, получавшему питание от сети.

После проведения всесторонних испытаний и накопления опыта эксплуатации в 1957–1967 гг. начались разработка и создание систем ионного возбуждения для мощных гидрогенераторов ряда ГЭС (Волжские, Братская, Нурекская, Усть-Илимская, Красноярская, Саяно-Шушенская, Ингушская, Капчагайская, Саратовская, Кременчугская, Асуанская) и для турбогенератора мощностью 30 МВт ТЭЦ-16 Мосэнерго, а также для мощных синхронных компенсаторов (75 и 100 MB?А).

В связи с отсутствием в то время тиристоров выпрямители создавались на основе ртутных вентилей производства завода «Уралэлектротяжмаш». Их номинальный ток составлял 500 А, а напряжение 2500 В. В системах ионного возбуждения гидрогенераторов применялись вспомогательные синхронные генераторы. Они размещались между крестовиной и активной частью гидрогенератора. Их особенностью является то, что они имеют большой диаметр и малую длину. Так, например, наружный диаметр генератора Волжской ГЭС в районе г. Самары равен 850 см, а длина его сердечника 24 см.

Вспомогательные синхронные генераторы были разработаны и созданы на заводе «Электросила».

В связи с высокой кратностью форсирования (предельное напряжение возбуждения равно четырехкратному значению номинального напряжения) и практически безынерционным действием управляемых вентилей был достигнут наиболее высокий уровень динамической устойчивости машин и линий электропередачи.

Наряду с разработками систем ионного возбуждения для гидрогенераторов велись разработки систем ионного возбуждения для синхронных компенсаторов, которые были применены для подстанций на приемном конце линий электропередачи главным образом напряжением 500 кВ.

Широкое внедрение систем возбуждения с управляемыми преобразователями вместо электромашинных возбудителей было осуществлено впервые в мире в нашей стране. В дальнейшем переход на системы возбуждения с управляемыми вентилями был сделан и в зарубежной практике электромашиностроения.

Наибольший вклад в реализацию нового важного технического направления внесли И. А. Глебов (разработка теории, исследования на опытно-промышленной установке и на электродинамической модели); Е.М. Глух, М.А. Смирнитский, Г.В. Чалый, Ю.А. Шмайн, Е.Л. Эттингер (разработка, испытания и исследования на промышленных установках); А.И. Казанцев, Л.С. Флейшман (разработка и создание оборудования); В.Я. Масольд (наладочные работы и испытания на опытно-промышленной установке). Всем указанным специалистам была присуждена Государственная премия СССР за 1968 г.

После освоения полупроводниковых вентилей дальнейшее развитие систем возбуждения гидрогенераторов, турбогенераторов, синхронных компенсаторов и крупных синхронных машин проходило на основе использования кремниевых тиристоров и диодов.

Одна из первых и самых крупных тиристорных систем возбуждения гидрогенераторов была смонтирована на Красноярской ГЭС. Разработка системы была сделана ВНИИэлектромашем совместно с производственным объединением «Уралэлектротяжмаш». Ее внедрение было осуществлено в 1976 г. при самом активном участии персонала ГЭС во главе с В.И. Брызгаловым. Мощность гидрогенератора равна 500 МВт, а вспомогательного синхронного генератора 7,65 MB?А. Наружный диаметр последнего составляет 840, а длина его сердечника 38 см. Для преобразователей применены тиристоры со средним током 330 А и классом напряжения 20 и более. Общее количество тиристоров 180, они имеют водяное охлаждение. Как и для ионной системы возбуждения, кратность форсирования составляет 4.

Самая мощная тиристорная система возбуждения турбогенератора относится к машине мощностью 800 МВт и частотой вращения 3000 об/мин. Здесь возбудительно-вспомогательный турбогенератор мощностью 6 МВт устанавливается в своих подшипниках, роторы главной и вспомогательной машин соединяются муфтой, кратность форсирования принимается равной 2.

Рассмотренные выше системы возбуждения являются независимыми, так как в них применяется вспомогательный синхронный генератор. В таких системах необходимо иметь тиристорные преобразователи и автоматические регуляторы возбуждения (АРВ) как для главной, так и для вспомогательной машины. Система возбуждения существенно упрощается, если перейти на схему самовозбуждения. В этом случае обмотка ротора получает питание от выпрямителя, подключенного ко вторичной обмотке выпрямительного трансформатора. Его первичная обмотка присоединяется к выводам генератора. Системы самовозбуждения стали все более широко применяться как для турбогенераторов, так и для гидрогенераторов.

Щеточно-контактный аппарат турбогенератора с частотой вращения 3000 об/мин надежно работает при токах до 5000 А. Поэтому с увеличением токов потребовалось создание бесконтактной или бесщеточной системы возбуждения. Для этой цели применяется синхронный генератор обращенного типа, у которого якорь вращается, а индуктор неподвижен. Обмотка якоря подсоединяется к вращающемуся выпрямителю, соединенному с обмоткой ротора турбогенератора.

Для бесщеточных возбудителей потребовались диоды, рассчитанные на большие центробежные ускорения. Специальное конструкторское бюро завода «Электровыпрямитель» (г. Саранск) с участием ВНИИэлектромаша разработало и создало диоды со средним током 500 А и повторяющимся напряжением 2000 В. Позднее были освоены диоды на ток 630 А и напряжение 2800 В. В 1972 г. для турбогенератора мощностью 300 МВт был применен трехфазный возбудитель с диодами на ток 500 А. Полученный опыт был распространен еще на четыре турбогенератора мощностью по 300 МВт. Вся эта работа проводилась ВНИИэлектромашем и объединением «Электросила». Энергетическим институтом им.

Г.М. Кржижановского и харьковским заводом «Электротяжмаш» для турбогенератора мощностью 200 МВт с многофазным возбудителем под руководством Г.А. Ковалькова и B.C. Кильдишева были применены диоды с током 500 А. Такие же диоды были применены и для двух многофазных бесщеточных возбудителей турбогенераторов мощностью 500 МВт завода «Электротяжмаш», установленных на Воронежской АЭС. Позднее машины этого класса комплектовались трехфазными возбудителями и диодами с током 630 А и выполнялись в объединении «Электросила». По заказу Ленинградской АЭС в 1978 г. была завершена поставка четырех бесщеточных возбудителей для турбогенераторов мощностью 500 МВт.

В 1980 г. был создан самый мощный в мире двухполюсный турбогенератор на 1200 МВт для Костромской ГЭС, который имеет номинальные значения тока возбуждения 7800 А и напряжения 500 В. В этом случае единственно возможное решение состояло в применении бесщеточной системы возбуждения. Для турбогенераторов мощностью 1000 МВт с током возбуждения 7000 А и напряжением 500 В для атомных электростанций были также применены бесщеточные возбудительные системы. Первый такой турбогенератор был введен в эксплуатацию в 1981 г., а всего на электростанциях сейчас работают 17 аналогичных машин. При их создании весь комплекс исследований и разработок по совместным проектам ВНИИэлектромаша с объединением «Электросила» был выполнен под руководством В.Ф. Федорова и В.К. Воробья.

В 1978 г. впервые в мировой практике была введена в эксплуатацию тиристорная бесщеточная система возбуждения для турбогенератора мощностью 300 МВт с частотой вращения 3000 об/мин на Киришской ГЭС.

Как указано выше, бесщеточные возбудители были применены для синхронных компенсаторов. В связи с большим синхронным индуктивным сопротивлением для получения большого значения реактивной мощности в режиме потребления кроме основного выпрямителя положительного возбуждения применяется выпрямитель отрицательного возбуждения.

Рис. 6.8. Бесщеточный возбудитель турбогенератора средней мощности
1 — полюс; 2 — якорь возбудителя; 3 — вращающийся выпрямитель; 4 — вал турбогенератора 

Во ВНИИэлектромаше разработана новая система статического тиристорного самовозбуждения с воздушным охлаждением для турбогенераторов мощностью от 60 до 220 МВт с широким использованием микропроцессорной техники. В этой системе имеется 100-процентное резервирование. Для меньшего диапазона мощностей (2,5–63 МВт) предложены упрощенная статическая тиристорная и бесщеточная системы (рис. 6.8). Последняя имеет консольное исполнение, благодаря чему она размещается в пространстве щеточно-контактного аппарата. Микропроцессорная техника, силовая часть, устройства управления, регулирования, защиты и сигнализации размещены в одном небольшом шкафу. Указанные системы возбуждения разработаны В.В. Кичаевым, В.М. Бобровым, Е.Н. Поповым и В.К. Воробьем и освоены в производстве.

Разработка статических систем возбуждения мощных синхронных двигателей велась в ЦКБ КЭМ и на заводе «Уралэлектротяжмаш» (И.Л. Остров, В.Б. Коваленко, Б.В. Яковчук). Были созданы возбудители серий ВТЕ и ТЕ на токи возбуждения до 320 А. Они нашли широкое применение и в настоящее время изготавливаются в АО «Привод», на Рассказовском заводе низковольтных аппаратов, Сафоновском электромашиностроительном заводе. На заводе «Уралэлектротяжмаш» были созданы системы возбуждения на токи 630–800 А (ответственный исполнитель Р.Г. Гольдин).

Наряду со статическими системами велись активные исследования и разработки по бесщеточным системам возбуждения. Один из первых образцов отечественных бесщеточных генераторов был изготовлен и испытан в ЦКБ КЭМ. Большой объем работ по созданию бесщеточных генераторов был выполнен также на заводе «Электросила», где были разработаны и освоены бесщеточные генераторы типа СБГД мощностью до 6300 кВт. ЦКБ КЭМ и Сафоновским электромашиностроительным заводом были созданы синхронные двигатели с бесщеточной системой возбуждения.

Большое значение для создания полупроводниковых систем возбуждения турбо- и гидрогенераторов, а также синхронных компенсаторов и крупных синхронных машин, имела трехтомная монография И.А. Глебова, посвященная физическим процессам, методам расчета и проектирования [6.46–6.48].

Строительство дальних электропередач, объединение отдельных энергосистем в единую энергосистему, рост мощностей агрегатов потребовали существенного повышения динамической и статической устойчивости оборудования. Это привело к необходимости создания АРВ, которые реагируют не только на отклонения режимных параметров, но и на их производные. Такие регуляторы получили название автоматических регуляторов возбуждения сильного действия (АРВ СД). Сама идея и ее техническое воплощение были предложены специалистами нашей страны. В дальнейшем АРВ СД вошли в практику и зарубежных стран.

На первом этапе (1952–1953 гг.) развития АРВ СД разработчики из пяти организаций [Всесоюзный научно-исследовательский институт электроэнергетики (ВНИИЭ), Всесоюзный электротехнический институт (ВЭИ), Институт автоматики и телемеханики АН СССР, Московский энергетический институт (МЭИ), Институт электродинамики АН УССР] представили свои регуляторы в МЭИ, где они прошли испытания на электродинамической модели. На втором этапе (1954–1955 гг.) испытания двух АРВ СД продолжались на электродинамической модели Института электромеханики (теперь НИИэлектромаш). Авторами их были Н.В. Позин (Институт автоматики и телемеханики АН СССР) и Г.Р Герценберг (ВЭИ).

Наиболее полную поддержку специалистов получило предложение Г.Р. Герценберга. Поэтому АРВ СД ВЭИ нашел широкое практическое применение. Г.Р. Герценберг за эту работу был удостоен Ленинской премии.

Наиболее эффективная работа АРВ СД получается при использовании первой и второй производных угла нагрузки. Но измерение угла очень сложно. Поскольку ток генератора приблизительно пропорционален углу, то в регуляторах сначала использовались первая и вторая производные тока. Позднее И.А. Орурком, В.Е. Каштеляном и Н.С. Сирым было показано, что отклонение частоты и ее первая производная пропорциональны первой и второй производным тока. Поэтому в современных АРВ СД исходная информация получается от напряжения генератора.

В настоящее время практически на всех тепловых и гидравлических электростанциях, а также на атомных электростанциях страны применяются АРВ СД. Они пригодны для работы со всеми типами систем быстродействующего возбуждения (статические тиристорные и бесщеточные системы). Эти АРВ характеризуются коэффициентами регулирования и наличием сигналов по производным режимных параметров, что позволяет совместно с системами быстродействующего возбуждения реализовать преимущества сильного регулирования возбуждения, т.е. обеспечить высокие пределы статической и динамической устойчивости генератора и интенсивное демпфирование качаний в послеаварийных режимах.

АРВ СД претерпели существенные изменения в связи с совершенствованием элементной базы. Масса регуляторов снизилась с 1100 кг при использовании магнитных усилителей до 40 кг в случае применения интегральных схем. Обстоятельные научные исследования позволили не только разработать АРВ СДП1 (АРВ СД на базе полупроводников П с использованием интегральных схем I), но и освоить его производство (руководитель работ Н.С. Сирый).

Цифроаналого-физический комплекс, созданный во ВНИИэлектромаше, является мощным инструментом разработки и отладки алгоритмов цифровых систем регулирования и управления, средством выбора оптимального сочетания аппаратной и программной частей систем. На его основе в последние годы начато решение научной проблемы по разработке и созданию цифрового регулятора (АРВ СДЦ).

Первый цифровой регулятор был создан во ВНИИЭМ в 1978 г. (В.Д. Ковалев, А.В. Фадеев). Затем было выполнено еще несколько регуляторов. Все они находятся в эксплуатации на электростанциях. Тем не менее на сегодняшний день проведенные в данной области работы следует рассматривать лишь как начальную стадию развития АРВСДЦ.

Во ВНИИэлектромаше разработан и освоен АРВ СД с использованием микропроцессорной техники (В.В. Кичаев, М.Л. Богачков). Автоматический регулятор сильного действия селективный (АРВ СДС) состоит из аналоговых блоков и микропроцессора. Наличие микропроцессора позволяет реализовать ряд новых функций: 1) контроль и диагностику состояния регулятора; 2) длительное хранение установок в памяти; 3) изменение установок с любой скоростью и высокой точностью; 4) определение приоритетов при выполнении команд от разных уровней управления; 5) связь с верхним уровнем управления.

В результате исследовательской работы для синхронных генераторов малой и средней мощности во ВНИИэлектромаше был разработан и освоен в производстве автоматический регулятор напряжения — АРН (А.А. Юрганов, В.А. Кожевников). Он предназначен для тиристорных систем самовозбуждения и бесщеточных возбудителей. В нем реализуется пропорционально-интегрально-дифференциальный закон регулирования по отключению напряжения с компаундированием по реактивному току и с введением для повышения устойчивости сигналов по первым производным напряжения статора и тока ротора, а также сигнала обратной связи с целью повышения быстродействия. Наряду с этим он дает сигнал на форсирование возбуждения при авариях, обеспечивает программное начальное возбуждение, делает возможным требуемое распределение реактивных мощностей без группового регулирования напряжения для параллельно работающих генераторов, позволяет иметь местное и дистанционное изменение установки, ограничивает минимальный ток возбуждения.

Выходное напряжение АРВ поступает к системе управления тиристорами. Эта система является одним из важнейших элементов возбудителей. На протяжении многих лет ведутся работы по ее усовершенствованию. В конечном счете системы управления должны в ближайшем будущем базироваться на микропроцессорных устройствах.

6.2.12. АСИНХРОННЫЕ ДВИГАТЕЛИ

Массовое применение асинхронных двигателей потребовало их серийного выпуска как в предвоенные, так и в послевоенные годы. В 70-х годах наиболее широкое распространение получили короткозамкнутые асинхронные двигатели общего назначения серии А2 (защищенное исполнение) и А02 (закрытое обдуваемое исполнение) мощностью от 0,6 до 100 кВт.

С начала 70-х годов исключительно большая работа была проведена ВНИИЭМ (руководитель Т.Г. Сорокер) и Московским электромеханическим заводом им. Владимира Ильича (главный конструктор В.И. Радин) по новой серии асинхронных двигателей. Она завершилась созданием серии 4А с высотами осей вращения от 50 до 355 мм и мощностями от 0,06 до 400 кВт. Серия включает основное и специализированное исполнения и ряд модификаций.

К модификациям относятся двигатели с повышенным пусковым моментом, с повышенным номинальным скольжением и многоскоростные. К конструктивным модификациям относятся двигатели с фазным ротором, малошумные, со встроенными электромагнитными тормозами, встроенной температурной защитой, для моноблочных насосов. Модификации исполнений по условиям окружающей среды включают тропическое, химостойкое, сельскохозяйственное, влагоморозостойкое, водозащищенное и рудничное. К специализированным модификациям относятся высокоточные двигатели, двигатели для лифтов, частотно-управляемые и двигатели для привода деревообрабатывающих станков.

Рис. 6.9. Асинхронный двигатель серии 4А с короткозамкнутым ротором (основное исполнение) 

Двигатели основного исполнения предназначены для всех высот осей вращения и мощностей, а модифицированные и специализированные — только для отдельных участков. Основным способом охлаждения является внешний обдув (рис. 6.9). Обмотки двигателей с высотами осей вращения 50–132 мм имеют изоляцию нагревостойкости В, а с высотами осей вращения 160–355 мм — класса F. Подшипники — шариковые с двух сторон для осей вращения до 160 мм, а при более высоких осях вращения — роликовые со стороны привода и шариковые с противоположной стороны.

Разработка конструкций двигателей проходила одновременно с созданием специальных технологических процессов и оборудования для производства электрических машин со всыпными обмотками. Эти уникальные работы выполнялись во Всесоюзном НИИ технологии электромашиностроения (ВНИИТэлектромаш, г. Харьков) под руководством В.Г. Костромина. Для обеспечения равномерного малого воздушного зазора была применена однооперационная автоматическая штамповка холоднокатаной рулонной стали. Для термообработки листов магнитопроводов создана проходная рольганговая электропечь, работающая в автоматическом режиме. Для сборки сердечников магнитопроводов изготовлено полуавтоматическое оборудование. Решена комплексная задача автоматизации обмоточно-изолировочных процессов. Найдено решение сложнейшей задачи — механизированной сборки двигателей.

Производство серии 4А распределено между электромашиностроительными заводами, каждый из которых получил определенный отрезок серии. Создание серии 4А, воплотившей не только новые конструктивные и технологические решения, но и организацию производства в масштабах страны, явилось крупнейшим достижением отечественного электромашиностроения, равных которому не было в мировой практике. Следующим этапом в развитии асинхронных двигателей явилась разработка серии АИ (асинхронные интернациональные). Предполагалось, что она будет единой для стран — членов СЭВ. Однако с распадом СЭВ дальнейшие работы в этой области прекратились.

После распада Советского Союза ряд участков серии оказался на заводах стран ближнего зарубежья, поэтому электромашиностроительным заводам России пришлось разрабатывать и осваивать производство асинхронных двигателей на базе серии 4А в значительно большем диапазоне, чем они имели ранее.

Особого внимания заслуживает проблема регулирования частоты вращения асинхронных двигателей. Потребность в таком регулировании становится все больше. Экономичное регулирование частоты вращения в широких пределах асинхронных двигателей с короткозамкнутым и с фазным роторами возможно только при их совместной работе с преобразователями частоты, включенными в цепь статора или ротора двигателя. Синтез электродвигателей с преобразователями частоты не только обеспечивает экономичное регулирование, но и дает возможность выполнить сверхскоростные машины с частотой вращения 15–20 тыс. об/мин и более, а также безредукторные тихоходные двигатели с большими вращающими моментами.

Исследования теории работы асинхронных двигателей с короткозамкнутым ротором при частотном управлении были начаты в нашей стране М.П. Костенко в 1925 г. Им определен первый простой закон частотного управления, на основе которого разрабатывались конкретные устройства для регулирования и системы электроприводов (например, системы векторного управления, нашедшие применение в последние годы, учитывающие фазу и значение рабочего магнитного потока машины). В 60-е годы исследования законов частотного управления были продолжены А.А. Булгаковым и другими учеными.

Еще в предвоенные годы Д.А. Завалишин разработал и внедрил для текстильного производства асинхронный двигатель с преобразователем частоты на ртутных вентилях.

В настоящее время в связи с появлением мощных транзисторов и тиристоров, а также микропроцессорных систем управления появилась возможность создания компактных преобразователей частоты со звеном или без звена постоянного тока. Тиристорные преобразователи с непосредственной связью в 70-х годах были разработаны ВНИИэлектромашем (П.А. Ровинский) и созданы на заводе «Динамо» для электропривода морских лебедок, а затем Всесоюзным НИИ взрывобезопасного электрооборудования (ВНИИВЭ, г. Донецк) для электроприводов шахтных подъемных машин.

Применение преобразователя частоты в цепи фазного ротора асинхронного двигателя как со звеном постоянного тока, так и с непосредственной связью особенно выгодно при небольшом диапазоне регулирования двигателя вблизи от синхронной скорости, так как преобразователь частоты в этом случае передает только мощность скольжения. Особенно выгодны такие системы в приводах мощных насосов, воздуходувок и других механизмов с вентиляторной характеристикой. С 1945 г. в нашей стране был создан ряд таких систем, сначала на ртутных, а затем на полупроводниковых вентилях.

Д.А. Завалишин был основоположником теории совместной работы регулируемых электрических машин и полупроводниковых преобразователей, он внес большой вклад в развитие теории асинхронных двигателей с двумя комплектами обмоток на роторе, включенными на выпрямители, и асинхронных и вентильных двигателей с тиратронными преобразователями частоты.

П.А. Ровинский внес вклад в развитие теории работы асинхронных двигателей с тиристорными преобразователями в цепях статора и ротора, а также вентильных двигателей при питании их от сети и от автономных генераторов.

М.М. Ботвинник и Ю.Г. Шакарян развили теорию машин двойного питания в двигательном и генераторном режимах работы на частотах вращения выше и ниже синхронной.

Г.Б. Онищенко выполнил теоретические исследования асинхронно-вентильных каскадов с преобразователями частоты различных типов в цепи ротора и внес большой вклад в их промышленное внедрение.

6.2.13. ИЗОЛЯЦИЯ ОБМОТОК ЭЛЕКТРИЧЕСКИХ МАШИН

Надежность и долговечность электрических машин обусловлена главным образом их техническими показателями и качеством электроизоляционных материалов. Наибольший вклад в разработку и внедрение новых изоляционных материалов, конструкций на их основе и технологических процессов, обеспечивающих в значительной мере прогресс в электромашиностроении, внесли специалисты завода «Электросила» и отделение изоляции ВЭИ (впоследствии Всесоюзный научно-исследовательский институт электроизоляционных материалов — ВНИИЭИМ, г. Москва).

В 30–40-х годах завод «Электросила», изготавливая все более мощные высоковольтные турбо- и гидрогенераторы и двигатели, успешно преодолел барьеры высокого напряжения 6–13, 8–15, 15–20 кВ, используя наиболее передовые в то время конструкцию и технологический процесс нанесения непрерывной слюдяной изоляции, пропитанной битумным связующим, вакуум-нагнетательным способом. Основными разработчиками этой системы изоляции были в предвоенные годы — Г.И. Сканави, а в послевоенные — П.Н. Куракин и В.Н. Королев.

Следующий качественный скачок в развитии высоковольтной изоляции на заводе «Электросила» произошел в 60-е годы, когда создание отечественной термореактивной изоляции на основе пропитанных лент «слюдотерм» резко повысило надежность изоляции. Это явилось результатом совместных усилий химиков — разработчиков связующего (Р.В. Молотков), создателей слюдяных бумаг (Ю.В. Корицкий, Н.В. Александров) и технологов (И.Т. Сушкова). Выдающуюся роль в организации и координации этой работы на заводе «Электросила» сыграл В.Н. Королев.

Одновременно подобная система изоляции создавалась с помощью ВНИИЭИМ на харьковском заводе «Электротяжмаш» (А.В. Хвальков-ский, Р.С. Холодовская, В.Б. Бунер). В эти же годы термореактивная изоляция с использованием принципа вакуум-нагнетательной пропитки сухих лент («монолит») была разработана во ВНИИЭИМ (Н.В. Александров, С.Г. Трубачев, В.Г. Огоньков) и успешно внедрена на крупнейших электромашиностроительных заводах: «Уралэлектротяжмаш», «Сибэлектротяжмаш», Лысьвенский турбогенераторный завод.

В 1968 г. на первых гидрогенераторах с термореактивной изоляцией было обнаружено явление электроэрозионного повреждения изоляции (пазовый разряд), характерное для твердой термореактивной изоляции в сочетании с традиционной конструкцией пазового крепления. За короткий срок (2–3 года) пазовый разряд приводил к полному разрушению изоляции. Исследования, проведенные на моделях и реальных генераторах, позволили создать систему упругого пазового уплотнения обмотки. Эта конструкция, применяемая с 1970 г. на всех высоковольтных машинах, выпускаемых заводом «Электросила», позволила полностью исключить это явление и избежать серьезных проблем, которые позднее возникли у ряда ведущих фирм за рубежом. В это же время были созданы материалы для принципиально новой системы крепления лобовых частей обмотки.

В 1970–1979 гг. на заводе «Электросила» Б.Д. Ваксером, З.М. Гуревичем, Т.Ю. Баженовой, Ю.Л. Пресновым были выполнены фундаментальные исследования долговечности и надежности термореактивной изоляции на лабораторных установках: 1) испытания на электрическое старение, механические воздействия и вибрацию; 2) функциональные испытания, совмещающие воздействие электрического поля и термомеханические напряжения; 3) исследования систем пазового крепления.

Результаты этих исследований позволили значительно снизить толщину изоляции статорных обмоток, что чрезвычайно важно для улучшения технико-экономических показателей Турбо- и гидрогенераторов. При этом повысились качество и надежность машин в эксплуатации, была обеспечена стабильность изоляции в производстве путем внедрения новых чувствительных методов контроля, использующих ионизационные явления.

В середине 70-х годов потребовалось повышение напряжения турбогенераторов мощностью 800–1200 МВт до 24 кВ и исключение коронирования обмотки. Для этого на заводе «Электросила» было создано эффективное и надежное короногасящее покрытие на основе эмали с наполнителями, имеющими нелинейные вольт-амперные характеристики. Разработанные модификации конструкции такого покрытия и методы контроля эмали, обеспечивающие его стабильность, а также простоту производства, позволили использовать его во всем существующем диапазоне классов напряжений высоковольтных электрических машин.

С конца 70-х годов начались работы по совершенствованию термореактивной изоляции «слюдотерм». Она основывалась на изготовлении катушек, пропитываемых и запекаемых до укладки обмотки в электрическую машину. Ее преимущество состояло в том, что эта конструкция и технология не ограничивали габариты электрических машин, обеспечивали ремонтопригодность обмоток, т.е. замену секций, стержней, катушек в случае пробоя, после длительного срока эксплуатации и т.п. Такая изоляция была применена в машинах с диаметром сердечника статора более 1–1,5 м. По существу, было создано новое поколение изоляции. Изменение состава связующего позволило при сохранении и некотором упрощении технологии повысить плотность слюдяного барьера в изоляции, существенно улучшить ее механические и электрические характеристики. Проведенные всесторонние испытания, в том числе с использованием пазовой модели, показали, что модернизация термореактивной изоляции позволяет снизить толщину изоляции на 25–40% при сохранении ее надежности и долговечности. Это обеспечило возможность создания современных мощных турбогенераторов с воздушным охлаждением, а также конкурентоспособных гидрогенераторов. Эти работы по изоляции были выполнены на заводе «Электросила» под руководством Ю.Л. Преснова (до 1979 г.), а затем В.В. Петрова.

Для электрических машин с диаметром сердечника статора до 1–1,5 м была применена система изоляции «монолит», при которой статор с уложенными сухими обмотками проходил вакуумно-нагнетательную пропитку в специальном котле, а в дальнейшем термообработку в печах. Система «монолит» позволила повысить электрическую и механическую прочность изоляции при одновременном снижении ее толщины и повышении класса нагревостойкости с В на F. Срок жизни новой изоляции был определен до 35 лет. Все это позволило улучшить использование активных материалов, повысить электромагнитные нагрузки. В результате появилась техническая возможность существенно (на 25–40%) снизить массу электрических машин, повысить коэффициент полезного действия по сравнению с машинами с прежними видами изоляции. Значительный объем исследований и разработок по внедрению в конструкцию машин системы изоляции «монолит» был проведен на заводе «Сибэлектротяжмаш» под руководством A.M. Евлантьева и В.Г. Сякова. Технологию изготовления высоковольтных электрических машин с этой изоляцией освоил также Лысьвенский турбогенераторный завод и позднее Баранчинский электромеханический завод.

В настоящее время практически все высоковольтные электрические машины выпускаются с термореактивной изоляцией, что обеспечивает высокий уровень надежности обмоток.

В заключение необходимо рассмотреть вопросы изоляции низковольтных электрических машин. До 1965 г. на заводе «Электросила» для низковольтных электрических машин переменного тока напряжением до 1200 В применялись две системы изоляции: 1) микалентная битумно-масляная для рабочих температур до 130 °С; 2) стекломикалентная на основе кремнийорганических связующих для рабочих температур до 180 °С. Последняя была создана на основе работ К.А. Андрианова по химии кремнийорганических материалов. Начиная с 1965 г., под руководством Е.П. Богдановой была разработана система изоляции на основе слюдопластовой бумаги производства Ленинградской слюдяной фабрики и эпоксидно-фенольных связующих класса нагревостойкости F.

С 1969 г. проводились разработки и внедрение полиимидной пленки и композиций на ее основе. Переход на пленочные материалы позволил снизить толщину изоляции примерно на 40%, соответственно повысились технические параметры электрической машины (коэффициент заполнения паза, удельная мощность). По техническим заданиям специалистов завода «Электросила» сотрудниками Всесоюзного научно-исследовательского института кабельной промышленности (ВНИИКП, г. Москва) был разработан провод с полиимидно-фторопластовой изоляцией с двусторонней толщиной 0,16 мм (выпускает завод «Москабель»). Уже в сериях машин постоянного тока П и 2П якорная обмотка выполнялась с использованием пленочных материалов.

Создание современной низковольтной изоляции проходило под руководством и при непосредственном участии Ю.Л. Преснова, В.В. Петрова и И.Т. Сушковой.

6.2.14. МЕТАЛЛОВЕДЕНИЕ ВТ КРУПНОМ ЭЛЕКТРОМАШИНОСТРОЕНИИ

Наряду с изоляцией очень важными элементами электрических машин являются металлы и сплавы. Основные исследования и разработки в области металловедения для крупного электромашиностроения проводятся в отделе металлов завода «Электросила». Главным исполнителем этих работ является Н.А. Греков. В результате творческого труда инженеров-металлургов как электротехнической, так и металлургической промышленности удалось создать стальные заготовки крупных размеров, набор специальных электротехнических и конструкционных металлов и сплавов, многие марки чистой электротехнической проводниковой меди и ее сплавов, разработать новые технологические процессы и способы контроля.

Производство заготовок роторных валов, несомненно, является важнейшей задачей при создании турбогенераторов. Ротор турбогенератора — это, пожалуй, самая крупная во всем машиностроении цельная металлическая деталь. Его масса изменяется от нескольких тонн (1,5–6) для небольших турбогенераторов мощностью 2–12 МВт до 200 т в чистой заготовке для тихоходного (1500 об/мин) турбогенератора мощностью 1000 МВт для атомных электростанций. Проблема изготовления роторов в нашей стране была удачно разрешена в самом начале производства генераторов, так как металлургическое производство других отраслей имело опыт изготовления требуемых слитков высококачественных сталей и их ковки в крупные заготовки, какими являются роторные валы.

Первые отечественные роторные заготовки создавались при совместном участии специалистов завода «Электросила» и завода «Баррикады» в г. Сталинграде (ныне Волгограде) еще в 30-е годы. По качеству они не уступали лучшим зарубежным аналогам фирм «Крупп», «Шкода», «Метрополитен-Викерс». В середине 70 -х годов в связи с необходимостью создания еще больших роторных заготовок, что было сопряжено с разработкой производства крупных стальных слитков (массой свыше 250 т), их производство параллельно с заводом «Баррикады» было налажено на Ижорском заводе (г. Ленинград), который постепенно стал специализироваться именно на производстве роторных заготовок особо крупных размеров для турбогенераторов мощностью 800, 1000 и 1200 МВт, а также для тихоходных турбогенераторов АЭС.

Наша страна вошла в число трех стран, выпускающих крупные заготовки роторов турбогенераторов (СССР, Япония, США). Этому способствовала деятельность специалистов-металлургов электротехнической промышленности И.А. Одинга, П.Р. Веррилепа, В.К. Дебрера, A.M. Шкатовой. И.А. Одинг был одним из первых исследователей во вновь организованной в 1922 г. лаборатории металлов завода «Электросила». Став членом-корреспондентом АН СССР, он непрерывно помогал лаборатории. П.Р. Веррилеп работал долгие годы главным металлургом завода «Электросила» (до 1964 г.). Он участвовал в организации производства роторов на заводе «Баррикады», за совершенствование технологии производства роторных заготовок был удостоен Государственной премии СССР Всю жизнь проработал на «Электросиле». В.К. Дебрер — неутомимый экспериментатор и изобретатель приборов и методик усталостной прочности роторных сталей. A.M. Шкатова — бессменный руководитель производства практически всех роторных заготовок как на заводе «Баррикады», так и на Ижорском заводе.

Немагнитные бандажные кольца — очень специфическая деталь турбогенератора. Внешняя простота их конфигурации и сравнительно небольшие массы (0,8–2,6 т) могут ввести в заблуждение относительно легкости изготовления этой детали. Можно сказать, что эта деталь является ключевой в конструкции ротора турбогенератора, а следовательно, и во всем генераторе. Полная немагнитность, высокие прочностные и пластические свойства (это самая нагруженная деталь во вращающемся роторе), наконец, надежная коррозионная стойкость — все эти требования сильно ограничивают выбор материала и усложняют технологию производства. Хорошей иллюстрацией сказанного является то, что во всем мире имеются лишь четыре завода, где могут быть надежно выполнены все требования заказчиков этого вида продукции. В первую очередь следует назвать фирму VSG (ранее «Крупп») в Эссене, которая удовлетворяет 2/3 потребности в бандажных кольцах всех мировых фирм, изготавливающих и ремонтирующих турбогенераторы. Три остальных завода (в Японии, Франции и России) в сумме производят 1/3 общей потребности. Заводы России способны в настоящее время изготовить современные, не уступающие по качеству и размеру зарубежным, бандажные кольца.

На заводе «Уралмаш» производят бандажные кольца из стали. Поскольку диаметр бандажных колец больше диаметра бочки ротора и они, кроме того, удерживают лобовые части обмотки ротора, то здесь требуется особенно высокая механическая прочность. Для этого используется холодное растяжение на гидравлическом прессе с усилием 30 тыс. т. В результате предел текучести может быть увеличен с 40 до 115 кг/мм (в зависимости от диаметра бандажного кольца). В последнее десятилетие удалось перейти на коррозионно-стойкие стали за счет введения в состав материала азота, увеличения содержания хрома и марганца. На заводе в г. Верхняя Салда освоено производство титановых бандажных колец. Следует отметить, что производство и применение бандажных колец из титановых сплавов до настоящего времени никем еще не повторено, несмотря на их бесспорные преимущества по совокупности технических и экономических характеристик. Следует заметить, что нагрев титановых колец перед посадкой на ротор должен быть больше, чем стальных бандажей, что исключает повреждение лобовых частей. В создание технологии изготовления бандажных колец существенный вклад внесли Г.И. Арковенко и Е.П. Силина.

Если в середине 60-х годов потребность в электротехнической стали в значительной мере удовлетворялась за счет импорта, то, начиная с 70-х и особенно в последние 15–20 лет, специализированные заводы нашей страны полностью удовлетворяют потребность отечественного электромашиностроения по номенклатуре и количеству электротехнической стали. Немало ценных исследовательских и опытных работ было проведено Верх-Исетским (г. Екатеринбург) и Липецким металлургическими заводами. Этому способствовали исключительная инициатива и творческое участие специалистов металлургов Т.А. Казариновой и В.Д. Дуриева.

При производстве гидрогенераторов традиционными являются следующие три вида металлургических заготовок: втулка ротора, представляющая собой стальную кольцевую двухфланцевую деталь сложной конфигурации, масса которой достигает 70 т, чаще всего изготавливаемую методом литья; четырехмиллиметровый стальной лист повышенной прочности для обода ротора и, наконец, диск подпятника, представляющий собой кольцевую поковку массой до 30 т, изготавливаемую методом пластической деформации. Производство этих металлических деталей для гидрогенераторов освоено на ряде металлургических заводов.

Данные об использовании материалов будут неполными, если не упомянуть опыт применения проводниковой меди для различных видов обмоток ротора, якорей, коллекторов и статоров электрических машин. Еще в 50-е годы для получения твердой коллекторной меди впервые в стране был применен сплав меди с небольшим количеством серебра (не более 0,1%). При небольшой стоимости он обеспечивал высокое качество (повышенную теплостойкость) коллекторов практически всех машин постоянного тока. Это позволило отказаться от использования менее технологичной и, как выяснилось позже, экологически вредной кадмиевой меди. Медь с небольшой добавкой серебра применяется до сих пор, ее использование распространено и на производство обмоток других машин, например роторной и демпферной обмоток турбогенераторов. Тем не менее сейчас из экономических соображений ведутся работы по замене серебра на более дешевые легирующие элементы. Инициаторами и разработчиками сплавов меди с серебром были Т.Ф. Зикеева, В.И. Вайнус, а в настоящее время И.Ю. Радионова.

Общеизвестна роль термической обработки в производстве сварных конструкций. Она необходима для уменьшения остаточных напряжений изделия после его окончательной механической обработки. Для этого сначала производится нагрев до 650–680 °С, а затем медленное охлаждение (24–72 ч.).

Следует иметь в виду, что остаточные напряжения можно снизить и виброобработкой. Для этого частота вынужденных колебаний должна быть близка к собственной резонансной. Время обработки сокращается с 2–3 сут до 1–2 ч. И, наконец, следует особо подчеркнуть важность ультразвукового контроля дефектов крупных заготовок, который начал применяться с 1953 г.


6.3. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ МАЛОЙ МОЩНОСТИ

Электрические машины малой мощности (ЭМММ) представляют собой особый подкласс электрических машин. Это обусловлено в первую очередь их широким распространением в различных отраслях народного хозяйства. Бытовые электроприборы, медицинская аппаратура, вычислительная техника, устройства передачи и преобразования информации, системы автоматического управления и регулирования, морская, авиационная и космическая техника и автомобильный транспорт — вот далеко не полный перечень областей применения электрических машин данного подкласса. Можно утверждать, что развитие малого электромашиностроения в значительной степени отражает уровень электрификации и автоматизации всего народного хозяйства.

К ЭМММ относят электрические машины, номинальная мощность которых не превышает 750 Вт, а диаметры корпуса ограничиваются в основном 140 мм. Общий объем их производства исчисляется десятками и даже сотнями миллионов изделий в год. Объемы же производства отдельных видов и типоисполнений машин разнятся в значительных пределах, иногда это десятки изделий в год (например, для нужд космической техники). При малых объемах общие затраты на электротехнические материалы в производстве ЭМММ в несколько раз превышают соответствующие затраты в производстве электрических машин средней и большой мощности.

Производству ЭМММ присущи все признаки, характерные для самостоятельной отрасли: специфические особенности технической базы, технологических процессов, профессионального состава кадров.

История развития ЭМММ условно охватывает два больших периода.

Первый период — с конца прошлого столетия до окончания второй мировой войны — характеризуется малыми объемами производства машин, их крайне ограниченной номенклатурой, основу которой составляли машины постоянного тока, отдельные образцы машин систем синхронной связи и переменного тока.

Одной из первых отраслей, где были использованы ЭМММ, явилась авиация. Так, в 1912 г. В.П. Вологдиным (впоследствии чл.-корр. АН СССР) был разработан генератор переменного тока частотой 100 Гц и мощностью 500 Вт для питания радиостанции самолета «Илья Муромец». В 1919–1920 гг. под руководством В.И. Полонского созданы генераторы постоянного тока мощностью 200–300 Вт, приводимые во вращение ветряным двигателем, устанавливаемым на крыле или фюзеляже самолета. К 1936 г. мощность авиационных генераторов постоянного тока возросла до 1000 Вт, а привод их осуществлялся от основного авиационного двигателя.

В 1938 г. под руководством А.К. Голдобенкова была завершена разработка электромашинных преобразователей постоянного тока облегченной конструкции, которые использовались в авиации до 70-х годов. Важное значение для совершенствования конструкций авиационных генераторов имели работы, выполненные в период Великой Отечественной войны под руководством B.C. Кулебакина.

Одновременно в рассматриваемый период проводились работы по совершенствованию авиационного электропривода. В 1926 г. Б. А. Та-лалаем впервые создан гиродвигатель на базе синхронной машины. В этот же период на базе электродвигателей постоянного тока созданы приводы для бензиновых и масляных насосов, вентиляторов.

В 1939 г., на три года раньше, чем в США, Англии и Германии, в отечественных самолетах стали применяться разработанные под руководством А.А. Енгибаряна электромеханизмы дистанционного управления шасси, стабилизаторами, посадочными щитками и элеронами с использованием управляемых электродвигателей и систем синхронной передачи угла. В начале 40-х годов состав авиационного электрооборудования пополнился сельсинами и электромашинными усилителями. Первые образцы электромашинных усилителей были разработаны в 1940 г. под руководством А.Г. Иосифьяна.

Системы синхронной передачи угла на постоянном токе были разработаны в 1888–1890 гг. в Петербурге телеграфным мастером Гейслером и морским офицером В.В. Колокольцовым. В дальнейшем характеристики этих систем были улучшены Ф.Н. Максимовым и И.Г. Маругиным за счет применения в качестве датчиков специальных потенциометров, а в качестве приемников — реактивных синхронных электродвигателей.

Система синхронной связи на переменном токе с использованием сельсинов была впервые запатентована фирмой «Сименс» в 1896 г. Подобные системы в 1913 г. были применены на кораблях русского военного флота в машинном телеграфе, а также на Панамском канале в системах управления шлюзами.

Повышению надежности систем синхронной связи способствовало создание бесконтактных сельсинов, среди которых наиболее удачную конструкцию имеют используемые и в настоящее время сельсины, предложенные А.Г. Иосифьяном и Д.В. Свечарником, а также сельсины с кольцевыми трансформаторами, разработанные Е. Тирман.

Развитие и совершенствование номенклатуры ЭМММ проходило в основном благодаря изобретательской деятельности талантливых инженеров-электромехаников. Наряду с этим выполняется и ряд теоретических разработок, чему способствовало издание многотомного труда по электрическим машинам немецкого профессора Р. Рихтера, переведенного в 30-е годы на русский язык. Книга в большой степени способствовала повышению квалификации отечественных научных и инженерных кадров.

Одновременно расширяется круг теоретических исследований электрических машин малой мощности отечественными учеными и инженерами.

В области систем синхронной связи и их элементов можно отметить работы Д.В. Васильева, А.Г. Иосифьяна, Д.В. Свечарника, Г.И. Штурмана, Э.И. Эллера и др. Для развития теории и практики проектирования электрических машин с возбуждением от постоянных магнитов важное значение имели исследования А.С. Кантора, А.Н. Ларионова, Т.Г. Сорокера, К.М. Поливанова. Трудами Т.Г. Сорокера, Е.М. Голдовского, Е.А. Тер-Маркарьянца развивается теория синхронных реактивных электродвигателей.

На базе выполненных исследований создаются первые методики расчета и проектирования.

30-е годы текущего столетия характеризуются началом промышленного производства электрических машин малой мощности на заводах, главным образом авиационной и судостроительной промышленности. Это были отдельные типоразмеры машин, не связанные конструктивно технологической общностью.

Второй период развития малого электромашиностроения начался после окончания второй мировой войны и может быть разделен на три этапа. Первый этап включает послевоенные 40-е и 50-е годы. Он совпадает с промышленной революцией, вызвавшей бурное развитие вычислительной техники, систем автоматического управления и регулирования. Одновременно расширяется номенклатура и растут объемы производства бытовых электроприборов.

Возникла необходимость существенного совершенствования номенклатуры и расширения объемов производства ЭМММ. Потребовалось, в частности, создание машин, выполняющих не свойственные им ранее функции: передачу и преобразование информации, работу в динамических режимах, условиях низких температур, глубокого вакуума, повышенной радиации и т.п. Именно на этом этапе номенклатура и объемы выпуска ЭМММ возросли настолько, что малое электромашиностроение стало самостоятельной отраслью электротехнической промышленности.

Непрерывно растущая потребность, в первую очередь в электродвигателях, вызвала необходимость коренной перестройки методологии проектирования. Осуществляется переход от разработки отдельных машин к созданию серий различных видов электрических машин.

Разработка первых единых серий электродвигателей малой мощности общепромышленного применения была завершена в 1948 г. Асинхронные трехфазные электродвигатели серии АОЛ охватывали диапазон мощностей от 5 до 600 Вт при частотах вращения магнитного поля статора 1500 и 3000 об/мин. В состав серии входили и однофазные модификации: конденсаторные, с конденсаторным пуском, повышенным сопротивлением пусковой обмотки, а также ряд конструктивных модификаций.

Одновременно для того же диапазона мощностей была разработана серия универсальных коллекторных электродвигателей серии УЛ с частотами вращения 2700, 5000 и 8000 об/мин. На ее основе спроектированы также коллекторные электродвигатели постоянного тока ПЛ с параллельным возбуждением. Конструкция электродвигателей и технологические процессы их изготовления были рассчитаны на массовый выпуск с широкой автоматизацией производственных процессов.

В авиационной технике нашли применение трехфазные асинхронные двигатели серии ДАТ, охватывающей диапазон мощностей от 10 до 2500 Вт при частоте питающего напряжения 400 Гц с повышенной (для того времени) наработкой от 5000 до 12 000 ч.

В системах промышленной автоматики нашли применение электродвигатели постоянного тока с параллельным возбуждением серии СЛ; диапазон их мощностей 2–230 Вт при частотах вращения 2500–5200 об/мин. В составе серии были предусмотрены исполнения с центробежным стабилизатором частоты вращения. Под руководством B.C. Рыбакова были созданы серии управляемых асинхронных электродвигателей: ЭМ с полым немагнитным ротором и ДКМ с короткозамкнутым ротором. Электродвигатели этих серий рассчитаны на питание от сети с частотой 400 Гц в диапазоне частот вращения соответственно 2000–6000 об/мин и 4000–11000 об/мин. Дальнейшее совершенствование конструкции асинхронных двигателей с короткозамкнутым ротором привело к созданию серии ДКИ, включившей исполнения на частоты 50 и 400 Гц.

В начале 50-х годов для нужд авиационной промышленности на предприятиях Москвы были разработаны серии двухфазных асинхронных управляемых двигателей с полым немагнитным ротором серии ДИД на частоту 400 Гц мощностью от 0,1 до 10 Вт. Теоретические и проектные работы по этим двигателям выполнены на кафедре электрических машин МЭИ под руководством Ю.С. Чечета и Е.М. Лопухиной. Одновременно в Ленинграде (ЦНИИэлектроприбор) для обеспечения автоматического привода устройств, применяемых на военно-морском флоте разработаны серии более мощных аналогичных двигателей на частоты 50 и 500 Гц мощностью от 2 до 100 Вт. В конце 50-х, начале 60-х годов там же для нужд флота и ракетной техники разработана серия двухфазных двигателей с короткозамкнутым ротором с характеристиками, являющимися одними из лучших до сих пор. Работы выполнялись под руководством Э.А. Нокална.

Развитие автоматизации вызвало потребность в синхронных электродвигателях. Были разработаны и внедрены в производство десятки наименований машин как реактивных (серии СЧ и СТ), так и с возбуждением от постоянных магнитов.

Начиная с 1953 г., стали внедряться гистерезисные электродвигатели, применение которых позволило создать малогабаритные синхронные электроприводы на частоты питающего напряжения до 1000 Гц. В 1957 г. создана первая серия синхронных гистерезисных электродвигателей (серия Г), включающая машины мощностью от 1 до 60 Вт на частоту 50 Гц в трехфазном и однофазном исполнении с частотами вращения 1500 и 3000 об/мин. На основе базовой конструкции серии выполнен ряд модификаций на частоты 400, 500 и 1000 Гц.

Для использования в системах синхронной связи разработаны и внедрены в производство серии контактных (НД, НС, НЭД) и бесконтактных (БС, БД, ДБД) сельсинов. Промышленностью освоены первые образцы вращающихся трансформаторов, тахогенераторов постоянного и переменного тока.

Среди этих машин широкое распространение получили вращающиеся трансформаторы серии ВТ-1, ВТ-2, ВТ-3, разработанные под руководством А.А. Папернова, и асинхронные тахогенераторы серии АТ-1, АТ-2, АТ-231, АТ-261 и др., предназначенные для интегрирующих счетно-решающих устройств навигационной техники. В этот период широкое развитие получили работы по созданию ЭМММ для гироскопических систем (гироскопов, датчиков угла и момента). Весьма существенный вклад в эту отрасль внесли коллективы сотрудников под руководством С.Ф. Фармаковского, Н.Н. Кузнецова, И.Н. Орлова, Б.А. Делекторского.

На рассматриваемом этапе развития малого электромашиностроения большое место было уделено теоретическим исследованиям, методологии проектирования электрических машин малой мощности. В программах вузов предусматривалась подготовка специалистов соответствующей квалификации.

Из числа опубликованных в этот период работ необходимо в первую очередь отметить работу Ю.С. Чечета «Электрические машины автоматических устройств», опубликованную в 1957 г. и явившуюся первой попыткой систематического изложения теории исполнительных электродвигателей, тахогенераторов, вращающихся трансформаторов, электрических машин систем синхронной связи. В это же время появляется ряд монографий, обобщающих теорию отдельных видов электрических машин. Это монографии Д.В. Васильева «Индукционные системы синхронной связи», Д.П. Мкртчяна и В.В. Хрущева «Однофазные сельсины», Ф.М. Юферова «Электрические двигатели автоматических устройств», А.И. Бертинова «Авиационные электрические генераторы». Особенности работы ЭМММ в следящих системах отражены в монографии А.Г. Иосифьяна и Б.М. Когана «Основы следящего привода».

Развитию и совершенствованию методов расчета и проектирования отдельных видов ЭМММ посвящены работы А.И. Бертинова и Г.А. Ризник «Проектирование авиационных электрических машин постоянного тока», Н.П. Ермолина «Расчет маломощных коллекторных машин».

Второй этап рассматриваемого периода охватывает 60-е — 70-е годы текущего столетия. Здесь продолжаются работы по повышению технического уровня и расширению номенклатуры ЭМММ.

Под руководством А.Г. Иосифьяна и Э.А. Ло-дочникова завершены разработки серий исполнительных электродвигателей постоянного тока с возбуждением от постоянных магнитов с зубцовым (серии ДПМ) и полым (серии ДПР) якорями. Электродвигатели серии ДПМ, выполненной в четырех габаритах, имеют широкий спектр сочетаний выходных параметров (частота вращения от 2000 до 10 000 об/мин, напряжение питания от 6 до 36 В), что позволяет удовлетворить требования значительного числа потребителей.

Серия ДПР выполнена в шести габаритах и включает 84 типоразмера с частотами вращения от 2500 до 8000 об/мин и мощностью до 40 Вт. Эти электродвигатели имеют более высокий КПД и меньшую электромеханическую постоянную времени по сравнению с ранее выпускавшимися микромашинами.

Для аппаратуры радиоэлектроники, звукозаписи и кинофототехники разработаны электродвигатели постоянного тока серии ДПТ, рассчитанных на питание от источников с малым напряжением (менее 6 В).

Развитие техники печатного монтажа позволило спроектировать серию малоинерционных электродвигателей постоянного тока с печатной обмоткой якоря. Серия выполняется в шести габаритах мощностью от 5 до 500 Вт при частоте вращения 3000 об/мин; напряжение питания от 3 до 18 В; среднее значение электромеханической постоянной времени 15 мс.

Стремление к уменьшению массы и габаритов приборов и устройств потребовало разработки электрических машин в бескорпусном исполнении, когда пакет активной стали статора выступает одновременно несущим элементом конструкции. В результате уменьшаются размеры машин и улучшается использование активных материалов. Соответствующие модификации были созданы на базе единых серий асинхронных и универсальных коллекторных электродвигателей.

В дальнейшем взамен электродвигателей серии АОЛ и их модификаций разработана серия АОЛ-2, где дополнительно учтены требования Международной электротехнической комиссии в части установочно-присоединительных размеров.

С учетом специфических требований, предъявляемых к электроприводу бытовых электроприборов, была создана специальная серия однофазных асинхронных электродвигателей мощностью от 0,6 до 180 Вт. В диапазоне малых мощностей она включает электродвигатели с экранированными полюсами и несимметричным статором, а для больших мощностей — конденсаторные электродвигатели с сосредоточенной и распределенной обмотками.

На этом этапе усовершенствована серия асинхронных электродвигателей ДАТ. В новой единой унифицированной серии ДА предусмотрены исполнения на частоту 50, 400 и 1000 Гц, введены однофазные модификации, а также встраиваемое исполнение. Существенно повышена стойкость к механическим и климатическим воздействиям.

Для решения проблемы охлаждения радиоэлектронной аппаратуры разработана система серий малогабаритных осевых электровентиляторов. В нее входят изделия, спроектированные для питания от сети частотой 50 Гц, от источников частотой 400 Гц и постоянного тока.

В состав новой номенклатуры ЭМММ, внедренной в производство в данный период, включены серии малогабаритных вращающихся трансформаторов. Наиболее высокими точностными характеристиками обладали серии ВТ-5, МВТ-2, ЗВТ-2ТВ.

В регулируемых электроприводах и следящих системах получили применение бесконтактные электромагнитные муфты, обладающие высоким коэффициентом усиления мощности и малым временем переходного процесса. Это серии порошковых муфт (серия МПБ), а также гистерезисных муфт приводного (МПБ) и тормозного (МГТ) исполнения.

Существенное влияние на развитие номенклатуры ЭМММ оказали достижения полупроводниковой электроники. Следствием явилось создание электрических машин с полупроводниковыми преобразователями и соответственно технических решений, обладающих новыми функциональными возможностями, улучшенными техническими характеристиками и повышенной надежностью.

Внедрение в системы управления вычислительных машин вызвало необходимость в электроприводе, непосредственно преобразующем импульсные сигналы в пропорциональное их числу механическое перемещение. Решение задачи выполнено с помощью шаговых электродвигателей, для управления которыми были созданы достаточно компактные формирователи и распределители управляющих импульсов. Коллективами конструкторов под руководством B.C. Рыбакова и Г.Ф. Каткова был спроектирован ряд серий электродвигателей с активным ротором (серии ШДА и ДШ) и индукторных (серия ШДР). Их максимальные синхронизирующие моменты достигают 100 Н?м при шаге 1–22,5°. Частота приемистости у индукторных электродвигателей достигла 2000 шагов в секунду.

Одновременно появляется целый ряд публикаций в периодической печати, развивающих теорию шаговых электродвигателей. Первой обобщающей работой явилась книга В.А. Ратмирова и Б.А. Ивоботенко «Шаговые двигатели для систем автоматического управления». Позднее теория шаговых двигателей, а также вопросы их применения в приводах различных механизмов получили освещение в монографии «Дискретный электропривод с шаговыми двигателями», подготовленной коллективом авторов, под редакцией М.Г. Чиликина.

За рубежом вскоре получили развитие шаговые электродвигатели гибридного типа (индукторные с осевым подмагничиванием постоянными магнитами). В конце рассматриваемого этапа соответствующая серия ДШР была внедрена и в отечественной промышленности.

В этот период получают практическую реализацию идеи А.И. Москвитина по созданию низкоскоростных безредукторных электродвигателей. Проектируются электрические машины с катящимся ротором, теория и методика расчета которых получили освещение в монографии А.И. Бертинова и В.В. Варлея «Электрические машины с катящимся ротором».

Вторым направлением, реализующим эти же идеи, явилось объединение шаговых электродвигателей с волновым редуктором.

Под руководством РН. Ковалева и В.А. Прозорова создается серия волновых шаговых электродвигателей (серия ДВШ), разрабатываются варианты машин в плоском конструктивном исполнении. Появляется целый ряд работ, в том числе монография А.В. Воробьева «Релоксантный привод», развивающих теорию и дающих рекомендации по рациональному проектированию машин данного вида.

Развитие полупроводниковой техники дало практическую основу для создания бесконтактных электродвигателей постоянного тока. Их созданию во многом способствовали опубликованные еще в 30-е годы работы М.И. Губанова, Д.А. Завалишина, Д.И. Бутаева, Е.Л. Эттингера, Б.Н. Тихменева и др. (В то время полученные результаты не могли найти широкого применения из-за отсутствия соответствующей элементной базы.) Этому также способствовали исследования, результаты которых были обобщены в 1966–1968 гг. в работах И.Е. Овчинникова и Н.И. Лебедева «Бесконтактные двигатели постоянного тока автоматических устройств», А.А. Дубенского «Бесконтактные двигатели постоянного тока», Ш.И. Лутидзе «Основы теории электрических машин с управляемым полупроводниковым коммутатором».

Под руководством И.А. Вевюрко создается первая отечественная серия бесконтактных электродвигателей постоянного тока БК.

Был разработан также ряд исполнений электродвигателей для звукозаписывающей аппаратуры, нужд космической техники. Впервые в отечественной практике создана серия бесконтактных моментных электродвигателей ДБМ с диапазоном развиваемых моментов от 0,04 до 16 Н?м.

Для комплектации, в частности, систем моментного привода создана серия бесконтактных вращающихся трансформаторов — индукционных редуктосинов с диаметрами корпуса от 40 до 120 мм и погрешностью не более 10'.

Важную роль при выборе рациональных решений при разработках ЭМММ играют системы автоматизированного проектирования (САПР). Идеологические основы построения САПР электрических машин были сформулированы И.П. Копыловым. Практические разработки САПР выполнены под руководством Т.Г. Сорокера при проектировании асинхронных электродвигателей и И.Н. Орлова — при проектировании гироскопических электродвигателей.

В дальнейшем методология САПР была развита в работах К.С. Демирчяна, А.А. Терзяна, Д.А. Аветисяна, Е.М. Лопухиной, Г.А. Семенчукова и др. В результате для многих видов ЭМММ были созданы программы по оптимизации электромагнитных и тепловых расчетов с использованием современных средств вычислительной техники.

В комплексе рекомендации по построению САПР ЭМММ с учетом их разнообразия были разработаны Г.В. Тазовым и В.В. Хрущевым. Отличительной особенностью этих рекомендаций является учет влияния технологических погрешностей изготовления и сборки ЭМММ на их рабочие характеристики.

Рост номенклатуры и объемов выпуска ЭМММ вызвал необходимость упорядочения организации их проектирования и производства. Было принято решение о постепенном сосредоточении производства ЭМММ на предприятиях

Министерства электротехнической промышленности. Общая координация работ была поручена Институту электромеханики (г. Ленинград).

В дальнейшем функции научного центра по созданию новых видов и поколений электрических машин малой мощности были возложены на Всесоюзный (ныне Всероссийский) научно-исследовательский институт малых электрических машин (ВНИИМЭМ), в состав которого входило и его Вильнюсское отделение (созданное на основе СКБ объединения «Эльфа»). Были созданы специализированные организации в Москве (СКБ завода «Машиноаппарат»), Воронеже и Томске (НИИэлектромеханики). Высокий научный авторитет в данной области имел Всесоюзный научно-исследовательский институт электромеханики (ныне НПП «ВНИИЭМ»). Одновременно развиваются новые организации-разработчики — НИИэлектромашиностроения в Ереване и Бишкеке. Для решения проблемы развития технологии производства в Тбилиси создается Всесоюзный научно-исследовательский институт технологии микроэлектромашиностроения (ВНИИТМЭ).

В данный период при активном участии соответствующих вузов завершается формирование научных школ, решающих проблемы развития малого электромашиностроения. Наиболее эффективна деятельность московской (Ю.С. Чечет, И.П. Копылов, А.Г. Иосифьян, Ф.М. Юферов, В.Я. Беспалов, И.Н. Орлов, Е.М. Лопухина, Б.А. Ивоботенко, В.К. Лозенко, А.И. Бертинов, Д.А. Бут, Н.В. Синева, Д.В. Свечарник, А.А. Ахметжанов, A.M. Ланген, В.А. Игнатов, С.А. Стома, И.А. Вевюрко, Г.Ф. Катков и др.) и ленинградской (В.В. Хрущев, Н.П. Ермолин, П.Ю. Каасик, Д.В. Васильев, А.А. Батоврин, Е.Д. Несговорова, И.Е. Овчинников, Н.И. Лебедев, В.А. Прозоров, Г.В. Тазов, Ю.П. Коськин и др.) школ. Большой вклад в теорию и практику проектирования внесли ученые других городов СССР: А.И. Адаменко, Ю.К. Васильев, Г.И. Штурман, В.И. Чесонис, И.П. Бекерис, П.И. Костраускас, К.А. Алиханян, К.А. Алымкулов, Э.А. Лодочников, А.С. Куракин и др.

Достижения малого электромашиностроения отражаются в учебниках по электрическим машинам автоматических устройств Ф.М. Юферова и В.В. Хрущева. Активно работала, выполняя свою координирующую роль, секция малых электрических машин Научно-технического совета Минэлектротехпрома (председатель секции В.В. Хрущев, ученый секретарь Н.И. Лебедев). Секция объединяла 45 ведущих специалистов в области ЭМММ. В ее составе работали три комиссии: индукционных машин (руководитель Р.Н. Ковалев), машин постоянного тока и асинхронных двигателей (руководитель В.Г. Шейминов) и электродвигателей бытового и общего применения (руководитель В.Б. Блинкявичус).

К началу 80-х годов (третий этап)в стране сложилась достаточно стройная система организации проектирования и производства ЭМММ, в соответствии с которой проектирование изделий осуществляется, как правило, в составе серий или отрезков серий. Исходными являются размерно-параметрические таблицы-сетки (типажи), разработанные на основе типовых технико-эксплуатационных требований, а также базовые конструкции электрических машин. Процесс выбора рациональных конструктивных решений проходит во взаимосвязи с процессом выбора рациональной технологии производства изделий.

Третий этап характеризуется совершенствованием ранее разработанных серий всех видов ЭМММ и разработкой новых.

Существенно расширяется номенклатура бесконтактных электрических машин — электродвигателей и тахогенераторов постоянного тока, вращающихся трансформаторов повышенной точности. Растет надежность и долговечность машин. Уже выполнены разработки бесконтактных электродвигателей постоянного тока с наработкой более 50 000 ч. В конструкцию машин внедряются новые виды опор: магнитные, жидкостные, газовые. Развитие технических решений на основе синтеза электрических машин с полупроводниковыми преобразователями тесно увязывается с общей проблемой электронизации народного хозяйства.

В последние годы произошли большие изменения в производстве ЭМММ (оно превратилось в современное, оснащенное соответствующим технологическим оборудованием). Существенное развитие получили Воронежский электромеханический завод, Армавирский, Пермский, Саратовский электротехнические заводы, Псковский электромашиностроительный завод, гусевский завод «Микродвигатель», заводы «Фиолент» (г. Симферополь), «Миассэлектроаппарат», «Машиноаппарат» (Москва) и др. Это позволило практически полностью удовлетворить потребности отраслей народного хозяйства в ЭМММ как по объему выпуска, так и по номенклатуре.

Важнейшим направлением дальнейшего развития малого электромашиностроения является внедрение микропроцессорной техники. На основе использования микропроцессорных структур создается поколение «интеллектуальных» электрических машин, способных адаптироваться к условиям эксплуатации, изменять режимы работы по заданной программе. Существенно повышается гибкость управления, расширяются функциональные возможности электрических машин. Подтверждением сказанного служат выполненные под руководством А.Г. Микерова современные исполнительные устройства на основе моментных электродвигателей с использованием микропроцессоров.

В области ЭМММ развивается самостоятельное научное направление — электромеханотроника. В рамках этого направления выполнены сотни работ, связанных с синтезом электрических машин и современных полупроводниковых устройств. Под руководством И.А. Глебова и Ю.П. Коськина проведены две всероссийские конференции по проблемам электромеханотроники. В мае 1997 г. проводилась 3-я Всероссийская и 1-я Международная конференции на базе Электротехнического университета (г. Санкт-Петербург).

С начала 90-х годов, после распада СССР, отрасль ЭМММ переживает жесточайший кризис, уровень производства упал в несколько раз, научные связи существенно сократились, новые разработки для народного хозяйства практически отсутствуют.


6.4. ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ

6.4.1. ОБЩИЕ СВЕДЕНИЯ

К электрическим аппаратам (ЭА) относят широкий класс электротехнических устройств, применяемых при производстве, распределении и потреблении электрической энергии. Область устройств, относящихся к ЭА, и их классификация постоянно изменяются в процессе развития электротехники. В настоящее время под ЭА понимают технические средства управления потоком электрической энергии в целях изменения режимов работы, регулирования параметров, контроля и защиты электротехнических объектов и их составных частей. Как правило, функции большинства видов ЭА осуществляются посредством коммутации электрических цепей с различной частотой.

До 1878 г. все ЭА назывались приборами и термин «аппарат» в близком понимании нашего времени впервые в том году был использован военным электротехником Н.А. Азаровым. С 1879 г. известный русский электротехник П.Н. Яблочков распространил термин «аппарат» на электротехнические устройства той эпохи — рубильники, переключатели, коммутаторы, реле и регуляторы.

Электрические аппараты обычно классифицируют по напряжению — аппараты высокого напряжения (АВН) и аппараты низкого напряжения (АНН). Большинство последних, как правило, разделяют на следующие основные виды:

аппараты управления и регулирования — автоматические выключатели, контакторы, пускатели электродвигателей, регуляторы напряжения и другие аппараты, выполняющие преимущественно функции исполнительных устройств в системах управления режимами работы и защиты электротехнических систем и их компонентов;

аппараты автоматики и защиты — реле, датчики и другие аппараты, осуществляющие функции контроля, усиления и преобразования электрических сигналов.

Аппараты автоматики используются преимущественно на информационных уровнях, а также в отдельных случаях, например в маломощных электротехнических устройствах, в качестве исполнительных устройств.

Создание и развитие ЭА неразрывно связаны с историей электротехники. Большой вклад в развитие электроаппаратостроения был сделан отечественными электротехниками. Истории развития ЭА посвящено много статей и монографий, но наиболее полно она нашла отражение в работах М.А. Бабикова [6.49; 6.50], где особенно ярко показан вклад отечественных ученых и инженеров в создание ЭА на разных исторических этапах.

Конец XIX в. явился периодом, когда были созданы и внедрены первые образцы, многих видов ЭА. Создателей этих приборов отличала многогранная деятельность в различных областях электротехники. Примером могут служить выдающиеся русские электротехники В.Н. Чиколев и М.О. Доливо-Добровольский.

В.Н. Чиколевым были созданы первые сигнальные электромагнитные реле и автоматические выключатели с дистанционным управлением, автоматический регулятор напряжения, реостатный регулятор напряжения для возбуждения генератора и предохранители. М.О. Доливо-Добровольский разработал и впервые применил: в 1890 г. — пусковой реостат к асинхронным двигателям и высоковольтный плавкий предохранитель; в 1891 г. — минимально-максимальное токовое реле; в 1893 г. — автотрансформатор для регулирования, выключатель-рубильник с пружинными контактами и автоматом; в 1910 г. — дугогасительное устройство из изоляционного материала с узкими щелями и металлической решетки; в 1914 г. — деионную решетку со специальными электромагнитами для втягивания дуги в щель.

Промышленное производство ЭА в России было организовано впервые в 1878 г. морским ведомством в г. Кронштадте под руководством А.П. Давыдова. Затем в более крупном масштабе было начато производство ЭА на первой электротехнической фирме «П.Н. Яблочков — изобретатель и К°. Товарищество электрического освещения и изготовления электрических аппаратов и машин в России».

Развитие отечественного электроаппаратостроения после 1917 г. происходило в рамках плановой государственной экономики, ориентированной на создание мощной отечественной базы электротехнической промышленности.

В 1920 г. в соответствии с планом ГОЭЛРО началось развитие электромашиностроения как самостоятельной отрасли промышленности. В 1921 г. были созданы электроаппаратные цехи на крупнейших электромашиностроительных заводах — «Электросила», ХЭМЗ и «Динамо». С 1925 по 1927 г. первым в Советском Союзе электроаппаратным заводом «Электроаппарат» (г. Ленинград) была разработана серия электрических аппаратов высокого напряжения и освоен их промышленный выпуск.

В период с 1928 по 1932 г. в России были созданы новые конструкции аппаратов на напряжения до 110 кВ, вентильные разрядники на напряжение 35 кВ, комплектные распределительные конструкции, трансформаторы тока с фарфоровой изоляцией и многие другие новые типы ЭА. С 1933 по 1937 г. впервые были разработаны и освоены в производстве масляные выключатели на напряжение до 220 кВ. В этот период также был налажен выпуск широкой номенклатуры быстродействующих реле защиты, аппаратов системной автоматики и др.

В первые послевоенные годы (1946–1950 гг.) были созданы новые типы безмасляных выключателей высокого напряжения на сжатом воздухе, автогазовые и с магнитным дутьем. Большое внимание было уделено созданию комплектно-распределительных устройств, а также аппаратов автоматики и защиты, в частности быстродействующих реле. Следует отметить, что в этот период большое внимание уделялось разработкам методов расчета и проектирования различных видов ЭА.

В 50-х и начале 60-х годов возникла потребность в повышении рабочих напряжений ЭА (до 400 кВ и выше) для дальних линий электропередачи, а также для широкого внедрения систем автоматизации в различных областях промышленности. В результате в научных учреждениях и на промышленных предприятиях отечественного электроаппаратостроения в эти годы были созданы все необходимые виды ЭА для оснащения линий передачи 400 кВ.

В 1890 г. во Франции впервые была синтезирована шести фтористая сера SF6, и во всем мире этот газ известен именно под этим названием. Только в России с 1947 г. этот газ называется элегазом — электрическим газом, это название дано шестифтористой сере Б.М. Гохбергом, который еще перед войной начал изучать электрические свойства этого удивительного газа в связи с проводившимися в его лаборатории работами по созданию высоковольтных электростатических ускорителей заряженных частиц. Им же впервые были высказаны предположения о возможности применения элегаза в качестве изоляционной среды оборудования высокого напряжения не только электрофизического, но и энергетического назначения — конденсаторов, трансформаторов, кабелей. Исследования отечественных ученых по применению элегаза велись по четырем основным направлениям:

получение экспериментальных данных по электрической прочности отдельных видов чисто газовых промежутков, в том числе типовых для изоляционных узлов элегазовых аппаратов (А.Г. Арсон, В.Н. Борин, А.Л. Виленчук, М.И. Сысоев, О.Н. Щербина). На базе экспериментальных данных строились инженерные методы расчета элегазовой изоляции;

изучение электрической прочности вдоль поверхности твердого диэлектрика в элегазе, разработка инженерных методов расчета напряжения поверхностного разряда и конструирование на этой основе изоляторов для элегазового оборудования (В.Н. Борин, В.Н. Вариводов, А.Л. Виленчук, А.Л. Петерсон, О.Н. Щербина);

изучение физики пробоя элегаза, построение физически обоснованного метода расчета элегазовой изоляции (И.М. Бортник, В.П. Вертиков, А.А. Панов);

изучение химических процессов в элегазовой изоляции, в том числе происходящих под действием электрических разрядов, изучение процессов взаимодействия элегаза, примесей в нем и продуктов его разложения в электрическом разряде с проводниковыми и диэлектрическими материалами, разработка на этой основе методов обеспечения стабильных характеристик элегаза и конструкционных материалов (В.Г. Аракелян).

Надо отметить, что по всем четырем перечисленным направлениям отечественные работы по научному уровню не отставали от уровня зарубежных исследований, а иногда и опережали их.

Создание дальних линий передачи напряжением 750 кВ также потребовало разработки новых высоковольтных ЭА, которые были успешно разработаны и внедрены в эксплуатацию.

Важнейшей частью большинства видов ЭА являются контакты. Поэтому создание эффективных ЭА неразрывно связано с разработкой научных основ в этой области. Многочисленные исследования контактных явлений с использованием научных достижений в электродинамике и теплопередаче позволяли развивать теоретические основы проектирования контактов. Основными движущими факторами в этом направлении являлись уменьшение потерь мощности, улучшение массогабаритных характеристик и уменьшение стоимости ЭА. Научные достижения на этих направлениях нашли воплощение в создании теории композиционных жидкометаллических контактов.

Исторически жидкометаллические контакты появились одновременно с первыми электротехническими устройствами, в которых осуществлялась коммутация тока с неподвижной части на подвижную. Однако их развитие замедлилось в связи с тем, что в качестве жидкого металла, как правило, использовалась ртуть, являющаяся сильным токсичным элементом. В то же время преимущества жидкометаллических контактов — малые потери энергии, возможность работы в экстремальных условиях и др. — сделали научно-исследовательские работы в этой области актуальными. В результате в конце 50-х и начале 60-x годов под руководством Н.Е. Лысова начали проводиться широкомасштабные научные исследования по созданию жидкометаллических контактов на основе нетоксичных элементов и их сплавов. Дальнейшее развитие эти работы получили в ряде научных коллективов СССР под руководством В.Г. Дегтяря, B.C. Зарецкаса, Л.Н. Тучинского и др. В результате этих работ были развиты основы теории жидкометаллических контактов и создан широкий класс композиционных контактных элементов с жесткими и эластичными каркасами, переходное сопротивление которых очень мало, является стабильным и не зависит от положения в пространстве и направления силовых воздействий.

С середины 60-х годов во всех развитых государствах мира, включая СССР, начинается массовое производство полупроводниковых приборов, применение которых в электроаппаратостроении оказало существенное влияние на технико-экономические характеристики различных видов ЭА, особенно низкого напряжения. В результате внедрения усилителей, функциональных преобразователей и других полупроводниковых устройств стало возможным повысить быстродействие контакторов и реле за счет форсирования режимов включения и отключения, расширить их функциональные возможности.

В этот период были созданы и внедрены первые гибридные ЭА, сочетающие достоинства электромагнитных и полупроводниковых ЭА. Одновременно были существенно улучшены конструкции электромагнитных ЭА за счет использования новых, высокоэффективных электрических материалов. Это позволило улучшить массогабаритные показатели ЭА.

Промышленное освоение мощных тиристоров стало основой для возрождения и расширения работ по созданию высоковольтных линий электропередачи постоянного тока. Для оснащения этих линий потребовались новые виды выключателей, разъединителей, предохранителей и других видов ЭА. Так, например, для защиты тиристорных преобразователей потребовалось разработать специальные быстродействующие ЭА на основе жидких металлов.

С середины 80-х годов начала интенсивно развиваться силовая электроника. На основе достижений электронных технологий были созданы силовые полупроводниковые приборы, отличающиеся полной управляемостью, низким потреблением энергии на управление и высоким быстродействием. Использование нового поколения силовых электронных приборов в сочетании с достижениями в области микроэлектронных технологий позволило создавать принципиально новые виды бесконтактных ЭА, сочетающих функции регулирования, контроля, диагностики и защиты. В этом смысле в 90-х годах стало возможным говорить о новом поколении «интеллектуальных» ЭА.

6.4.2. АППАРАТЫ ВЫСОКОГО НАПРЯЖЕНИЯ

Выключатели высокого напряжения. Выключатель является одним из основных видов ЭА, обеспечивающих включение и отключение электрических цепей с различными токами, в том числе токами перегрузки и коротких замыканий.

В начале XX в. появились первые выключатели, в которых гашение дуги происходило под воздействием продуктов разложения минерального масла. Поэтому такие выключатели получили название масляных. Конструктивно первые выключатели были выполнены в виде бака с трансформаторным маслом, в котором располагались неподвижные части контактов. Подвижная часть контактов прикреплялась к траверсе, подвешенной на вертикальных бакелитовых трубках. Эти стержни соединялись с конструктивными элементами приводного механизма. В каждой фазе контакт обеспечивался двумя неподвижными контактами и одной траверсой. В результате обеспечивалось два разрыва цепи на каждую фазу и соответственно в процессе коммутации возникало две дуги. Гашение дуги обеспечивалось за счет увеличения ее длины при движении траверсы и воздействия продуктов разложения масла, возникающих под воздействием высокой температуры дуги. Эти продукты в виде газового пузыря создавали дугогасящую среду, и при прохождении тока через нуль происходил процесс деионизации и восстановления электрической прочности между разрывными контактами. Трансформаторное масло служило одновременно изоляцией токоведущих частей от заземленного корпуса бака.

Первые отечественные масляные выключатели были разработаны на напряжение от 6 до 110 кВ. Среди них были как однобаковые выключатели типа МА-5, ВМ-12, так и трехбако-выетипаМВ-18, МВ-24.

Большое значение при создании ЭА имеет теория электрической дуги. Исследования методов гашения электрической дуги для ЭА были проведены в период 1910–1914 гг. М.О. Доливо-Добровольским, и им впервые предложено использовать для этих целей магнитное дутье, обеспечивающее гашение длинной дуги в узких щелях специальных дугогасительных камер.

В начале XX в. были заложены основы теории электрической дуги по результатам исследований, выполненных в 1902 г. англичанкой Тертой Айртон и в 1905 г. русским ученым В.Ф. Миткевичем. Основополагающими для развития теории дуги явились выводы об ее электронной природе, а также установление зависимостей между током дуги, ее длиной и напряжением.

По мере развития ЭА расширялись исследования и в области электрической дуги. Наиболее существенные результаты исследований в этой области были получены в 20-х годах XX в. американскими учеными Комптоном и Слепяном. В развитии теории дуги и разработке методов ее эффективного гашения принимали участие многие ученые, среди которых значительное место принадлежит отечественным специалистам.

Особенно плодотворным был период 30–40-х годов. Так, например, Д.А. Рожанским впервые (1937 г.) разработана математическая модель дуги, учитывающая тепловую инерцию и тепловой баланс в различных режимах ее существования. А.Я. Буйлов впервые исследовал в 1933–1935 гг. процесс деионизации при высоком напряжении и установил зависимость изменения диэлектрической прочности от скорости восстановления напряжения. Г.А. Буткевич в период 1929–1936 гг. установил температуры дуг переменного и постоянного тока. Е.М. Цейров в 1941 г. предложил аналитический метод расчета дуги. В 30-е годы большой вклад в исследование электрической дуги внес М.М. Акодис, которым предложено много оригинальных конструкций дугогасительных устройств. М.А. Бабиковым в 1934–1939 гг. исследованы переходные процессы при изменениях дуги. Всесторонние исследования поведения дуги низкого напряжения в щелевых дугогасительных камерах выполнены О.Б. Броном и его учениками.

В более поздние периоды большой вклад в развитие теории дуги внесли A.M. Залесский, Г.А. Кукеков, И.С. Таев, А.А. Чунихин и многие другие отечественные ученые. Следует также отметить работы Г.Г. Нестерова в области гашения дуги в жидких средах нагруженных аппаратов.

Для уменьшения габаритов и снижения массы масляных выключателей были разработаны конструкции маломасляных выключателей, в которых масло использовалось только как дугогасящая среда (рис. 6.10). Изоляция же между токоведущими частями обеспечивалась твердыми изоляционными материалами — фарфором и бакелитами.

Совершенствование масляных выключателей, повышение их коммутационной способности шло различными путями. Одним из таких путей являлось использование деионной решетки, погруженной в масло, что позволяло более эффективно осуществлять дугогашение при более высоких напряжениях. Другим способом стало применение дугогасительных камер из изоляционного материала. Возникновение дуги повышало давление в этих камерах. Поэтому при выходе подвижного контакта из камеры происходил более интенсивный обдув дуги и ускорялся процесс ее деионизации. В дальнейшем конструкции с дугогасительными камерами были усовершенствованы за счет создания процесса так называемого масляного дутья. Масляные выключатели с дугогасительными камерами продольного масляного дутья были впервые разработаны в 1931 г. в США фирмой «Дженерал электрик» («General Electric»), а с поперечным масляным дутьем — в 1930 г. в Британской научно-исследовательской электротехнической ассоциации.

Рис. 6.10. Маломасляный выключатель на напряжение 110 кВ колонкового типа 

Одним из направлений совершенствования масляных выключателей являлось применение многоразрывных дугогасительных систем.

Факторами, ограничивающими развитие масляных выключателей, явились их пожароопасность, относительно большие габариты, повышенные эксплуатационные расходы и др.

Практически параллельно с масляными выключателями начали развиваться воздушные, которые впоследствии составили им серьезную конкуренцию. Принцип действия воздушного выключателя основан на гашении дуги потоком сжатого воздуха под давлением 2–4 МПа. Первый воздушный выключатель высокого напряжения создан в 1929 г. в Германии фирмой АЕГ (AEG). В 1935 г. воздушный выключатель создан в Швейцарии, различные его модификации разрабатывались фирмой «Броун Бовери» («Brown Boveri»). Общий вид воздушного выключателя этой фирмы с дугогасительным устройством на 12 разрывов, созданного в 1940 г., представлен на рис. 6.11.

Первые отечественные конструкции выключателей со сжатым воздухом типа ВВ-110 на напряжение 110 кВ были разработаны в ВЭИ и выпущены в период 1940–1948 гг. заводом «Электроаппарат».

Рис. 6.11. Воздушный выключатель фирмы «Броуи Бовери» с дугогасительным устройством на 12 разрывов

В дальнейшем воздушные выключатели совершенствовались за счет улучшения аэродинамических качеств сопловых систем подачи воздуха, увеличения числа разрывов дуги, введения металлических камер с постоянно сжатым воздухом, что позволило поднять уровень их рабочего напряжения до 750 кВ при токах до 63 кА.

Воздушные выключатели разрабатывались также и без применения сжатого воздуха на основе использования деионных решеток и электромагнитного воздействия на дугу- Так, например, в 1929 г. Слепяном (фирма «Вестингауз» («Wectingose»)) была разработана дугогасительная система с деионной решеткой для гашения дуги в воздухе при атмосферном давлении. Принцип действия системы был основан на разбиении дуги на ряд коротких дуг посредством решетки из металлических пластин, электрически изолированных одна от другой. Дуга при отключении втягивалась в эту решетку под воздействием внешнего магнитного поля.

В электромагнитных выключателях фирмы «Дженерал электрик» (1940 г.) был применен принцип дугогашения за счет затягивания дуги под воздействием магнитного поля в щелевые лабиринты специальных камер, где происходило ее удлинение и более интенсивное охлаждение [6.51].

Развитие выключателей высокого напряжения в направлении уменьшения их габаритов и повышения удельных коммутирующих показателей связано с использованием вместо воздуха элегаза (шестифтористой серы).

Наиболее мощным стимулом для широкого использования элегаза стало требование о минимизации влияния оборудования высокого напряжения на окружающую среду. Поэтому реально первыми элегазовыми аппаратами энергетического назначения стали выключатели высокого напряжения. Применение элегаза позволило сохранить преимущества воздушного выключателя перед пожароопасным баковым масляным выключателем и в то же время уйти от одного из основных недостатков воздушных выключателей в условиях населенных пунктов — сильного шума при выхлопе отработавшего воздуха. Первый элегазовый выключатель был построен фирмой «Вестингауз» в 1955 г. С этого момента все большее число фирм подключается к разработке и производству элегазовых выключателей, а их номинальные параметры непрерывно повышаются.

Первые работы по применению элегаза в коммутационных аппаратах начались почти одновременно в ВЭИ, Москва (A.M. Бронштейн, B.C. Чемерис) и ЛПИ, Ленинград (A.M. Залесский, А.И. Полтев) с 1962–1963 гг. Хотя исследовательские работы и продолжались, но реального освоения производства элегазовых коммутационных аппаратов за последующие 15 лет так и не произошло. В эксплуатацию были поставлены небольшие партии выключателей нагрузки, отделителей, выключателей для железнодорожных подстанций. Лишь в конце 70-х годов в результате совместных усилий ВЭИ им. В.И. Ленина и ЛенПО «Электроаппарат» (Ю.И. Вишневский) появляются первые сильноточные элегазовые выключатели высокого напряжения.

Первые ячейки комплектно распределительных устройств с элегазовой изоляцией (КРУЭ) на напряжение 110 кВ были созданы в России в 1975–1977 гг. сначала на Опытном заводе ВЭИ, а затем на ЛенПО «Электроаппарат». К середине 80-х годов в ВЭИ был создан первый в мире макет КРУЭ на напряжение 1150 кВ.

Создание комплектных распределительных устройств потребовало разработки не только коммутационных элегазовых аппаратов, но и других типов элегазового и совместимого с ним оборудования — вводов с элегазовой изоляцией и муфт масло — элегаз, трансформаторов тока и напряжения, ограничителей перенапряжения, токопроводов. До появления потребности в КРУЭ развитие работ по этим видам оборудования происходило весьма медленно: в ВЭИ (М.И. Сысоев, А.Г. Арсон) были созданы элегазовые трансформаторы для метрополитена, там же (И.М. Бортник, А.А. Панов) и в ЭНИН им. Г.М. Кржижановского (В.И. Попков, А.Г. Ляпин) велись работы по созданию первых образцов токопроводов (линий) с газовой изоляцией.

В результате элегазовые выключатели имеют мощные приводы и существенно более компактные конструкции, а также позволяют легче реализовать высокое быстродействие процесса коммутации.

Из экономических соображений и экологических требований элегазовые выключатели разрабатываются с замкнутым циклом функционирования без выбросов отработанных газов в атмосферу.

Развитие дугогасительных систем происходило не только с использованием дутья газами повышенного давления, но и созданием вакуума. Так как вакуум обладает высокой электрической прочностью, поддержание дуги в вакуумных выключателях происходит не за счет ионизированных частиц газов, а за счет ионизированных паров металлов электродов контактных систем.

Вакуумные выключатели заняли прочное место в классах средних напряжений 3–35 кВ. В этих классах напряжений они наиболее полно соответствуют современным требованиям. Высокие электрическая прочность и дугогасительная способность вакуумных промежутков дают возможность создать вакуумные выключатели с малыми габаритами и массой, большими ресурсом, надежностью и сроком службы. Они экологически чисты и взрывопожаробезопасны, вибростойки и сейсмостойки, работоспособны в условиях холодного и тропического климата, характеризуются предельно малыми эксплуатационными расходами.

Первая попытка создать вакуумный выключатель была сделана в Калифорнийском технологическом институте (США) в 1923 г. Однако только в 60-х годах после решения научных и технологических проблем был начат промышленный выпуск вакуумных выключателей. В нашей стране систематические исследования и разработки вакуумных дугогасительных камер и выключателей были начаты В.Л. Грановским и его сотрудниками в 1956 г.

В настоящее время в России и за рубежом созданы выключатели на все требуемые потребителю параметры в классах напряжения 3–35 кВ (с номинальными токами до 3150 А).

Наибольший вклад в дело становления отечественной вакуумной коммутационной аппаратуры был внесен сотрудниками ВЭИ, такими как В.Н. Тихонов, В.Б. Козлов, И.А. Лукацкая, Г.С. Белкин, B.C. Потокин, А.А. Перцев, Ю.Г. Ромочкин и др.

Разъединители. Этот вид ЭА предназначен для отключения цепи высокого напряжения без тока. Первые разъединители на напряжение 6–10 кВ и номинальный ток 600–800 А появились в начале XX в. и представляли собой трехфазную систему с общим ручным приводом.

Развитие конструкций разъединителей шло по пути повышения их рабочего напряжения и уменьшения габаритов. Среди отечественных разъединителей следует отметить конструкцию разъединителя с подвижным контактом и электроприводом. В настоящее время разработаны разъединители на напряжение до 1150 кВ и токи до 3200 А.

Улучшение механических и электрических характеристик фарфоровых изоляторов, разработка полимерных изоляторов позволили существенно усовершенствовать конструкции разъединителей, в первую очередь сверхвысокого и ультравысокого напряжения.

В создании отечественных разъединителей наиболее существенную роль сыграли завод «Электроаппарат», Великолукский завод высоковольтных аппаратов, завод «Уралэлектротяжмаш», ВЭИ, НИИПТ, ЛПИ.

Разрядники и реакторы. Эти виды ЭА используются для защиты оборудования энергосистем и потребителей в различных аварийных режимах. Разрядники — ЭА, предназначенный для защиты оборудования от перенапряжений.

Первые разрядники были рассчитаны на защиту от атмосферных перенапряжений посредством искрового пробоя воздушного промежутка между двумя металлическими электродами. Такие электроды имели форму рогов, закрепленных на фарфоровых изоляторах (рис. 6.12). Такая форма электродов способствовала отводу от изоляторов электрической дуги, которая может возникать при пробое разрядника под воздействием молнии.

В дальнейшем функции разрядников расширились, и они стали использоваться для защиты от внутренних перенапряжений, возникающих в энергосистеме, в частности, из-за коммутации цепей с индуктивным характером сопротивления. С расширением функций одновременно усовершенствовались технические характеристики разрядников и их техническая реализация.

Начиная с 30-х годов стали широко использоваться трубчатые разрядники многократного действия. Такой разрядник состоял из дугогаси-тельной трубки, содержащей электроизолирующие материалы, например фибру или винипласт, которые генерируют газы под воздействием дуги. Эти газы повышали давление и создавали эффект газового дутья для гашения дуги.

Рис. 6.12. Роговой разрядник на напряжение 6 кВ 

В дальнейшем получили распространение разрядники на основе нелинейных резисторов, способных поглощать кратковременные импульсы энергии при перенапряжениях. Большая часть таких резисторов имеет вентильные вольт-амперные характеристики и создавалась на основе специальных материалов — тирита, вилита и др. В настоящее время в качестве разрядников преимущественно используются нелинейные резисторы, созданные на основе оксида цинка.

Для защиты электрооборудования в системах высокого напряжения также используются ограничивающие и шунтирующие реакторы.

Реакторы без стали для ограничения токов короткого замыкания начали использоваться с 20-х годов. Отечественные реакторы такого типа на напряжения 3—6—10 кВ и токи до 100 А были созданы в период 1921–1927 гг. Конструкция первых реакторов была сборной, а в качестве конструктивных элементов использовались деревянные прокладки, стягиваемые при помощи изолирующих болтов (шпилек). В дальнейшем для повышения динамической прочности провода реакторов стали помещать в специальные бетонные колонки, а для улучшения технико-экономических характеристик реакторов стали использовать ферромагнитные материалы.

Шунтирующие реакторы для снижения перенапряжений первоначально подключались к токопроводам или отключались от них посредством выключателей высокого напряжения для компенсации избытка реактивной мощности и снижения возникающего при этом перенапряжения. В дальнейшем в целях повышения быстродействия стали использовать управляемые шунтирующие реакторы с подмагничиванием. В настоящее время на основе полупроводниковых приборов (тиристоров) созданы шунтирующие реакторы с быстродействием не более 0,01 с на частоте 50 Гц.

Большой вклад в развитие отечественных аппаратов высокого напряжения внес Г.Н. Александров.

6.4.3. АППАРАТЫ УПРАВЛЕНИЯ, РЕГУЛИРОВАНИЯ И АВТОМАТИКИ

Автоматические электромагнитные выключатели (автоматы). Этот вид ЭА находит основное применение в системах распределения электроэнергии. Автоматы предназначены для включения и выключения цепей постоянного и переменного тока на напряжения до 1000 В и автоматической защиты цепей от коротких замыканий и токов перегрузки.

Широкое практическое применение автоматических выключателей началось в 20-х годах, когда электроэнергию стали интенсивно использовать в промышленном производстве. Первые отечественные автоматы начали разрабатывать в 1923 г. Б.Ф. Вашур, Д.А. Ступель и К.Н. Петров.

В 30-х годах была разработана серия отечественных универсальных автоматических выключателей типов А2000 — А2050 на токи от 200 до 1500 А.

Для защиты ртутных выпрямителей и генераторов постоянного тока А.И. Голубевым в 1936 г. была разработана оригинальная конструкция быстродействующего автомата типа ВАБ-2. В дальнейшем конструктивные решения А.И. Голубева были положены в основу серии быстродействующих выключателей, освоенной заводом «Уралэлектроаппарат». Основным направлением развития автоматов являлось совершенствование их защитных устройств, обеспечивающих срабатывание при заданных временных параметрах. В настоящее время в автоматах широко используются достижения современной электроники, в частности микропроцессорная техника.

Контакторы. Для автоматизации электропривода и управления распределением энергии по разным потребителям широко используются контакторы, которые являются одним из наиболее распространенных видов ЭА. Контакторы существенно отличаются от автоматов большим числом срабатываний за период эксплуатации, что обусловливает высокие требования к механической и электрической стойкости их контактной системы.

Первые контакторы начали выпускаться фирмами АЕГ и «Вестингауз» в начале XX века. Отечественная промышленность наладила серийный выпуск контакторов в 30-х годах (серии КП-900 и КТ). В послевоенный период на Чебоксарском электроаппаратном заводе были освоены серии КП-500 постоянного тока и КТП-500 переменного тока на токи от 50 до 100 А. Эти серии контакторов отличались высокими технико-экономическими характеристиками, в частности, их механическая износостойкость была доведена до 20 млн. включений за счет уменьшения вибраций контактов, сокращения времени горения дуги, улучшения магнитной системы и кинематики подвижных частей. Общий вид контактора серии КП-500 приведен на рис. 6.13.

Рис. 6.13. Контактор типа КП-500 на ток 300 А

Совершенствование контакторов происходило в направлении уменьшения их габаритов, повышения быстродействия и увеличения срока службы. Для повышения электрической износостойкости контактов были проведены работы по ограничению дугообразования в контакторе.

Один из способов реализации этого направления связан с синхронизацией процессов перехода тока через нуль и началом размыкания контактов. Подобные работы для выключателей высокого напряжения проводились в 50-х годах Г.И. Атабековым и Г.В. Буткевичем.

Теоретические основы физических явлений, связанных с восстановлением электрической прочности между контактами, успешно развивались И.С. Таевым [6.52], который внес большой вклад в развитие отечественных контакторов.

Развитие силовой полупроводниковой техники создало новую возможность для реализации методов ограничения дугообразования за счет интеграции силовых диодов и тиристоров с электромеханическими контактами. Первые образцы подобных отечественных аппаратов были разработаны в 60-х годах Г.В. Могилевским, А.Г. Сосковым и другими специалистами. Такие аппараты позволили существенно ограничить процесс дугообразования и улучшить технико-экономические показатели контакторов. Поскольку такие контакторы объединяют электромеханические и силовые полупроводниковые ключи, они получили название гибридных контакторов.

В 80-х годах достижения в области силовых электронных приборов активизировали работы в области гибридных аппаратов. В результате рядом ведущих зарубежных фирм «Сименс», «Телемеханика» и «Мерлин Жерин» («Simens», «Telemecanique», «Merlin Gerin» и др.) создана широкая номенклатура высокоэффективных гибридных контакторов. Работы по их совершенствованию продолжаются.

Аппараты регулирования. Первые отечественные регуляторы напряжения были реостатного типа и воздействовали на цепь возбуждения генераторов первых в России электростанций. Реостатные регуляторы выпускались заводами «Электросила», «Динамо» с 1917 по 1928 г.

В 30-х годах в электротехнике получили широкое применение угольные регуляторы для генераторов и двигателей. Принцип действия таких регуляторов был основан на изменении сопротивления угольного столба, включенного в обмотку возбуждения, под воздействием давления, создаваемого электромагнитом.

В развитие теории автоматического регулирования большой вклад внесли русские ученые И.А. Вышнеградский, М.А. Ляпунов. В 30-х годах начинают развиваться частотные методы анализа в работах X. Найквиста (1932 г.), А.В. Михайлова (1938 г.) и других ученых. Особенно следует отметить работы в этой области акад. B.C. Кулебакина.

В этот же период стали применяться магнитные усилители (МУ). Принцип действия МУ основан на изменении индуктивности сопротивления дросселей насыщения при подмагничивании их магнитопроводов постоянным магнитным потоком, создаваемым обычно током управления.

В начале XX в. были созданы первые дроссели насыщения, управляемые путем подмагничивания постоянным током. Эти дроссели были усовершенствованы В.П. Вологдиным и Н.Д. Папалекси. Дальнейшее развитие теории магнитных усилителей связано с именами отечественных ученых Р.А. Липмана, Е.Л. Львова, И.Б. Негневицкого, М.А. Розенблата, Л.В. Шопена и др.

Большой вклад в создание общей теории магнитных цепей сделан В.И. Коваленковым. Методы расчета электромагнитных механизмов в разное время успешно разрабатывались отечественными учеными РЛ. Ароновым, А.Я. Буйловым, Б.К. Булем, Б.С. Сотсковым, Ф.А. Ступелем.

Магнитные усилители постоянно совершенствовались и успешно использовались для различных целей, особенно в системах автоматического регулирования. Но с конца 60-х годов создание мощных полупроводниковых приборов существенно ограничило их развитие. Однако в 80-е годы разработчики регуляторов вновь начали проявлять к ним интерес благодаря их стойкости к различным возмущающим воздействиям. Работы в этом направлении происходили на основе применения в цепях повышенной частоты, где возможности МУ проявляются наиболее ярко.

Принципиально новые возможности и перспектива для развития эффективных регуляторов различного назначения были созданы в результате совершенствования электронных технологий.

Создание в конце 80-х годов силовых полностью управляемых полупроводниковых приборов на токи свыше 1 кА и напряжение 1 кВ позволило создавать импульсные регуляторы большой мощности. При этом стало возможным высокое качество управления посредством микропроцессорных устройств.

На основе соединения в едином конструктивном модуле силовых электронных приборов и микроэлектронных устройств родились новые виды аппаратов, получивших название «интеллектуальных». Такие аппараты открыли новые перспективы развития в различных областях техники, в частности электропривода, светотехники и др.

Рис. 6.14. Упрощенная схема электромагнитного реле якорного типа

В новый этап совершенствования отечественных электрических аппаратов управления на основе силовой электроники большой вклад внесли работы, проводимые с начала 90-х в МЭИ под руководством Ю.К. Розанова.

Реле. В классе ЭА автоматики и зашиты наиболее распространенным видом являются реле. Первые реле были созданы и нашли практическое применение в конце XIX в. Причем наиболее широкое применение первые реле находили в системах телефонной и телеграфной связи.

Первые реле имели конструкцию якорного типа, принцип действия которой основан на перемещении якоря с контактной системой при подаче напряжения или тока на обмотку электромагнита (рис. 6.14). Реле с таким типом конструкции получили широкое распространение и их усовершенствованные модификации продолжают использоваться в настоящее время.

В 30-х годах развитие электроэнергетики в промышленно развитых странах активизировало научно-исследовательские и опытно-конструкторские работы в области релейной защиты. В результате были созданы различные конструкции реле максимального тока, минимального напряжения, дифференциальные реле обратной мощности и много других типов реле защиты. В этот же период фирмой АЕГ была разработана конструкция индукционного реле (рис. 6.15), которая получила широкое применение во всем мире. На основе этой конструкции были созданы защитные реле с регулируемой выдержкой времени, зависящей от значения контролируемого тока.

Рис. 6.15. Конструкция индукционного реле 

Для систем автоматики требовались реле с высоким быстродействием, малым потреблением энергии для управления и большим числом срабатываний за период эксплуатации. Для этих целей конструкция якорного реле мало подходила. В результате работы над повышением быстродействия реле и упрощением его конструкции в 20-х годах В.И. Коваленков предложил отказаться от массивного якоря, заменив его легкими контактными сердечниками, выполненными в виде упругих консолей из ферромагнитного материала. Эта конструкция получила дальнейшее развитие в реле с герметичными контактами, названных герконами.

Конструкция герконов была запатентована в 1942 г. В. Элвудом (США). В этой конструкции контактные сердечники из ферромагнитного материала помещены в стеклянный герметичный баллон, заполненный инертным газом (рис. 6.16). Непосредственно контактирующие поверхности покрыты тонким слоем контактного материала, например серебра. Для управления контактами используется обмотка управления, создающая магнитный поток, или постоянные магниты. Герконы с 60-х годов начали успешно использовать в различных системах автоматики. Принцип герконового реле в дальнейшем получил развитие при создании сильноточных герметизированных контактов (герсиконов). Большой вклад в развитие методов анализа отечественных герконов внес В.Н. Шоффа (МЭИ).

Рис. 6.16. Герметизированный управляемый контакт (геркон) 

В 50-е годы, когда интенсивно проводились научно-исследовательские работы в области магнитных усилителей, последние успешно были использованы в качестве бесконтактных реле. Релейный эффект в этих устройствах достигался посредством введения положительных обратных связей.

Новый этап развития реле автоматики и защиты начался на основе достижений микроэлектронной техники. Использование электронных компонентов позволило существенно улучшить технико-экономические характеристики реле и расширить их функции. Так, например, большинство современных реле для систем защиты содержат микропроцессоры, определяющие алгоритм функционирования реле в зависимости от режимов работы и состояния контролируемой системы и ее составных частей. При этом информация в микропроцессоры может поступать как с различных датчиков, так и с блоков управления более высокого уровня.


6.5. ТРАНСФОРМАТОРЫ

Потребность дореволюционной России в электрооборудовании, в том числе в трансформаторах, была невелика и удовлетворялась несколькими универсальными электротехническими заводами — филиалами иностранных фирм. Мощность выпускавшихся в то время трансформаторов ограничивалась сотнями киловольт-ампер в единице при напряжении 6 кВ и только в отдельных случаях достигала 1000 кВ?А при напряжении 35 кВ.

Принятый в России в декабре 1920 г. план электрификации (ГОЭЛРО) поставил вопрос о производстве отечественного оборудования, в том числе и трансформаторов.

В 1928 г., когда в Москве вступил в строй специализированный трансформаторный завод Московский электрозавод (МЭЗ) им. В.В. Куйбышева (в настоящее время ОАО холдинговая компания «Электрозавод»), начинает свою историю отечественное трансформаторостроение.

В 1928–1929 гг. на МЭЗ началось серийное производство трансформаторов класса напряжения 35 кВ мощностью до 5600 кВ?А, а в 1931 г. был построен первый в стране силовой трехфазный трансформатор мощностью 2500 кВ?А на напряжение 110 кВ. Помимо силовых трансформаторов завод изготовлял специальные трансформаторы для электрических печей с вторичными токами 30–40 кА, взрывозащищенные — для шахт, измерительные трансформаторы напряжения до 110 кВ и т.д. В 1938 г. были поставлены трансформаторы для первой в СССР линии электропередачи 220 кВ Свирская ГЭС — Ленинград. Повышающие однофазные трансформаторы, составляющие трехфазную группу 3x46 MB?А напряжением 220 кВ, были самыми мощными в довоенные годы.

Рис. 6.17. Однофазные измерительные трансформаторы напряжения
а — типа ЗНОМ-35 конструкции 1954 и 1966 гг.; б — типа НОКЭ-10 с литой изоляцией на эпоксидной смоле и типа НОМ-10

В 1935–1940 гг. были разработаны и освоены конструкции сложных трансформаторов мощностью до 31 500 кВ?А с регулированием напряжения под нагрузкой; трансформаторов мощностью до 15 000 кВ?А с вторичными токами до 70 кА для питания электрических печей; измерительных трансформаторов напряжения на рабочее напряжение 220 кВ, выполненных каскадными в фарфоровых чехлах; испытательных трансформаторов на 500 кВ.

Обширные комплексные исследования проводились МЭЗ в тесном содружестве с Всесоюзным электротехническим институтом (ВЭИ). Большой научно-технический вклад в разработку теоретических и практических вопросов трансформаторостроения внесли в этот период Г.В. Алексенко, Н.И. Булгаков, Б.Б. Гельперин, Э.А. Манькин, Г.Н. Петров, А.В. Сапожников и др.

На основе систематических исследований в области изоляции и перенапряжений была предложена и внедрена в 1938–1939 гг. емкостная система защиты обмоток напряжением 110 — 220 кВ, позволившая обеспечить импульсную прочность обмоток при атмосферных перенапряжениях. За разработку и внедрение в производство конструкций ряда трансформаторов группа инженеров МЭЗ была удостоена Государственной премии.

В тяжелые годы Великой Отечественной войны трансформаторостроение продолжало развиваться, хотя и более медленными темпами. Трансформаторы выпускались в основном на МЭЗ и свердловском заводе «Уралэлектроаппарат».

В первые послевоенные годы количественный выпуск трансформаторов в СССР быстро достиг довоенного уровня, при этом повышался технический уровень трансформаторного оборудования, совершенствовалась конструкция, росли предельные мощности и напряжения, создавались новые виды трансформаторов и реакторов, разрабатывались серии, превосходившие довоенные по технико-экономическим показателям.

В военные и первые послевоенные годы были разработаны конструкции большинства типов измерительных трансформаторов напряжения в широком диапазоне классов напряжения — от 6 до 220 кВ, (рис. 6.17).

В 1949 г. был выпущен первый трансформатор на крупнейшем Запорожском трансформаторном заводе (ЗТЗ); в 1960 г. первую продукцию выпустил Тольяттинский электротехнический завод; расширялись МЭЗ и завод «Уралэлектротяжмаш». В 50–60-е годы созданы новые заводы по производству трансформаторов на Кавказе, в Средней Азии, на Дальнем Востоке, Украине и в Белоруссии. Совершенствование трансформаторного оборудования осуществлялось на основе теоретических, научно-технических и прикладных исследований ведущих электротехников и энергетиков страны: Ю.Б. Бородулина, А.Г. Крайза, В. А. Трапезникова. П.М. Тихомирова, Л.М. Шницера и др.

В этот же период начался переход к широкому внедрению трехфазных трансформаторов с высшим напряжением 110 кВ и более взамен групп из трех однофазных. Трехфазные трансформаторы имели более низкие потери, это позволило достичь также экономии материалов, удешевить сооружения подстанций, снизить расходы на перевозку и монтаж.

Рис. 6.18. Сердечник однофазного шунтирующего реактора мощностью 50 MB?А на напряжение 400 кВ для линии электропередачи Куйбышевская ГЭС — Москва (1955 г.)

Большая работа проведена по освоению холоднокатаной текстурованной электротехнической стали, имеющей более низкие удельные потери и намагничивающую мощность, что позволило значительно снизить потери и массу активной стали и масла.

В 1956–1957 гг. на «Армэлектрозаводе» (Армения) при участии МЭЗ была спроектирована серия трансформаторов мощностью до 560 кВ?А на напряжение 6 и 10 кВ, в которой на базе применения холоднокатаной стали снижены потери в сравнении с аналогичными ранее выпускавшимися трансформаторами и на 20–30% уменьшены масса активной стали и масла.

В 1949 г. на МЭЗ возобновились исследовательские и конструкторские работы по созданию трансформаторного оборудования на напряжение 400 кВ. Над этой проблемой работали также инженеры ЗТЗ и ВЭИ. Весь комплекс трансформаторного оборудования на напряжение 400 кВ — в то время самого высокого в мире рабочего напряжения электропередачи — был создан на основе исследований, выполненных отечественными инженерами и учеными. В комплекс входили трансформаторы на 400 кВ, агрегаты для регулирования под нагрузкой, шунтирующие реакторы для компенсации емкостных токов в линии на напряжение 400 кВ (рис. 6.18). Результаты проведенных исследований были использованы в дальнейшем при разработке трансформаторов для линий электропередачи на напряжении 500 кВ (рис. 6.19).

Рис. 6.19. Трансформатор типа ТЦ-20000В/500 

В 1955 г. на МЭЗ и ЗТЗ были спроектированы и в 1956 г. изготовлены первые однофазные трехобмоточные автотрансформаторы класса напряжения 220 кВ групповой мощностью 3x40 и 3x80 MB?А, а к 1958 г. суммарная мощность изготовленных автотрансформаторов достигла 8,5 млн. кВ?А. Применение автотрансформаторов взамен трансформаторов позволило значительно снизить расход активных материалов (меди и стали), трансформаторного масла и других материалов, а также уменьшить потери электроэнергии.

В послевоенный период началось освоение производства комплексных трансформаторных понижающих подстанций, полностью собираемых и испытываемых на заводе-изготовителе. При установке таких подстанций в центрах нагрузки обеспечивается значительное снижение стоимости низковольтных сетей и потерь в них, объема монтажных работ на месте установки, высвобождаются полезные площади. МЭЗ с 1950 г. начал серийный выпуск комплектных подстанций с одним или двумя трансформаторами мощностью до 100 кВ?А (сухими, масляными или заполненными синтетическим жидким диэлектриком).

Рис. 6.20. Комплектная трансформаторная подстанция наружной установки типа КТПН-1000 

Позднее производство комплектных трансформаторных подстанций было освоено и другими заводами, а в настоящее время более 20% силовых трансформаторов мощностью до 1000 кВ?А на напряжение 6 и 10 кВ (со вторичным напряжением 220 и 380 В) поставляются в виде комплектных подстанций (рис. 6.20).

Большой объем исследовательских работ был выполнен на МЭЗ и ЗТЗ по созданию комплекса оборудования для опытно-промышленной линии электропередачи постоянного тока Волгоград — Донбасс напряжением ±400 кВ и мощностью 720 МВт; при этом были обеспечены высокая надежность изоляции схемных обмоток, связанных с преобразователями, и их электродинамическая стойкость. Была разработана конструкция одного из ответственных элементов преобразовательного оборудования — линейного реактора типовой мощностью 160 MB?А (на ток 900 А и индуктивность 1 Гн) (рис. 6.21), а также специальное оборудование: групповые и индивидуальные изолирующие трансформаторы собственных нужд (рис. 6.22); импульсные трансформаторы для питания вентилей; измерительные трансформаторы постоянного напряжения ±200 кВ и ±400 кВ и реакторы — фильтровые, высокочастотные, токоограничивающие.

Рис. 6.21. Линейный реактор для передачи электроэнергии постоянным током ±500 кВ 

Период 1959–1967 гг. характеризовался бурным ростом выпуска трансформаторов, в первую очередь крупных и предельных мощностей. В 1960 г. МЭЗ выпустил первые автотрансформаторы класса напряжения 220 кВ со встроенной в нейтраль регулировочной обмоткой и аппаратурой регулирования под нагрузкой (РПН). Внедрение встроенного (РПН) дало возможность отказаться от вольтодобавочных агрегатов, обеспечив при этом значительную экономию активных материалов и снижение потерь энергии.

Рис. 6.22. Изолирующий трансформатор ИИ-110
Рис. 6.23. Автотрансформатор АТДЦТН-200000/330 с РПН в линии на стороне напряжения 110 кВ 

Освоенные Всесоюзным институтом трансформаторостроения (ВИТ, Запорожье) и ЗТЗ быстродействующие переключающие устройства класса напряжения 110 кВ с активными токоограничивающими сопротивлениями позволили выполнить РПН на стороне 110 кВ, что наиболее эффективно в достаточно распространенных автотрансформаторах 220/110 кВ (рис. 6.23).

Большим достижением трансформаторостроения стала разработка в середине 60-х годов мощных автотрансформаторов класса напряжения 750 кВ. Для систем напряжением 750 кВ необходимы шунтирующие реакторы, мощность которых превышает мощность установленных трансформаторов (соотношение мощностей примерно 2–2,5 квар/(кВ?А). На основе ранее спроектированного однофазного высоковольтного шунтирующего реактора мощностью 55 Мвар на напряжение 500 кВ (рис. 6.24) МЭЗ изготовил шунтирующий реактор на напряжение 750 кВ, который, как и аналогичный на напряжение 500 кВ, позволил добиться уменьшения расхода материалов и габаритов за счет оригинальной конструктивной схемы. Для линии напряжением 750 кВ на МЭЗ был разработан измерительный емкостный трансформатор напряжения типа НДЕ -750 (рис. 6.25).

Рис. 6.24. Однофазный шунтирующий реактор мощностью 55 Мвар на напряжение 500 кВ конструкции 1966 г. (без сердечника, с наружной магнитной системой, охватывающей обмотку)
Рис. 6.25. Емкостный трансформатор напряжения 

В эти годы был достигнут значительный рост предельных мощностей трансформаторов; так, в 1968 г. на ЗТЗ был выпущен однофазный трансформатор мощностью 417 MB?А класса напряжения 500 кВ. Трехфазная группа из таких трансформаторов мощностью 1250 MB?А служит для питания от двух генераторов по 500 МВт.

Необходимость использования в полной мере свойств холоднокатаной текстурованной электротехнической стали поставила в эти годы ряд специальных требований к конструкции и технологии изготовления магнитопроводов. Одним из мероприятий, позволивших уменьшить потери и ток холостого хода в трансформаторах, стал отказ от отверстий в пластинах для прессовки стержней и ярем («бесшпилечная» прессовка) (рис. 6.26, 6.27).

Определяющей тенденцией в последующие годы явилось повышение единичных мощностей и напряжений трансформаторов.

После испытаний и исследований автотрансформатора мощностью 210 MB?А на напряжение 1150/500 кВ (рис. 6.28), установленного на высоковольтной линии 1150 кВ, на ЗТЗ в 1975 г. был разработан автотрансформатор групповой мощностью 2000 MB?А на напряжение 1150 кВ.

Опыт эксплуатации на линии электропередачи 750 кВ позволил освоить серийное производство трансформаторного оборудования на напряжение 750 кВ, разработать и изготовить однофазные автотрансформаторы групповой мощностью 1000 и 1250 MB?А напряжением соответственно 750/330 и 750/500 кВ с регулированием под нагрузкой, используемые в мощных энергетических блоках ряда атомных электростанций европейской части страны. Серийно выпускается трансформаторное оборудование для энергетических блоков мощностью 800–1200 МВт (рис. 6.29) напряжением 330 и 500 кВ.

Рис. 6.26. Магннтопровод трансформатора типа ТЦ-630000/220 с металлическими бандажами
Рис. 6.27. Бесшпилечный магннтопровод трансформатора типа ТРДН-63000/110 

В 1975 г. созданы первые образцы трансформаторного оборудования для линий электропередачи постоянного тока ±750 кВ, что явилось результатом целого комплекса научно-исследовательских, опытно-конструкторских и технологических работ в области электрической изоляции, электромагнитных и тепловых нагрузок. Проведение исследований и испытаний трансформаторного оборудования для высоковольтной линии постоянного тока (±750 кВ) стало возможным после ввода экспериментального комплекса на высокие напряжения в ВИТ; здесь же проводились испытания на более высокие напряжения, в частности ± 1250 кВ постоянного тока и 1800 кВ переменного тока.

В 70–80-х годах создана серия быстродействующих переключающих устройств для трансформаторов с регулированием напряжения под нагрузкой с активными токоограничивающими сопротивлениями на напряжение 330 кВ и токи до 2000 А. В эти же годы проводились испытания трансформаторов с контактно-тиристорным переключающим устройством, а также исследования по созданию бесконтактных переключающих устройств.

В 1989 г. в Запорожье изготовлен и испытан сверхмощный блочный трансформатор типа ТНЦ-1000000/220 для Нижневартовской ГРЭС, спроектированный с учетом работы в холодном климате (специальное покрытие на баке, который выполнен из морозостойкого материала).

Рис. 6.28. Однофазный автотрансформатор мощностью 210 MB?А на напряжение 1150/500 кВ для опытного участка линии электропередачи 1150 кВ переменного тока
Рис. 6.29. Блочный трехфазный трансформатор мощностью 630 MB?А на напряжение 330 кВ для Ленинградской АЭС 

Результаты тепловых испытаний, комплекс технологических усовершенствований, новые способы изготовления изоляционных деталей из электрокартона позволили сократить размеры изоляционных промежутков, что дало возможность существенно повысить коэффициент заполнения обмоток в окне магнитопровода; разработка оптимальных схем шихтовки магнитопроводов и конструкции их крепления дала возможность снизить потери холостого хода на 15–20%.

Глубокие исследования электромагнитных явлений в трансформаторах и реакторах позволили разработать надежные методы расчета и снижения добавочных потерь от магнитных полей рассеяния, исключать местные перегревы в элементах конструкции и повысить эксплуатационную надежность. В 70–80-х годах внесен большой вклад в достижение динамической стойкости мощных трансформаторов, что является одной из самых актуальных проблем современного трансформаторостроения; усовершенствованы методы расчета прочности и устойчивости обмоток, внедрен ряд технологических и конструктивных мер, обеспечивших повышение стойкости трансформаторов к воздействию усилий при коротких замыканиях в эксплуатации.

Рис. 6.30. Трехфазный сухой защищенный трансформатор мощностью 25 кВ?А с пространственной магнитной системойа — общий вид; б — пространственный трехфазный навитый магнитопровод 

Постоянное повышение технического уровня силовых трансформаторов достигнуто за счет применения трансформаторной стали с улучшенными характеристиками; внедрения транспонированных и многожильных проводов, что упрощает и ускоряет намотку обмоток при одновременном снижении добавочных потерь в них: внедрения новых марок трансформаторных масел с улучшенной стабильностью и повышенным сроком службы и целого ряда других научно-технических решений.

На основе комплексной разработки конструкции, технологических процессов и специального оборудования разработана серия трансформаторов I, II габаритов (до 1000 кВ?А) с пространственной конструкцией магнитопровода и использованием электротехнической фольги и ленты для обмоток (рис 6.30.).

Необходимое для современной энергетики преобразование переменного тока в постоянный наиболее целесообразно производить с помощью статических преобразовательных агрегатов, в состав которых входит трансформаторное оборудование: силовые преобразовательные трансформаторы, уравнительные и токоограничивающие реакторы, дроссели насыщения и др. Основными потребителями преобразовательных установок являются электролизные производства в цветной металлургии и химической промышленности, тиристорный электропривод прокатных станов в черной металлургии; электрифицированный транспорт; электротермия и т.д. Преобразовательные установки (рис.6.31) широко внедряются в современные технологические процессы (плазмотронная и электронно-лучевая плавка, электрохимическая обработка металлов и др.). Для этих целей разработаны, в частности, трансформаторы типа ТЦНП-40000/10 на ток 50 кА и напряжение 850 В для химической промышленности; ТЦНП-80000/20 на ток 63 кА и напряжение 850 В для цветной металлургии, сухие трансформаторы типа ТСЗП мощностью до 1600 кВ?А для метрополитена.

Рис. 6.31. Высоковольтный преобразовательный агрегат для питания электрофильтров газоочистки
Рис. 6.32. Электропечной трансформатор

Освоены и серийно выпускаются специальные трансформаторы, предназначенные для питания электропечей различного назначения: дуговых сталеплавильных, руднотермических, индукционных плавильных, печей электрошлакового переплава, по выплавке корунда и т.д. (рис. 6.32).

Несмотря на сложности, связанные с распадом в 1991 г. СССР, трансформаторостроение России продолжает развиваться, обеспечивая потребности энергетики. Наиболее важными направлениями дальнейших исследований являются: рост номинальных мощностей и напряжений; уменьшение потерь энергии в силовых трансформаторах; уменьшение их размеров и массы; повышение надежности; динамическая стойкость обмоток при коротких замыканиях. Решение этих проблем потребует преодоления значительных трудностей, связанных с ограничениями по габаритам и массе при транспортировке трансформаторов предельных мощностей, изучения и освоения материалов, способных заменить традиционно используемые в трансформа-торостроении. Поэтому уже в настоящее время разрабатываются железнодорожные транспортеры повышенной грузоподъемности; рассматриваются возможности перевозки трансформаторов водным путем, что снимет ограничения по габаритам и массе.

Большое внимание уделяется перспективам улучшения электромагнитных характеристик электротехнических сталей и повышению уровня автоматизации производства магнитопроводов, включая дальнейшее внедрение витых пространственных магнитопроводов.

Дальнейшее увеличение единичных мощностей силовых трансформаторов может быть достигнуто при использовании сверхпроводниковой технологии, исследования которой ведутся уже длительное время; перспективными являются также интенсивные исследования по созданию трансформаторов с газоиспарительной системой изоляции и охлаждения.

В последнее время получил развитие новый класс магнитных материалов — аморфные сплавы, которые по оценкам специалистов могут снизить потери энергии в сердечниках до 70%. Значительное снижение потерь холостого хода при применении сталей требует расширения исследований с целью получения материала с нужными параметрами, а также разработки технологии изготовления магнитопроводов из них.


6.6. ЭЛЕКТРИЧЕСКИЙ ПРИВОД

6.6.1. РАННИЙ ПЕРИОД РАЗВИТИЯ ЭЛЕКТРОПРИВОДА

История развития электрического привода, являющегося целенаправленным органичным сочетанием электрических машин, аппаратов, преобразователей и устройств управления, неразрывно обусловлена образующими электропривод компонентами. Вместе с тем электропривод, как система, осуществляющая управляемое электромеханическое преобразование энергии, имеет свою собственную историю.

Начало развития электропривода было положено созданием в первой половине XIX в. работоспособных образцов электрического двигателя. Первое практическое использование электродвигателя постоянного тока, оснащенного другими характерными элементами электропривода: механической передачей, органами управления и т.п. и обеспечивавшего движение катера вверх по р. Неве, относят к 1834–1838 гг. и связывают с именем акад. Б.С. Якоби. Эта работа получила широкую мировую известность, однако несовершенство технических средств и, главным образом, источника питания — гальванической батареи, не позволило блестящему изобретению Б.С. Якоби и работам его последователей получить широкое практическое применение.

Лишь в 70-е годы XIX в. были разработаны практически применимые двигатели постоянного тока, широко демонстрировавшиеся на выставках в Вене (1873 г.). Париже (1881 г.), Мюнхене (1882 г.). Стали появляться сведения об их использовании в составе электропривода для практических целей, чему в значительной мере способствовало создание в 80-е годы ряда передач постоянного тока напряжением до 6000 В [6.53].

К первым применениям электропривода можно отнести некоторые артиллерийские механизмы на русских судах «Россия» и «Веста» (1887 г.), электрическую железную дорогу и ткацкий станок, демонстрировавшийся на промышленной выставке в Берлине (1879 г.), первый электрический трамвай Ф.А. Пироцкого (1880 г.), электрические швейные машины (1882 г.) и вентиляторы (1886 г.) В.Н. Чиколева, судовые электрические подъемники и рулевые механизмы (1890–1892 гг.), металлургические машины на ряде американских заводов, оборудованные электроприводами постоянного тока с полуавтоматическим управлением посредством контакторов, командоконтроллеров и т.п. (1890–1892 гг.) [6.54].

Условия для развития массового электропривода создались в конце XIX в. благодаря открытию в 1886 г. Г. Феррарисом и Н. Тесла явления вращающегося магнитного поля, положившему начало созданию многофазных электродвигателей переменного тока, и, главным образом, благодаря комплексу выдающихся работ М.О. Доливо-Добровольского, который в 1888 г. предложил и реализовал трехфазную систему передачи электрической энергии переменного тока и разработал в 1889 г. трехфазный асинхронный двигатель с распределенной обмоткой статора и с короткозамкнутым ротором в виде беличьего колеса [6.55].

С развитием материальной базы электропривода создавалась его теория.

Первой теоретической работой по электроприводу в России можно считать статью Д. А. Лачинова «Электромеханическая работа», опубликованную в журнале «Электричество» в 1880 г. В 1898 г. в учебных планах Петербургского электротехнического института появилась самостоятельная дисциплина «Электрическая передача и распределение электрической энергии». На основе первых разработок в области электропривода П.Д. Войнаровский в 1900 г. и В.В. Дмитриев в 1903 г. выпустили первые учебные пособия по курсу «Электрическая передача и распределение механической энергии». Так начиналась в России подготовка специалистов в области электропривода.

6.6.2. ПЕРЕХОД ОТ ГРУППОВОГО ПРОМЫШЛЕННОГО ЭЛЕКТРОПРИВОДА К ИНДИВИДУАЛЬНОМУ

Конец XIX — начало XX в. характеризуется строительством электрических станций и развитием электрических сетей. Первая электростанция была построена исключительно для целей освещения. Централизованная выработка электроэнергии с ее последующим распределением послужила основной для создания промышленного электропривода.

Рис. 6.33. Групповой привод на текстильной фабрике

На замену использовавшемуся ранее групповому приводу с паровым или гидравлическим первичным двигателем и механическим распределением энергии с помощью ремней и канатов (рис. 6.33) [6.54] пришел групповой электропривод. Не изменяя общей компоновки, он позволял не иметь на каждой фабрике свою тепловую станцию с паровыми котлами или гидравлическую с водяными колесами и основывался на использовании централизованного электроснабжения — электрической сети (рис. 6.34).

Интересно, что даже нововведение — промежуточное звено в виде электродвигателя между первичным двигателем и рабочей машиной — вызывало вначале у многих недоумение вследствие удорожания оборудования, его усложнения и возникновения потерь энергии при передаче ее по проводам на значительные расстояния.

Еще большее недоумение и возражения в начале XX в. вызывала идея перехода к одиночному электроприводу (рис. 6.35), т.е. к замене механического распределения энергии электрическим, приближению электродвигателя к рабочей машине. Несмотря на уже имевшиеся положительные примеры таких решений, можно утверждать, что всю первую четверть XX в. шла борьба между сторонниками группового и индивидуального электропривода.

Рис. 6.34. Групповой электропривод
Рис. 6.35. Одиночный электропривод 

Доводы первых выглядели весьма серьезно. Так, по данным крупных американских специалистов, относящимся к 1924 г. [6.54], стоимость установленной мощности двигателя с необходимым оборудованием составляла для группового электропривода 29 долл., для индивидуального — 150 долл. Для индивидуального привода установленная мощность оказывалась в 3–5 раз больше, чем для группового, за счет разновременности нагрузок в последнем. Требовалось время для понимания неправомерности подобных сравнений, не учитывающих всего комплекса условий, определяющих результат.

Рис. 6.36. Промышленные здания для группового (а) и одиночного (б) электроприводов 

В эти условия входили, в частности, стоимость промышленных зданий, которые при групповом приводе оказались существенно более громоздкими (рис. 6.36), стоимость механических передач и потерь в них, удобство расположения рабочих машин, легкость их перемещения при изменении технологии производства, удобство компоновки производственной среды в целом, включая размещение подъемно-транспортных и других вспомогательных средств, существенное повышение общей культуры и безопасности производства и как следствие повышение производительности труда на 15–20%.

Естественным итогом продолжавшегося более 25 лет непростого соревнования группового и индивидуального электроприводов была полная победа последнего на всех вновь строящихся предприятиях.

В России большую роль в развитии массового индивидуального электропривода сыграл план ГОЭЛРО, в соответствии с которым осуществлялись реконструкция старых и строительство новых электростанций, развивалась отечественная электротехническая промышленность.

Одновременно электрический привод вытеснял все виды механического привода. Так, мощность электродвигателей по отношению к общей мощности установленных двигателей в 1890 г. составляла 5%, в 1927 г. — 75%, к 1950 г. — около 100% [6.56]. Вместе с тем еще в публикациях конца 20-х годов, например в книге [6.57], изданной в США в 1928 г., значительное место уделено сопоставлениям группового и индивидуального электроприводов, доказательствам преимуществ последнего.

Одновременно с развитием индивидуального электропривода создавалась его теория, была организована подготовка специалистов в этой области. В 1922 г. в Ленинградском электротехническим институте (ЛЭТИ) С.А. Ринкевичем была открыта кафедра электрического привода, а в 1924–1926 гг. выпущены первые инженеры этого профиля. В 1925 г. вышел в свет первый отечественный учебник по электроприводу С.А. Ринкевича «Электрическое распределение механической энергии».

В 1925 г. в системе Всесоюзного электротехнического объединения создается первая проектная организация «Электропром» (позднее Государственный проектный институт — ГПИ — «Тяжпромэлектропроект»), в 1929 г. научные исследования в области электропривода организуются в ВЭИ. В 1929–1932 гг. создаются кафедры электропривода в Ленинградском политехническом (ЛПИ), Московском энергетическом (МЭИ), Харьковском электротехническом (ХЭТИ) институтах. Начинается интенсивное развитие отечественных научных школ в области электропривода. В 1930 г. в Харькове состоялась первая электротехническая конференция по электроприводу.

6.6.3. РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД ПОИСК РЕШЕНИЙ

В период интенсивного перехода к индивидуальному электроприводу, который в России практически завершился к 1934 г., во всех новых производствах появилось большое количество различных типов электроприводов.

Если в нерегулируемом электроприводе малой и средней мощности прочно заняли свое место и не уступили его до настоящего времени асинхронные двигатели с короткозамкнутым ротором, а в мощных электроприводах — синхронные двигатели, то регулируемые электроприводы были весьма разнообразны. Это было связано с ограниченными техническими возможностями средств управления, вследствие чего приходилось искать способы управления в свойствах собственно электродвигателей. Так, широко использовались двигатели постоянного тока с различными схемами возбуждения (независимой, параллельной, последовательной, смешанной) при реостатном регулировании или при ослаблении магнитного поля, асинхронные двигатели с фазным ротором, коллекторные двигатели переменного тока, двигатели Бушеро и т.п.

Рис. 6.37. Система Вард-Леонарда (система Г — Д)

Наибольшее применение в регулируемых электроприводах средней и большой мощности в этот период и в дальнейшем нашла предложенная еще в конце XIX в. система Вард — Леонарда (генератор — двигатель), состоящая из нескольких электрических машин (рис. 6.37), но обладающая отличными регулировочными возможностями как в статике, так и в динамике. На основе этой системы удалось создать электропривод реверсивных прокатных станов. Первой такой установкой в СССР был электропривод блюминга мощностью 7000 л.с., выпущенный заводом «Электросила» в 1931 г. (рис. 6.38). Для питания двигателя был установлен трехмашинный агрегат, состоящий из асинхронного двигателя мощностью 3680 кВт и двух генераторов постоянного тока мощностью по 3000 кВт. Система управления, разработанная ХЭМЗ, решала задачи автоматического управления магнитным полем генераторов и двигателей, моментом асинхронных двигателей и т.п.

Рис. 6.38. Главный двигатель прокатного стана

6.6.4. ИНДИВИДУАЛЬНЫЙ ЭЛЕКТРОПРИВОД В ТЕХНОЛОГИЧЕСКИХ УСТАНОВКАХ

Индивидуальный электропривод сыграл большую роль в развитии и совершенствовании многих технологических машин и агрегатов. Это осуществлялось главным образом за счет приближения двигателя к рабочему органу и исключения благодаря этому значительной части громоздких механических передач, а также за счет перехода от механического к электрическому управлению скоростью. Ниже показано несколько примеров эволюции привода и кинематики механизмов ряда технологических агрегатов [6.54]: текстильной центрифуги (рис. 6.39), цементной печи (рис. 6.40), рольганга (рис. 6.41), фрезерного станка (рис. 6.42) [6.58]. Эти примеры свидетельствуют о серьезных упрощениях в конструкции агрегатов при одновременном повышении функциональных возможностей, производительности и качества технологического процесса, снижении потерь электроэнергии.

Рис. 6.39. Видоизменение одиночного электропривода текстильной центрифуги
Рис. 6.40. Видоизменение передач между двигателем и цементной печью
Рис. 6.41. Эволюция электропривода рольганга 

Так, опыты, проведенные на трех аналогичных токарных станках, показали, что при непосредственном приводе шпинделя от двигателя удельная производительность составила 13,4, при приводе через зубчатые колеса 8,3 и через ступенчатые шкивы — 7,4 кг/кВт?ч [6.54]. При переходе в одном из типов прядильных машин к многодвигательному индивидуальному электроприводу производительность выросла на 40–100% при уменьшении потребления энергии на 20–40% и снижении численности персонала на 60% [6.54, 6.58].

Еще больший эффект дает соединение электродвигателя с рабочим органом рабочей машины в одно единое целое: мотор — колесо транспортного средства, электрошпиндель, электроверетено, электроинструмент, ролик рольганга в виде наружного ротора двигателя со статором, размещенным внутри, и т.п. Это направление интеграции отдельных элементов в электромеханические модули, возникшее на ранней стадии освоения индивидуального электропривода, получило особенно убедительное развитие в последние годы.

Влияние электрического регулирования скорости на кинематику агрегата иллюстрируется на рис. 6.43 [6.58] применительно к сверлильному станку с механическим (а), электромеханическим — двухскоростной двигатель (б) и электрическим (в) регулированием скорости.

Рис. 6.42. Фрезерный станок с одиодвигательным (а) и трехдвигательным (б) приводом
Рис. 6.43. Сверлильный станок с разными способами регулирования скорости 

К началу 40-х годов электромеханическая часть индивидуального, в том числе многодвигательного электропривода, приобрела современные черты. Его характерной особенностью оставалось релейно-контакторное управление, хотя уже стали появляться системы непрерывного управления. К ним в первую очередь следует отнести рассмотренную ранее систему Г — Д, некоторые схемы электрического вала на асинхронных двигателях с фазным ротором, использованные на шлюзовых затворах, в ряде машин и станков.

6.6.5. АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ В ЭЛЕКТРОПРИВОДЕ

Идеи автоматического управления, зародившиеся задолго до создания работоспособного электропривода (идеи Уатта — Ползунова и др.), в 30-е годы начали интенсивно развиваться применительно к электроприводу. Первые практические разработки в России относятся к автоматическому управлению подачей в ряде технологических агрегатов: врубовых машинах, металлорежущих станках, нажимных устройствах прокатных станов, салазковых пилах и т.п.[6.58].

В 1934 г. B.C. Вихманом была разработана отечественная версия системы копировального станка, основанная на фотоэлектрическом копировании по чертежу. В 1936 г. Т.Н. Соколов предложил новую систему электрокопирования по шаблону с электронно-ионным управлением, которая была реализована на станкостроительном заводе им. Я.М. Свердлова в 1940–1941 гг. Электроприводы подач копировальных станков явились первыми советскими следящими электроприводами.

В эти же годы появились и стали быстро развиваться другие принципы построения систем автоматического управления электропривода, основанные на применении замкнутых структур с использованием усилителей разных типов: машинных, электронно-ионных, несколько позже магнитных.

В 40-е годы особенно большое распространение получили различные электромашинные усилители (ЭМУ), основанные на предложенном К.И. Шенфером еще в 1929 г. метадине — машине постоянного тока с двойным комплектом щеток и особой конструкцией магнитной цепи. Первая отечественная система управления электропривода с ЭМУ, выполненным как генератор постоянного тока с несколькими обмотками возбуждения, опередившая аналогичные зарубежные устройства, была разработана в 1937 г. в ВЭИ.

В 1941 г. начала интенсивно развиваться военная электротехника, в частности специальные следящие электроприводы для управления орудийным огнем, радиолокации и т.п. Большую роль в создании новых, оригинальных специальных электроприводов сыграл завод № 627, руководимый А. Г. Иосифьяном, преобразованный затем в НИИ-627, а еще позднее во ВНИИЭМ, имеющий многочисленные филиалы по всей стране. ВНИИЭМ в последующие периоды играл определяющую роль в создании авиационной, судовой, ракетной и космической техники и, в частности, ряда уникальных разработок систем ориентации, электроприводов с бесконтактными электрическими машинами и др.

В середине 40-х годов были разработаны первые отечественные автоматическиеv линии станков: для обработки головки блока цилиндров тракторного двигателя (ЭНИМС, завод «Станкоконструкция»), для обработки блока цилиндров двигателя грузового автомобиля (станкостроительный завод им. С. Орджоникидзе) и др. Появились первые заводы-автоматы с автоматизированными основными и вспомогательными производственными процессами.

6.6.6. ЭЛЕКТРОПРИВОДЫ СО СТАТИЧЕСКИМИ ПРЕОБРАЗОВАТЕЛЯМИ. ЗАВЕРШЕНИЕ РАЗВИТИЯ «ДОПОЛУПРОВОДНИКОВОГО» ЭЛЕКТРОПРИВОДА

В 1935 г. А. Г. Иосифьяном (ВЭИ) разработана первая версия электропривода с преобразователем на тиратронах, в 1939 г. в ВЭИ был создан регулируемый в большом диапазоне электропривод постоянного тока с питанием двигателя от тиратронного преобразователя или ртутного выпрямителя — прообраз широко распространенных сейчас регулируемых электроприводов по системе статический преобразователь — двигатель. Одним из первых его практических применений была шахтная подъемная машина, разработанная ВЭИ, ЛПИ и ХЭМЗ и пущенная в эксплуатацию в 1940 г.

С 1949 г. электроприводы с ртутными выпрямителями широко внедрялись в качестве главных приводов прокатных станов. К 1948–1950 гг. относится появление отечественных вентильных каскадов на прокатных станах с введением в цепь ротора главного асинхронного двигателя управляемого ртутного выпрямителя.

В 40–50-е годы формируются научно-исследовательские и проектно-конструкторские организации, внесшие весомый вклад в развитие отечественного электропривода. Это ВЭИ (регулируемые электроприводы широкого применения), ГПИ «Тяжпромэлектропроект» (электрооборудование металлургических производств), Центральный научно-исследовательский институт технологии машиностроения — ЦНИИТмаш (электропривод станов холодной прокатки), трест «Электропривод», позднее ВНИИэлектропривод (электропривод текстильных агрегатов, бумагоделательных и полиграфических машин, скоростных лифтов, экскаваторов), ЭНИМС (электроприводы металлорежущих станков), ВНИИЭМ (прецизионные электроприводы) и другие организации.

Практическая реализация электроприводов осуществлялась заводами «Электросила», ХЭМЗ, «Динамо», им. Я.М. Свердлова, им. С. Орджоникидзе и многими другими.

К середине 50-х годов сформировалась теория и практика «дополупроводникового» электропривода. Были созданы и получили широкое признание учебники по электроприводу: С.А. Ринкевича «Теория электропривода» (1938 г), А.Т. Голована «Электропривод» (1948 г.), Д.П. Морозова «Основы электропривода» (1950 г.), В.К. Попова «Основы электропривода» (1951 г.) и многие другие. Особенно следует отметить учебник М.Г. Чиликина «Общий курс электропривода», вышедший в 1953 г., выдержавший шесть изданий и внесший благодаря высокому уровню и доступности изложения весомый вклад в подготовку специалистов в СССР.

Стали общепринятыми основные технические решения — асинхронный с короткозамкнутым двигателем и синхронный электроприводы, если скорость не регулируется; электроприводы постоянного тока (система Г — Д, П — Д) или в отдельных случаях (краны и пр.) асинхронный электропривод с двигателем с фазным ротором, если нужно регулировать скорость или момент. В цепях возбуждения машин постоянного тока применялись ЭМУ, тиратронные выпрямители или магнитные усилители. Использовалось много разнообразных решений: магнитные усилители в цепи статора асинхронного двигателя, импульсное регулирование, машины двойного питания, электрический вал и т.п.

В США созданы основы современной теории электромеханического преобразования энергии на основе обобщенной машины, получившие впоследствии широкое использование в практике разработки управляемого электропривода.

Все усилия направлены на решение задачи создания эффективных регулируемых электроприводов, вместе с тем основная масса (более 95%) электроприводов остается нерегулируемой.

6.6.7. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ В ЭЛЕКТРОПРИВОДЕ. СИСТЕМЫ ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ — ДВИГАТЕЛЬ (ТП — Д) И ИСТОЧНИК ТОКА — ДВИГАТЕЛЬ (ИТ — Д)

В послевоенные годы в ведущих лабораториях мира произошел прорыв в области силовой электроники, кардинально изменивший многие сферы техники и, в частности, электропривод. В 1948 г. Дж. Бардин и В. Браттейн (Белловская лаборатория, США) создали первые транзисторы. В конце 50-х — начале 60-х годов на первых, еще очень несовершенных силовых транзисторах (ток 5 А, напряжение 60 В), работающих в ключевом режиме, было построено множество оригинальных схем для питания маломощных двигателей и для цепей возбуждения мощных двигателей. В качестве примера можно привести известный преобразователь Ройера (рис. 6.44), преобразующий постоянное напряжение в прямоугольное переменное с управляемой частотой, и множество модификаций этой схемы. В технику электропривода начал входить управляемый ключ и построенные на его основе устройства.

Рис. 6.44. Преобразователь Ройера 

Радикальное воздействие на технику электропривода оказал тиристор — мощный полууправляемый ключ, созданный в 1955 г. усилиями Дж. Молла, М. Танненбаума, Дж. Голдея и Н. Голоньяка (США). Появление тиристоров на тысячи вольт и большие токи при малых падениях напряжения в проводящем состоянии позволило полностью отказаться от громоздких, ненадежных и неэкономичных ртутных выпрямителей и тиратронов и полностью перейти на управляемые тиристорные выпрямители (рис. 6.45) как в цепях возбуждения, так и в силовых цепях электроприводов постоянного тока. В [6.59] приведены любопытные диаграммы развития аппаратной базы электропривода (рис. 6.46) и цепей возбуждения крупных прокатных двигателей (рис. 6.47); годы указаны приближенно.

Рис. 6.45. Система тиристорный преобразователь — двигатель
Рис. 6.46. Развитие электропривода

Система тиристорный преобразователь — двигатель постоянного тока (ТП — Д) стала с середины 60-х годов практически единственным техническим решением регулируемого электропривода малой и средней мощности; тиристорные возбудители активно вытеснили другие устройства в цепях возбуждения мощных электроприводов.

Преимущества системы ТП — Д, обеспечившие ей широкое применение взамен системы Г — Д, состоят в высоком быстродействии, компактности (блочная компоновка), высоком КПД, минимальном обслуживании, высокой надежности. На фоне этих преимуществ недостатки системы ТП — Д (дорогой двигатель постоянного тока, сложность рекуперации, ухудшение коммутации, низкий коэффициент мощности, пульсации выпрямленного напряжения и радиопомехи) на первых порах казались несущественными.

Рис. 6.47. Управление возбуждением крупных прокатных двигателей 
Рис. 6.48. Система источник тока — двигатель 

Примерно в это же время у системы ТП — Д появился конкурент. В 70-е годы в Институте электродинамики АН УССР и в МЭИ были проведены исследования оригинальной системы параметрический источник тока — двигатели постоянного тока (рис. 6.48), уверенно занявшей свое место в агрегатах кабельной промышленности, в ряде технологических линий, лебедках, нагрузочных устройствах и т.п.

6.6.8. РАЗВИТИЕ АСИНХРОННОГО И ДИСКРЕТНОГО ЭЛЕКТРОПРИВОДОВ

К 60–70-м годам относится активизация научной работы в области электропривода в ведущих вузах страны. В частности, в Московском энергетическом институте (МЭИ), Уральском политехническом институте (УПИ) и Одесском политехническом институте (ОПИ) проведены серьезные работы по асинхронному электроприводу с тиристорами в цепи статора (рис. 6.49). Созданы теория и ряд базовых конфигураций такого электропривода, обосновано его применение в качестве «мягких» пускателей, экономайзеров, предприняты попытки практического использования параметрического регулирования.

Рис. 6.49. Система тиристорный регулятор напряжения — асинхронный двигатель

Работы Ф. Блашке (ФРГ), опубликованные в начале 70-х годов, положили начало созданию систем асинхронного электропривода с ориентацией по магнитному полю с так называемым векторным управлением (система трансвектор).

В СССР получили развитие начатые еще в начале 40-х годов (А.А. Булгаков, М.П. Костенко) перспективные работы в области частотно-регулируемого электропривода. В трудах А.С. Сандлера и его учеников в 70-х годах нашли отражение вопросы построения преобразователей частоты с явно выраженным звеном постоянного тока на доступной в то время элементной базе — тиристорах, были сформулированы и детально исследованы принципы автоматического управления электропривода с преобразователями частоты.

Появились работы в области частотно-токового управления в асинхронном приводе.

В 60–70-е годы в МЭИ под руководством М.Г. Чиликина проведены интенсивные исследования и разработки дискретного электропривода с шаговыми двигателями (Б.А. Ивоботенко), широко внедренные в металлургической, станкостроительной и других отраслях промышленности, получившие признание технической общественности и заложившие основы дальнейшего развития новых типов регулируемого электропривода.

Одновременно работы в области дискретного электропривода были начаты в ряде других научных центров, в частности в Лидском университете (Великобритания), ставшем позднее известным своими работами, связанными с силовыми версиями дискретного электропривода (П. Лауренсон).

В этот же период развивается электропривод с вентильными двигателями, в которых коллектор заменяется группой полупроводниковых ключей, коммутирующих обмотки и управляемых в функции положения ротора.

6.6.9. СИСТЕМЫ ПОДЧИНЕННОГО РЕГУЛИРОВАНИЯ

Транзисторы и многочисленные устройства на их основе позволили перейти к практической реализации ряда эффективных идей в области систем управления электропривода.

Наиболее плодотворной оказалась идея, предложенная еще в середине 50-х годов Кесслером (ФРГ) и состоящая в подчиненном регулировании координат электропривода с последовательной коррекцией. Сложная система строится как совокупность отдельных, но подчиненных один другому контуров (тока, скорости, положения и др.), каждый из которых оптимизируется отдельно посредством своего регулятора (рис. 6.50).

Во ВНИИэлектроприводе в 60–70-е годы были созданы нашедшие широкое применение в промышленности комплексы средств управления электропривода — аналоговая ветвь УБСР-АИ и цифровая ветвь УБСР-ДИ. Эти технические средства сыграли заметную роль в практическом развитии электропривода, поскольку они унифицировали, упрощали, сокращали время наладки и пуска сложных систем регулируемого электропривода постоянного и переменного тока с преобразователем частоты с непосредственной связью (ПЧНС).

К указанному периоду относится завершение в МЭИ (В.И. Ключев) комплекса работ, связанных с глубоким исследованием механической части привода с упругими связями, ее взаимодействия с электрической частью. Были успешно решены проблемы синтеза сложных электромеханических систем, где в полной мере использовались идеи подчиненного регулирования координат.

В ЛЭТИ были развиты оригинальные идеи управления сложными взаимосвязанными электромеханическими объектами.

Большое внимание уделялось проблемам электромагнитной совместимости электропроводов с питающей сетью (ГПИ «Тяжпромэлектропроект»), в чем отражалось расширяющееся применение электропроводов с тиристорными преобразователями и современными средствами управления.

6.6.10. МИКРОПРОЦЕССОРЫ В ЭЛЕКТРОПРИВОДЕ

Создание в США на границе 60–70-х годов четырехразрядного однокристалльного микропроцессора INTEL 4004 и программируемого логического контроллера (ПЛК) PDP 14 ознаменовало новую эру в сфере управления электропривода. Уже в 70-е годы в мировой практике эти технические средства начали интенсивно вытеснять использовавшиеся ранее контактные и бесконтактные реле; к 80-м годам схему управления на восьми и более реле стало экономически целесообразно заменять ПЛК.

В сравнении с устройствами монтажной логики ПЛК обладает высокой гибкостью при отладке, он не зависит от объекта управления, снижает расходы на разработку, программирование, тестирование и запуск изделия, очень компактен, имеет высокую надежность, упрощает обслуживание системы привода. ПЛК может выполнять вычисления, обеспечивать регулирование, принятие решений, наблюдение за отработкой алгоритма управления.

В сравнении с мини-компьютером ПЛК существенно проще, он ориентирован на непосредственное общение с объектом управления. На рис. 6.51 показаны зоны рентабельного использования различных технических средств управления.

Рис. 6.50. Система подчиненного регулирования координат электропривода
Рис. 6.51. Области рентабельного использования различных технических средств управления 

По мере развития микропроцессорных средств управления и ПЛК изменялась информационная часть электропривода: резко, почти скачкообразно, наращивались функциональные возможности в управлении координатами, во взаимодействии нескольких систем между собой и с внешней средой, в детальной диагностике состояния и защите всех элементов привода от любых нежелательных воздействий.

6.6.11. СОВРЕМЕННЫЙ ЭЛЕКТРОПРИВОД

Концептуальные изменения в развитие электропривода внесла новая элементная база силового канала — полностью управляемые ключи, появившиеся на рынке в последние. 6–7 лет, и средства управления ими. Фирмы «Тошиба», «Сименс» и др. выпустили силовые транзисторы IGBT на токи до 600 А, напряжение до 1200 В с частотами 30 кГц и выше. Эти приборы, объединенные в модули с встроенными быстрыми обратными диодами и управляемые указанными выше современными средствами, послужили основой для построения преобразователей частоты со структурой неуправляемый выпрямитель — LC-фильтр — автономный инвертор с широтно-импульсной модуляцией (ШИМ) (рис. 6.52), ставших основным техническим решением в регулируемом электроприводе переменного тока мощностью до 600 кВт. Преобразователи более мощных приводов строятся на полностью управляемых тиристорах GTO; в бытовых и других электроприводах низкого напряжения используются приборы MOSFET.

По прогнозам до 2002 г. европейский рынок регулируемых электроприводов на 68% будет состоять из приводов переменного тока, на 15 — из приводов постоянного тока, на 10 — из гидропроводов и на 7% — из механических приводов.

Рис. 6.52. Система преобразователь частоты ПЧ — асинхронный двигатель АД 

Нетрадиционные электромеханические устройства (линейные, поворотные, планарные многокоординатные двигатели и т.п.) в сочетании с развитыми микропроцессорными средствами управления образуют электромеханические структуры, интегрированные в технологическое оборудование и создающие принципиально новый тип технологической среды.

Интенсивно осваиваются новые виды регулируемого электропривода — вентильно-индукторный, с другими нетрадиционными электрическими машинами. В микроприводе миниатюрных роботов применяются тонкопленочные диэлектрические двигатели.

В последние годы в мире отчетливо сформировалось и интенсивно реализуется тенденция перехода от нерегулируемого электропривода к регулируемому в массовых применениях: насосы, вентиляторы, конвейеры и т.п., благодаря чему резко повышается технологический уровень оборудования, экономятся значительные энергетические ресурсы.

Электропривод сформировался сегодня как система, осуществляющая управляемое электромеханическое преобразование энергии и состоящая в общем случае из электрического (ЭП), электромеханического (ЭМП) и механического (МП) преобразователей, образующих силовой канал, измерительных преобразователей (ИП), преобразующих информацию, и управляющих устройств, входящих в информационный канал (рис. 6.53).

Рис. 6.53. Структура современного электропривода 

Электропривод обеспечивает механической энергией подавляющее большинство агрегатов, связанных с движением во всех сферах человеческой деятельности, и может в силу этого рассматриваться как главный поставщик механической энергии, полученной из электрической в результате электромеханического преобразования. Будучи управляемой системой, электропривод взаимодействует через информационный канал с системами управления более высокого уровня и служит для них силовым интерфейсом с технологическими процессами.

Практически все процессы в современной технологии, связанные с механической энергией и движением, осуществляются электроприводом. Исключения составляют лишь автономные транспортные средства (автомобили, самолеты, некоторые виды подвижного состава и судов), использующие неэлектрические двигатели и не имеющие электрических передач.

Столь широкое, практически повсеместное, распространение электропривода обусловлено особенностями электрической энергии — возможностью экономично передавать ее на любые расстояния, постоянной готовностью к использованию, легкостью превращения в другие виды энергии.

В приборных системах сегодня используются электроприводы мощностью в единицы микроватт, мощность электропривода компрессора на перекачивающей газ станции — десятки мегаватт, т.е. диапазон мощности современных электроприводов превышает 10. Такой же порядок имеет диапазон частот вращения: в установках для выращивания кристаллов полупроводников вал двигателя должен делать один оборот за несколько часов при жестких требованиях к равномерности движения, тогда как частота вращения шлифовального круга может достигать 150 000 об/мин.

Но особенно широк диапазон применений современного электропривода — от искусственного сердца до шагающего экскаватора, от вентилятора или насоса до антенны радиотелескопа, от стиральной машины до гибкой производственной системы. Именно эта особенность — теснейшее взаимодействие с обслуживаемой технологической сферой — оказывала и оказывает на электропривод мощное стимулирующее влияние, определяет его развитие и совершенствование.

СПИСОК ЛИТЕРАТУРЫ

6.1. Blondel A. Complements a la theorie des alternaters a deux reactions // Rev. gen. dec, 1922. T. 12. P. 203,235.

6.2. Blondel A. Application de la methode de deux rections а l'etude des phenomenes oscillatories des alternateurs couples // Rev. gen. elec 1923. T. 13. P. 235, 275, 331, 387, 515.

6.3. Fortescue C. L. Method of Symmetrical Coordinates Applied to the Solution of Polyphase Networks // Trans. AIEE. 1918. Vol. 37. Pt. II. P. 1027–1140.

6.4. Вагнер К.Ф., Эванс Р.Д. Метод симметричных составляющих. Л — М.: ОНТИ, 1936.

6.5. Ku Y. H. Transient analysis of а. с. machinery // Trans. AIEE. 1929. Vol. 48. P. 707.

6.6. Чечет Ю.С. Электрические микромашины автоматических устройств. М.: Энергия, 1964.

6.7. Рюденберг Р. Явления неустановившегося режима в электрических установках. М.: ГОНТИ, 1931.

6.8. Ковач К. П., Рац И. Переходные процессы в машинах переменного тока. М.: Госэнергоиздат, 1963.

6.9. Park R.H. Two-reaction theory of synchronous machines // Trans. AIEE. 1929. Vol. 48. P. 716.

6.10. Горев А.А. Основные уравнения неустановившегося режима синхронной машины // Труды ЛПИ. 1936. №5.

6.11. Петров Г.Н. Трансформаторы. М.: ОНТИ, 1934.

6.12. Крон Г. Применение тензорного анализа в электротехнике. М.: Госэнергоиздат, 1955.

6.13. Казовский Е.Я. Переходные процессы в электрических машинах переменного тока. М.-Л.: Изд-во АН СССР, 1962.

6.14. Городский Д.А. Теория электрических процессов в синхронных машинах // Вестник электропромышленности. 1942. № 6.

6.15. Грузов Л.Н. Методы математического исследования электрических машин. М.-Л.: Госэнергоиздат, 1953.

6.16. Иосифьян А.Г. Вопросы электромеханики. М.: Энергия, 1975.

6.17. Копылов И.П. Электромеханические преобразователи энергии. М.: Энергия, 1973.

6.18. Уайт Д.С., Вудсон ГГ. Электромеханическое преобразование энергии. М.: Энергия, 1964.

6.19. Лютер Р.А. Теория переходных режимов синхронной машины с применением операторного анализа. Л., 1939.

6.20. Урусов И.Д. Линейная теория колебаний синхронной машины. М.-Л.: Изд-во АН СССР, 1960.

6.21. Щедрин Н.Н. Токи короткого замыкания высоковольтных систем. Л. — М.: ОНТИ, 1935.

6.22. Страхов СВ. Переходные процессы в электрических цепях, содержащих машины переменного тока. М.-Л.: Госэнергоиздат, 1960.

6.23. Янко-Триницкий А.А. Новый метод анализа работы синхронных двигателей при резкопеременных нагрузках. М.-Л.: Госэнергоиздат, 1958.

6.24. Важное А.И. Переходные процессы в машинах переменного тока. Л.: Энергия, 1980.

6.25. Трещев И.И. Электромеханические процессы в машинах переменного тока. Л.: Энергия, 1980.

6.26. Веников В.А. Электромеханические переходные процессы в электрических системах. М.-Л.: Госэнергоиздат, 1958.

6.27. Иванов-Смоленский А.В. Электромагнитные поля и процессы в электрических машинах и их физическое моделирование. М.: Энергия, 1969.

6.28. Мамиконянц Л.Г О переходных процессах в синхронных машинах с успокоительными контурами на роторе // Электричество. 1954. №7.

6.29. Глебов И.А., Шулаков Н.В., Крутяков Е.А. Проблемы пуска сверхмощных синхронных машин. Л.: Наука, 1988.

6.30. Копылов И.П. Электромагнитная Вселенная. М.: Изд-во МЭИ, 1995.

6.31. Трапезников В.А. Основы проектирования серий асинхронных машин. М.: ОНТИ, 1937.

6.32. Глебов И.А., Кашарский Э.Г, Рутберг Ф.Г. Синхронные генераторы кратковременного и ударного действия. Л.: Наука, 1985.

6.33. Сипайлов ГА., Хорьков К.А. Генераторы ударной мощности. М.: Энергия, 1979.

6.34. Сипайлов ГА., Лоос А.В., Чучалин А.И. Электромашинное генерирование импульсных мощностей в автономных режимах. М.: Энергоатомиздат, 1990.

6.35. Криогенные электрические машины / Под ред. Н.Н. Шереметьевского. М.: Энергоатомиздат, 1985.

6.36. Криогенная техника / Под ред. акад. АН УССР Б.И. Веркина. Киев.: Наукова думка, 1985.

6.37. Сверхпроводниковые электрические машины и магнитные системы / А.И. Бертинов, Б.Л. Алиевский, К.В. Илюшин, Л.К. Ковалев, B.C. Семенихин, М.: Изд.-во МАИ, 1993.

6.38. Глебов И.А., Данилевич Я.Б., Шахтарин В.Н. Турбогенераторы с использованием сверхпроводимости. Л.: Наука, 1981.

6.39. Чубраева Л.И. Генераторы нетрадиционного исполнения. Л.: Наука, 1991.

6.40. Данилевич Я.Б., Чубраева Л.И. Новые конструкции генераторов и проблемы их создания. Спб.: Наука, 1993.

6.41. Овчинников И.Е., Лебедев Н.И. Бесконтактные двигатели постоянного тока. Л.: Наука, 1979.

6.42. Аракелян А.К., Афанасьев А.А., Чиликин М.Г. Вентильный электропривод с синхронным двигателем и зависимым инвертором. М.: Энергия, 1977.

6.43. Балагуров В.А., Гридин В.М., Лозенко В.К. Бесконтактные двигатели постоянного тока с постоянными магнитами. М.: Энергия, 1975.

6.44. Овчинников И.Е. Теория вентильных электрических двигателей. Л.: Наука, 1985.

6.45. Вентильные двигатели и их применение на электроподвижном составе / Под ред. Б.Н. Тихменева. М.: Транспорт, 1976.

6.46. Глебов И.А. Системы возбуждения мощных синхронных машин. Л.: Наука, 1979.

6.47. Глебов И.А. Электромагнитные процессы систем возбуждения синхронных машин. Л.: Наука, 1987.

6.48. Глебов И.А. Научные основы проектирования систем возбуждения мощных синхронных машин. Л.: Наука, 1988.

6.49. Бабиков М.А. Электроаппаратостроение. М.: Госэнергоиздат, 1955.

6.50. Бабиков М.А. Современные электрические аппараты высокого напряжения. М.: Госэнергоиздат, 1950.

6.51. Теория конструкции выключателей / Под ред. Ч.Х. Флерштейна: Пер. с англ. Л.: Энергоатомиздат, 1982.

6.52. Основы теории электрических аппаратов / И.С. Таев, Б.Б. Буль, А.Г. Годжелло и др.; Под ред. И.С. Таева М: Высшая школа, 1982.

6.53. Нитгамер Ф. Электромоторы. Их работа и применение: Пер. с нем. М.: Гостехиздат, 1928.

6.54. Попов В.К. Основы электропривода. М.-Л.: Госэнергоиздат, 1945.

6.55. Шателен М.А. Русские электротехники. М.-Л.: Госэнергоиздат, 1950.

6.56. Чиликин М.Г., Сандлер А.С. Общий курс электропривода. М.: Энергоиздат, 1981.

6.57. Фокс Г. Практика электрического привода: Пер. с англ. / Под ред. В.Н. Попова. М — Л.: НТИ — КУБУЧ, 1934.

6.58. Голован А.Т. Электропривод (очерки по истории энергетической техники СССР). М.-Л.: Госэнергоиздат, 1955.

6.59. Вешеневский С.Н. Характеристики двигателей в электроприводе. 4-е изд. М.-Л.: Энергия, 1966.


Глава 7.
ЭЛЕКТРОТЕХНОЛОГИЯ

ВВЕДЕНИЕ

Начало развития электротехнологии принято отсчитывать от работ академика В.В. Петрова, который впервые исследовал электрическую дугу и указал на ее возможные области применения — для нагрева, плавки и восстановления из окислов металлов, а также для электролиза воды.

В XIX в. начались разработки электротехнологических установок различного назначения как чисто исследовательских, так и имеющих промышленное применение. Это работы таких ученых как М. Депре (Франция, 1849 г.) — печь сопротивления и дуговая печь, Пишон (Франция, 1853 г.) — дуговая печь косвенного действия для металлургии, В. Сименс (Англия, 1879 г.) — дуговые печи прямого и косвенного действия, О. Хэвисайд (Англия, 1884 г.), Н.Г. Славянов (Россия, 1888 г.) — дуговая электросварка, С.Томпсон (Англия, 1891 г.), Ивинг (Англия, 1892 г.), С. Ферранти (Италия, 1887 г.) — теория и практика индукционного нагрева и плавки.

Сильный импульс для развития электротехнологии дали многочисленные работы по получению алюминия, в ходе которых разрабатывались различные типы электротехнологических установок (ЭТУ): гарниссажная печь Ч.С. Брадли (США, 1883 г.), резистивные рудо-восстановительные печи прямого нагрева братьев А. и Е. Коулесс (США, 1884 г.), электролизные ванны П.Л.Т. Эру (Франция, 1886 г.) и Ч.М. Холл (США, 1886 г.). Однако эффективное развитие и применение ЭТУ стало возможным лишь с переходом от химических источников питания к источникам питания, основанным на законе электромагнитной индукции, т. е. с созданием мощных генераторов и увеличением производства электроэнергии (конец XIX — начало XX в.). С этого времени начали развиваться различные виды ЭТУ для осуществления разнообразных технологических процессов, в частности для получения и обработки качественных сталей, цветных и тугоплавких металлов, полупроводников, пластмасс и других материалов. На создание ЭТУ сильное влияние оказали развитие автомобилестроения, особенно в США, а позднее авиа- и ракетостроения, атомной промышленности и т.д.

Принято разделять электротехнологические процессы и соответствующие им ЭТУ на следующие классы:

электротермические процессы и установки (электрическая энергия преобразуется в теплоту, использующуюся в технологических процессах);

электросварочные процессы и оборудование (используется практически все тот же принцип нагрева, что и в электротермических установках);

электрофизические процессы и установки (использование различных физических эффектов для механической обработки, разделения и улавливания частиц и т. п.);

электрохимические процессы и установки (для получения различных веществ, размерной обработки, гальванотехники и электролиза);

Электротермические установки используют различные физические механизмы преобразования электрической энергии в тепловую. Соответственно выделяются следующие виды нагрева:

резистивный;

электродуговой;

индукционный (нагрев проводников в электромагнитном поле);

диэлектрический (нагрев диэлектриков в электромагнитном поле);

плазменный (нагрев потоком плазмы — ионизированного газа);

электронно-лучевой;

фотонный (нагрев с использованием лазера — лазерный).

Отметим, что если первые три вида нагрева известны с XIX в., а диэлектрический нагрев стали применять с 30-х годов XX в., то начало развития электронно-лучевого, плазменного и лазерного нагрева относится уже к 50–60-м годам XX в.

Историю развития электротехнологии целесообразно рассматривать в соответствии с приведенной классификацией.

По истории электротехнологии ранее опубликован ряд специальных работ, кроме того, в некоторых учебниках и монографиях по электротехнологии и электротермии имеются разделы, посвященные вопросам истории.

Авторы при написании данной главы использовали работы, целиком посвященные истории электротехнологии или имеющие соответствующие главы [7.1–7.23], а также оригинальные научные публикации и патенты.


7.1. ЭЛЕКТРОТЕРМИЯ

7.1.1. РЕЗИСТИВНЫЙ НАГРЕВ

Начальный период. Первые эксперименты по нагреву проводников электрическим током относятся к XVIII в. В 1749 г. Б. Франклин (США) при исследовании разряда лейденской банки обнаружил нагрев и расплавление металлических проволочек, а позднее по его указанию Дж. Пристли (1766 г.), почетный член Петербургской академии наук, изучал нагрев различных металлов и отметил различия в их проводимости.

Нагрев проводников исследовали Л. Тенар (Франция, 1801 г.), В. В. Петров (1802 г.) и X. Дэви (Англия, 1807 г.). Используя вольтов столб, Дж.Г. Чилдрен (Англия, 1815 г.) осуществил нагрев и расплавление различных металлов. Несколько ранее Пепи (Англия) поставил эксперименты по нагреву алмазной пыли в разрезе железной проволоки, которая раскалялась при протекании электрического тока докрасна. Через некоторое время алмазная пыль исчезала, а железо превращалось в сталь. Это устройство можно считать первой электропечью сопротивления косвенного действия. Р. Хар (Англия, 1839 г.) предложил вакуумную печь сопротивления с использованием воздушного насоса. Важный для расчета установок резистивного нагрева закон выделения энергии в проводнике при протекании тока открыли Дж.П. Джоуль (1841 г.) и Э.Х. Ленц (1844 г.).

В 1849 г. М. Депре изготовил лабораторную печь с угольным нагревателем в виде трубки длиной 23 мм. Г.Б. Симпсон получил американский патент (1859 г.) на нагревательное устройство с нагревателем в виде спирали, расположенным в углублениях изолирующей подложки.

Первые применения резистивного нагрева в медицине:

Штейнхель и Хейдер (Австрия, 1845 г.) использовали электрический нагрев для умерщвления зубного нерва;

Миддельдорпф (Германия, 1854 г.) применил электронагрев в хирургии.

Увеличение производства электроэнергии в конце XIX в. позволило создавать крупные электропечи сопротивления.

В 1886–1888 гг. братья Коулесс создали печь прямого нагрева для получения алюминия из глинозема (одновременно с расплавлением шел электролиз). Ток проходил между электродами через слой шихты (мощность 300 кВт, напряжение 60 В, ток до 6000 А). В те же годы П.Л.Т. Эру изготовил печь для получения алюминиевой бронзы с проводящим тиглем и электродом сверху. Сначала расплавлялась медь, затем загружался глинозем, и шел электролиз. Ток протекал от электрода к корпусу (угольная футеровка) через шихту. Одновременно Ч.М. Холл создал подобную печь. Эти печи существенно снизили стоимость получения алюминия.

В. Борхерс (Германия, 1891 г.) создал опытную печь для восстановления оксидов с угольным нагревателем.

Е.А. Ачесон (США, 1892 г.) получил патент на печь для нагрева смеси песка, кокса и других материалов. При нагреве эта смесь превращается в огнеупор — карборунд (карбид кремния). При мощности печи 746 кВт за 36 ч получено 3150 кг карборунда. Такая же конструкция печи использована этим же ученым для получения графита из угля.

B. Нернст (Германия, 1901 г.) разработал лабораторную печь в виде алундовой трубы с намотанным на нее проволочным нагревателем из иридиевой платины мощностью 2,5 кВт с температурой 1450 °С. Эта печь была изготовлена фирмой «Хереус» (Германия), которая затем стала выпускать широкую номенклатуру подобных печей с муфелем и нагревателями из платиновой фольги.

В 1904 г. Эгли (Германия) изобрел простой способ получения изделий любой формы из силита (карбида кремния) — материала для нагревателей.

B.C. Арсем (США, 1906 г.) создал вакуумную плавильную печь с температурой 2000 °С с графитовым нагревателем. Фирма «Дженерал электрик» стала изготавливать с 1912 г. такие печи мощностью 15–60 кВт.

C. Аббот (США, 1921 г.) получил патент на конструкцию и технологию производства теплоэлектронагревателей (ТЭНов) (фирма «Дженерал электрик», начало работ 1913 г.)

Простота и большое число возможных конструктивных вариантов реализации резистивного нагрева содействовали широкому применению резистивных установок.

Промышленные печи сопротивления. В 1901 г. В.П. Ижевский изготовил первую в мире плавильную электропечь сопротивления (рис. 7.1). В качестве нагревателя использована разогретая магнезитовая или динасовая футеровка. В конструкции применены технически интересные решения (стальной кожух в виде барабана, установленный на катках, вращение печи, подвод тока через коллектор), которые позднее использовались при создании печей. Опытная печь была установлена в Киевском политехническом институте, а промышленная печь емкостью 100 кг для плавки цветных металлов была пущена на заводе в г. Екатеринославе.

Рис. 7.1. Трехфазная вращающаяся печь сопротивления В.П. Ижевского для плавки цветных металлов 

До 1917 г. в России был создан целый ряд печей резистивного нагрева:

электрическая соляная ванна для закалки инструмента (Стабинский, 1907 г.);

корытообразная печь прямого нагрева для выплавки металлов из руд (А. Н. Лодыгин, 1908 г.);

крупная печь сопротивления для нагрева стальных снарядов перед закалкой (Королев, 1913–1914 гг.);

печи сопротивления с угольными стержневыми нагревателями для плавки стали (С.С. Штейнберг и А. Ф. Грамолин, 1915 г.). Эти печи (рис. 7.2) делались емкостью 100–1000 кг и успешно работали в годы первой мировой войны на ряде уральских заводов.

В США промышленные печи сопротивления были созданы фирмой «Дженерал электрик» в 1917 г. В этих печах были применены нихромовые нагреватели. Уже к 1920 г. на автозаводах США применялись печи сопротивления различных конструкций: камерные, шахтные, с выдвижным подом, колпаковые, карусельные, конвейерные и др. При этом использовались наработки, сделанные при создании пламенных печей.

Рис. 7.2. Печь С.С. Штейнберга и А.Ф. Грамолина с угольными нагревателями для плавки стали 

Развитие установок резистивного нагрева в Европе отстало от развития аналогичных установок в США на несколько лет. Например, в Германии в 1924 г. эксплуатировались лишь несколько печей для нагрева металлов. Однако к 1932 г. там работали уже несколько сотен печей для термообработки металлов.

В СССР производство электропечей сопротивления (ЭПС) было налажено в 1928–1930 гг. на заводе «Электрик» в Ленинграде (до этого печи закупались за границей). В 1931 г. там серийно выпускались камерные печи с нихромовыми нагревателями.

Московский электрозавод в 1933 г. изготовил плавильную ЭПС для алюминиевых сплавов. С 1934 г. печи сопротивления стали производиться на заводе «Меткой», позднее переименованном в Московский завод электротермического оборудования (МосЗЭТО). Завод «Электрик» освоил выпуск толкательных печей (1935г.), а завод «Уралэлектромашина» — ЭПС шахтные и с шагающим подом для термообработки тонких труб из спецсплавов (1937 г.). С 1950 г. МосЗЭТО серийно стал выпускать конвейерные печи.

Значительный вклад в разработку и внедрение ЭПС внесло ОКБ «Электропечь», позднее преобразованное во ВНИИ электротермического оборудования (ВНИИЭТО), директором которого стал А.П. Альтгаузен:

40–50-е годы — созданы вакуумные ЭПС для термообработки реакционно-активных металлов и сплавов с температурой 900–1200 °С;

1953 г. — на Первом государственном подшипниковом заводе (ГПЗ-1) в Москве введен в эксплуатацию автоматический цех АЦ-1 с ЭПС по производству подшипников;

1963 г. — на ГПЗ-1 введен цех АЦ-2, а через 2 года АЦ-3 с линиями ЭПС различных типов (конвейерных, роликовых и с пульсирующим подом);

50–60-е годы — созданы высоковакуумные печи с нагревателями из вольфрама, молибдена и тантала с температурой до 2500 °С;

1966–1968 гг. — осуществлены пуск рольганговой печи сопротивления длиной 100 м для отжига труб в г. Северске, ввод в эксплуатацию печи в г. Лыткарино Московской области для ситаллизации и отжига астродиска диаметром 6 м (использован в крупнейшем телескопе) и пуск печи для вакуумной (светлой) закалки;

1970 г. — пуск толкательного агрегата для газовой цементации в г. Заволжье;

1978 г. — пуск первой печи для вакуумной закалки наГПЗ-1.

Значительный вклад в разработку методов расчета электрических печей сопротивления в 50-х годах внесли А.Д. Свенчанский и другие сотрудники кафедры электротермических установок Московского энергетического института (МЭИ).

К концу 80-х годов электрические печи сопротивления как по численности, так и по суммарной мощности занимают первое место среди электротермических установок различных видов.

В нашей стране, например, выпускалось электропечей сопротивления только периодического действия более 100 типоразмеров и модификаций с единичными мощностями от десятков до сотен киловатт. В эксплуатации находились десятки тысяч таких печей суммарной мощностью несколько миллионов киловатт.

Основными направлениями развития ЭПС явились разработки печей с контролируемой атмосферой, вакуумных и прецизионных, а также систем микропроцессорного управления для них. В этой области в 80-х годах большую работу проводил ВНИИЭТО, которым с 1972 по 1987 г. руководил А.С. Бородачев.

Установки прямого нагрева {электроконтактные). В 1930 г. в СССР В.Н. Гевелинг предложил метод электроконтактной роликовой закалки, которая некоторое время даже конкурировала с индукционной поверхностной закалкой.

В 40–50-е годы широкое применение получил электроконтактный нагрев заготовок под ковку в кузнечном цехе на Горьковском автозаводе (Е.И. Натанзон, Г.М. Тельнов). Использовались установки различных типов, например установка К-13 для нагрева стальных заготовок диаметром 20–45 мм установленной мощностью 200 кВ?А, производительностью 160–180 заготовок в час, с удельным расходом электроэнергии 325–350 кВт?ч/т.

В конце 80-х годов подобные установки довольно широко использовались на машиностроительных заводах для нагрева под пластическую деформацию (раскатка концов труб, нагрев заклепок и др.)

Бытовые устройства резистивного нагрева. В 1881 г. на Международной электротехнической выставке в Париже были представлены бытовые электронагревательные приборы: камин и утюг. В конце прошлого века были сделаны изобретения системы электрообогрева помещений (О. Розе, Англия, 1882 г.), погружаемого водонагревателя — кипятильника (Юллиг, Германия, 1883 г.), электрозажигалки для сигар (Т. Эдисон, 1883 г.), а также плитки, чайника, самовара и т. д.

Во ВНИИЭТО в начале 70-х годов были созданы образцы различных бытовых электронагревательных приборов: электроконвекторы, водонагреватели, кофеварки, утюги и т. п. Началось проектирование специальных заводов и цехов по их производству, но до их реализации дело не дошло.

Инфракрасный нагрев. В 1903 г. был получен патент Германии на применение инфракрасного нагрева (Шраммбергер). В 1934 г. X. Жорже (Франция) создал электропечь с графитовыми нагревателями для инфракрасного нагрева кварцевого стекла и плавки металлов. Широкое применение получил инфракрасный нагрев для сушки лакокрасочных покрытий автомобилей на заводах Форда (США, 1932 г.). Инфракрасные излучатели (темные и светлые) применяют также для различных технологических процессов, например, для сушки.

Интересную установку с использованием светлых излучателей для термообработки сварных швов трубопроводов на электростанциях в 80-х годах создал и с успехом применяет ЦНИИ технологии машиностроения (ЦНИИТмаш).

Электродные водонагреватели. Первый водогрейный котел на напряжение 6 кВ был изготовлен в 1907 г.

В 60-е годы во ВНИИЭТО была разработана серия электродных котлов для сельского хозяйства мощностью 25–400 кВт с диапазоном регулирования мощности 10–100%. 

7.1.2. ЭЛЕКТРОДУГОВОЙ НАГРЕВ

Начальный период. В 1878–1880 гг. В. Сименс (Англия) выполнил ряд работ, которые легли в основу создания дуговых печей прямого и косвенного нагрева, в том числе однофазной дуговой печи емкостью 10 кг. Им было предложено использовать магнитное поле для отклонения дуги и регулирования режима перемещения электродов. А. Муассан (Франция, 1890 г.) изготовил дуговую печь для получения карбида кальция.

В конце XIX в. (1899 г.) были созданы первые промышленные дуговые печи. П.Л.Т. Эру построил промышленную печь прямого нагрева для плавки стали (рис. 7.3), а Э. Стассано (Италия) — шахтную электрическую домну для выплавки чугуна из руд, представляющую собой печь косвенного нагрева с вращением наклонной ванны (рис. 7.4).

Рис. 7.3. Дуговая электропечь для плавки стали П.Л.Т. Эру
Рис. 7.4. Дуговая электропечь для плавки чугуна из руд конструкции Э. Стассано
1 — шахта; 2 — электроды 

Дуговые сталеплавильные печи прямого нагрева. В 1900–1915 гг. были выполнены различные усовершенствования печей конструкции П.Л.Т. Эру и Э. Стассано: печь с тремя электродами, трехфазное питание, подовый электрод, съемный свод, неподвижная ванна, графитизированные электроды, свинчиваемые (наращиваемые) электроды и т.д., которые способствовали распространению дуговых сталеплавильных печей (ДСП) в металлургии.

Использование дуговых печей в России началось с 1910 г., когда на Обуховском заводе в г. Петербурге была установлена двухэлектродная сталеплавильная печь Эру мощностью 500 кВ?А для дуплекс-процесса (мартен — электропечь). Емкость печи 3,5 т при жидкой завалке и 2,5 т при твердой завалке, удельный расход электроэнергии (соответственно) 280 и 865 кВт?ч/т.

Важными этапами для электрометаллургии России и СССР явились:

1910 г. — пуск завода «Пороги» на р. Сатке с печами для получения ферросилиция и углеродистого феррохрома (две печи мощностью по 350 кВт) и производство карбида кальция в печи 250–300 кВт на заводе г. Алаверди.

1916 г. — разработка (С.И. Тельный и В.Г. Евреинов) печи для плавки стали с вращающейся дугой (рис. 7.5).

1917 г. — начало строительства электросталеплавильного завода «Электросталь» под г. Ногинском с установкой четырех печей П.Л.Т. Эру емкостью 1,5 т.

1925 г. — выпуск двух печей с вращающейся дугой емкостью по 0,25 т и мощностью 200 кВ?А для фасонного литья на заводе «Электросила» (позднее Харьковском электромашиностроительном заводе — Л.И. Аронов и А.П. Ионов).

1928 г. — на Московском электрозаводе сконструирована и изготовлена дуговая печь «ГЭТ» косвенного действия для плавки меди (четыре типоразмера печи мощностью 100–325 кВ?А и емкостью 100–1200 кг).

1931 г. — изготовление и пуск в эксплуатацию трехтонных ДСП; 1932 г. — изготовление десятитонной ДСП и первых ферросплавных печей мощностью 800 и 1600 кВ?А.

1928–1934 гг. — на Московском электрозаводе изготовлена 151 дуговая печь емкостью до 12 т (Л.И. Аронов, К.М. Филиппов и др.)

1940 г. — на заводе «Уралэлектромашина» изготовлена ДСП емкостью 30 т (пущена в г. Запорожье).

Рис. 7.5. Однофазная печь с вращающейся дугой конструкции С.И. Тельного и В.Г. Евреинова 

За годы войны дуговые печи на предприятиях устарели, и появилась необходимость создания новых печей.

В 1949–1952 гг. ОКБ треста «Электропечь» разработало серию дуговых сталеплавильных печей с выкатывающейся ванной типа ДСВ емкостью 5, 10, 18 и 30 т. Всего на МосЗЭТО было изготовлено 40 печей общей емкостью свыше 700 т. В 1951–1953 гг. на заводе «Днепроспецсталь» были пущены в эксплуатацию две печи емкостью по 18 и одна печь емкостью 30 т.

В 1955 г. была разработана печь с поворотным сводом емкостью 80 т. Две такие печи были изготовлены в 1958 г. Новосибирским ЗЭТО и установлены на Новолипецком металлургическом комбинате.

В 1971 г. на волгоградском металлургическом заводе «Красный Октябрь» были введены в эксплуатацию две печи ДСП-200, разработанные ВНИИЭТО. Емкость такой печи 200 т, мощность печного трансформатора (разработан и изготовлен на Московском электрозаводе) 45 MB?А.

Для увеличения производительности ДСП стали использовать трансформаторы более высокой мощности, в частности для печи емкостью 200 т — 90 и 125 MB?А.

Шведская фирма ASEA в 1947 г. разработала для крупных ДСП устройство электромагнитного перемешивания расплавленного металла. В 60-х годах в США стали применять печи емкостью 400–800 т с трансформаторами мощностью до 200 MB?А. В конце 70-х годов фирма «Маннесман» (ФРГ) стала применять систему донной разливки стали и охлаждаемые стены и свод. Все эти разработки были направлены на увеличение производительности печей.

В 80-е годы наиболее перспективными направлениями развития ДСП в нашей стране и за рубежом явились дуговые печи с питанием на постоянном токе, что существенно снизило потери в короткой сети, и печи с водоохлаждаемой футеровкой и сводом для работы в дуплекс-процессе, т. е. практически только для расплавления шихты. Во ВНИИЭТО (А.Н. Попов, Л.С. Кацевич и др.) был проведен ряд исследований и конструкторских разработок в этих направлениях.

Разработанная во ВНИИЭТО ДСП постоянного тока емкостью 12 т была введена в эксплуатацию в 1981 г. В 1984 г. на Оскольском электрометаллургическом комбинате установлены две ДСП емкостью по 150 т с трансформатором 90 MB?А. В футеровке стен печи использованы водоохлаждаемые панели.

Дуговые печи косвенного нагрева. Дуговая барабанная качающаяся печь с двумя горизонтальными электродами разработана в Корневильском университете в 1915 г. (Х.В. Жиллетт) и изготовлена в 1917 г. В 1918 г. фирма по производству электропечей в г. Детройте (США) начала серийное производство этих однофазных печей для переплава медных сплавов. Попытки изменить конструкцию (ввести вращение ванны или три электрода с трехфазным питанием) оказались неудачными. В СССР печи такого типа изготавливались на Московском электрозаводе с 1929 г. В настоящее время дуговые печи косвенного нагрева не выдерживают конкуренции со стороны индукционных плавильных печей.

Рис. 7.6. Открытая трехфазная печь для получения карбида кальция конструкции А. Хельфенштейна 

Рудовосстановительные (руднотермические) печи. В начале XX в. были созданы двухэлектродные печи постоянного или переменного тока для производства карбида кальция мощностью до 4000 кВ?А. Эти печи использовались также для производства ферросплавов. А. Хельфенштейн (Австрия) ввел в эксплуатацию трехфазные печи мощностью до 12 MB?А (рис. 7.6) с проводящим угольным подом, присоединенным к нейтральному проводу. В 1907 г. в Норвегии была пущена печь мощностью 24 MB?А, представляющая собой практически сдвоенную печь (две трехфазные системы в одном кожухе). Для улучшения условий труда уже в 1910 г. была создана конструкция полузакрытой печи с отсосом газов.

С 1895 г. разрабатываются конструкции электропечей для получения чугуна из железной руды. В 1908 г. в Швеции была построена дуговая печь (электрическая домна) мощностью 700 кВт с питанием от сети 25 Гц. В дальнейшем в Швеции и Норвегии были пущены несколько подобных усовершенствованных печей: двухфазная с четырьмя электродами мощностью 1850 кВт с использованием древесного угля, трехфазная с шестью электродами, а в 1913 г. трехфазная конструкции А. Хельфенштейна мощностью 7360 кВт с использованием кокса. В 1925 г. в Норвегии (фирма «Электрохемикс») была введена в эксплуатацию первая закрытая низкошахтная прямоугольная печь мощностью 6 MB?А.

В СССР первые ферросплавные печи (открытые) мощностью 800 и 1600 кВ?А изготовлены Московским электрозаводом в 1932 г. В 1934 г. в г. Запорожье пущены печи фирмы «Мигэ» (Франция) мощностью 10 MB?А для получения алюмината бария и ферросилиция. Закрытые печи стали создаваться с середины 30-х годов.

По разработкам ВНИИЭТО в СССР построены и пущены различные руднотермические печи.

В 1958 г. пущена первая закрытая ферросплавная печь мощностью 10,5 MB?А на Кузнецком ферросплавном заводе. В 1978 г. созданы и внедрены на Никопольском ферросплавном заводе печи мощностью 63 MB?А для получения марганца и силикомарганца. В 80-е годы созданы и внедрены руднотермические печи мощностью 80 MB?А для возгонки желтого фосфора, 63 MB?А для получения ферросилиция и марганцевых сплавов, 40 MB?А для производства силикохрома. Печи для возгонки желтого фосфора, выпускавшиеся в СССР в 70–80-е годы, питались от трех однофазных трансформаторов с подключением к сети 110 кВ и по ряду показателей превосходили фосфорные печи США и ФРГ.

В начале 80-х годов фирма «Элкем» (Норвегия) ввела в эксплуатацию закрытую печь для производства феррохрома мощностью 105 MB?А.

Вакуумные дуговые печи. Вакуумно-дуговая плавка предложена в 1905 г. В. фон Больманом (Германия). В. Кролл (США) в 1940 г. осуществил вакуумно-дуговую плавку титана. Имеются два варианта вакуумно-дуговых печей (ВДП): с расходуемым (переплавляемым) и нерасходуемым (водоохлаждаемым) электродом. Второй вариант применяется реже, например для плавки слитков из губки или порошка (патент Англии, 1957 г.). Количество ВДП быстро увеличивалось, например, &США за три года (1957–1959) оно почти удвоилось. При этом жаропрочные и шарикоподшипниковые стали плавили в ВДП, получая слитки диаметром до 600 мм и массой до 6 т. Промышленные ВДП для титана созданы в 1948–1950 гг. Вакуумная плавка тугоплавких металлов (молибден, ниобий, вольфрам) позволила получать слитки массой до 1 т (конец 50-х годов).

В СССР работы по ВДП начались с середины 50-х годов в ряде организаций: Институт металлургии им. А.А. Байкова АН СССР (Имет), ЦНИИ черных металлов (ЦНИИчермет), МЭИ. Изготавливались и разрабатывались первые ВДП на Московском заводе электровакуумных печей (М.Я. Смелянский). В 1970 г. осуществлен пуск ВДП, разработанной во ВНИИЭТО, для производства слитков массой 60 т в г. Ижоры. В 80-е годы ВНИИЭТО разработал новую серию вакуумно-дуговых печей для плавки стали и тугоплавких металлов, в которых использовались электроды большего диаметра, кристаллизаторы различной формы сечения, подача инертного газа и другие конструктивные новшества.

Установки электрошлакового переплава. Первые в мире электрошлаковые печи (ЭШП) были разработаны и изготовлены Институтом электросварки АН УССР им. Е.О. Патона (ИЭС) и в 1958 г. введены в эксплуатацию на заводе «Днепроспецсталь» и Новокраматорском машиностроительном заводе. В ряде стран (Франция, Япония, Швеция и др.) установки ЭШП сделаны и эксплуатируются по лицензиям СССР.

В 60–70-е годы ВНИИЭТО совместно с ИЭС создал ряд промышленных установок ЭШП: для производства слитков массой 10 т в г. Краматорске (1962 г.), 60 т в г. Ижоры (1968 г.), для получения полых и прямоугольных слитков массой 16 т (1975 г.), круглых слитков массой 200 т и диаметром до 2, 4 м, предназначенных для изготовления роторов турбин (1978 г.). В 1977 г. была создана печь для электрошлакового литья емкостью 5 т.

В 80-е годы получили распространение ЭШП для кокильного и центробежного литья, разработанные ИЭС.

7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ

Начальный период. Индукционный нагрев проводников основан на физическом явлении электромагнитной индукции, открытом М. Фарадеем в 1831 г. Теорию индукционного нагрева начали разрабатывать О. Хэвисайд (Англия, 1884 г.), С. Ферранти, С. Томпсон, Ивинг. Их работы явились основой для создания техники индукционного нагрева. Так как при индукционном нагреве теплота выделяется в проводящем теле — слое, равном глубине проникновения электромагнитного поля, то появляются возможности точного управления температурой для обеспечения качественного нагрева при высокой производительности. Другим преимуществом является бесконтактность нагрева.

Индукционные канальные печи с открытым каналом. Одна из первых известных конструкций индукционной канальной печи (ИКП) была предложена С. Ферранти (Италия) в 1887 г. Печь имела керамический канал, а плоские катушки индуктора были размещены над и под этим каналом. В 1890г. Е.А. Колби (США) предложил конструкцию печи, у которой индуктор охватывает круговой канал снаружи.

Первую промышленную печь со стальным сердечником и индуктором, размещенным внутри канала (рис. 7.7), создал в 1900 г. Кьеллин (Швеция). Мощность печи 170 кВт, емкость до 1800 кг, частота 15 Гц. Питание от специального генератора пониженной частоты, что необходимо из-за низкого значения коэффициента мощности. К 1907 г. в эксплуатации находились 14 подобных печей.

Рис. 7.7. Эскиз индукционной печи с открытым каналом, созданной Кьеллииым1 — канал; 2 — индуктор; 3 — магнитопровод

В 1905 г. Рёхелинг-Роденхаузер (Германия) сконструировал многофазные канальные печи (с двумя и тремя индукторами), в которых каналы соединены с ванной, питание от сети 50 Гц. В последующих конструкциях печей использовались также закрытые каналы для плавки цветных металлов. В 1918 г. В. Рон (Германия) построил вакуумную ИКП по типу печи Кьеллина (давление 2–5 мм рт.ст.), что позволило получить металл с лучшими механическими свойствами.

В связи с рядом преимуществ печей с закрытым каналом развитие печей с открытым каналом приостановилось. Однако были продолжены попытки использования таких печей для плавки стали.

В 30-х годах в США для переплава скрапа нержавеющей стали использовалась однофазная ИКП емкостью 6 т с открытым каналом и питанием от генератора мощностью 800 кВт и частотой 8,57 Гц. Печь работала в дуплекс-процессе с дуговой печью. В 40–50-е годы в Италии применялись ИКП с открытым каналом для плавки стали емкостью 4–12 т, изготовленные фирмой «Таглиаферри». В дальнейшем от использования таких печей отказались, так как они уступали по своим характеристикам дуговым и индукционным тигельным сталеплавильным печам.

Индукционные канальные печи с закрытым каналом. С 1916 г. стали разрабатываться вначале опытные, а затем промышленные ИКП с закрытым каналом. Серия ИКП с закрытым каналом разработана фирмой «Аякс — Уатт» (США). Это шахтные однофазные печи с вертикальным каналом для плавки медноцинковых сплавов мощностью 75 и 170 кВ?А и емкостью 300 и 600 кг. Они явились основой для разработок ряда фирм.

В те же годы во Франции были изготовлены шахтные печи с горизонтальной трехфазной индукционной единицей (мощностью 150, 225 и 320 кВт). В Англии фирма «Дженерал электрик лимитед» предложила модификацию печи с двумя каналами на индуктор, при их несимметричном расположении, что вызывает циркуляцию расплава и снижение перегрева.

Печи Э. Русса (Германия) выпускались с двумя и тремя каналами на индуктор (вертикальное и горизонтальное исполнение). Э. Руссом также была предложена конструкция сдвоенной индукционной единицы (ИЕ), подключаемой к двум фазам.

В СССР в 30-е годы ИКП по типу печей фирмы «Аякс — Уатт» стали выпускаться на Московском электрозаводе. В 50-е годы ОКБ «Электропечь» разработало печи для плавки меди и ее сплавов емкостью 0, 4–6,0 т, а затем и 16 т. В 1955 г. на заводе в г. Белая Калитва пущена ИКП для плавки алюминия емкостью 6 т.

В 50-е годы в США и Западной Европе ИКП стали широко применяться в качестве миксеров при плавке чугуна в дуплекс-процессе с вагранкой или дуговой электропечью. Для увеличения мощности и снижения перегрева металла в канале разрабатывались конструкции ИЕ с однонаправленным движением расплава (Норвегия). Тогда же были разработаны отъемные ИЕ. В 70-е годы фирма «Аякс магнетермик» разработала сдвоенные ИЕ, мощность которых в настоящее время достигает 2000 кВт. Подобные разработки в те же годы выполнены и во ВНИИЭТО. В разработках ИКП различных типов активно участвовали Н.В. Веселовский, Э.П. Леонова, М.Я. Столов и др.

В 80-е годы развитие ИКП в нашей стране и за рубежом было направлено на увеличение областей применения и расширение технологических возможностей, например применение ИКП для получения труб из цветных металлов методом вытягивания из расплава.

Индукционные тигельные печи. Так как индукционные тигельные печи (ИТП) малой емкости могут эффективно работать только на частотах выше 50 Гц, то их создание сдерживалось из-за отсутствия соответствующих источников питания — преобразователей частоты. Тем не менее в 1905–1906 гг. ряд фирм и изобретателей предложили и запатентовали ИТП, к ним относятся фирма «Шнейдер — Крезо» (Франция), О. Цандер (Швеция), Герден (Англия). В это же время конструкцию ИТП разработал А.Н. Лодыгин (Россия).

Первую промышленную ИТП с искровым высокочастотным генератором разработал в 1916 г. Э.Ф. Нортруп (США). С 1920 г. эти печи стала выпускать фирма «Аякс электротермию). В это же время ИТП с питанием от вращающегося искрового разрядника разрабатывает Ж. Рибо (Франция). Фирма «Метрополитен — Виккерс» создала ИТП высокой и промышленной частоты. Вместо искровых генераторов использовались машинные преобразователи с частотой до 3000 Гц и мощностью 150 кВ?А.

В.П. Вологдин в 1930–1932 гг. создал промышленные ИТП емкостью 10 и 200 кг с питанием от машинного преобразователя частоты. В 1937 г. он же построил ИТП с питанием от лампового генератора. В 1936 г. А.В. Донской разработал универсальную индукционную печь с ламповым генератором мощностью 60 кВ?А.

В 1938 г. для питания ИТП (мощность 300 кВт, частота 1000 Гц) фирма «Броун — Бовери» использовала инвертор на многоанодном ртутном вентиле. С 60-х годов стали использоваться тиристорные инверторы для питания индукционных установок. С увеличением емкости ИТП стало возможным эффективное применение питания током промышленной частоты.

В 40–60-х годах ОКБ «Электропечь» разработало несколько типов ИТП: повышенной частоты для плавки алюминия емкостью 6 т (1959 г.), чугуна емкостью 1 т (1966 г.). В 1980 г. на заводе в г. Баку изготовлена печь емкостью 60 т для плавки чугуна (разработка ВНИИЭТО по лицензии фирмы «Броун — Бовери»). Большой вклад в разработку ИТП во ВНИИЭТО внесли Э.П. Леонова, В.И. Кризенталь, А.А. Простяков и др.

В 1973 г. фирма «Аякс магнетермик» совместно с исследовательской лабораторией фирмы «Дженерал моторе» разработала и ввела в эксплуатацию горизонтальную тигельную печь непрерывного действия для плавки чугуна емкостью 12 т и мощностью 11 МВт.

Начиная с 50-х годов стали развиваться специальные виды индукционной плавки металлов:

вакуумная в керамическом тигле;

вакуумная в гарнисаже;

вакуумная в холодном тигле;

в электромагнитном тигле;

во взвешенном состоянии;

с использованием комбинированного нагрева.

Вакуумные индукционные печи (ВИП) до 1940 г. применялись только в лабораторных условиях. В 50-х годах некоторые фирмы, в частности «Хереус», стали разрабатывать промышленные ВИП, единичная емкость которых стала быстро возрастать: 1958 г. — 1–3 т, 1961–5 т, 1964–15–27 т, 1970–60 т. В 1947 г. МосЗЭТО изготовил первую вакуумную печь емкостью 50 кг, а с 1949 г. начал серийное производство ВИП емкостью 100 кг. В середине 80-х годов производственное объединение «Сибэлектротерм» по разработкам ВНИИЭТО изготавливало модернизированные ВИП емкостью 160, 600 и 2500 кг для плавки специальных сталей.

Индукционная плавка химически активных сплавов в гарнисажных печах и печах с медным водоохлаждаемым (холодным) тиглем стала применяться в 50-х годах. Печь с порошкообразным гарнисажем была разработана Н.П. Глухановым, Р.П. Жежериным и др. в 1954 г., а печь с монолитным гарнисажем — М.Г. Коганом в 1967 г. Идея индукционной плавки в холодном тигле предложена еще в 1926 г. в Германии фирмой «Сименс — Гальске», но применения не нашла. В 1958 г. В ИМЕТ совместно с ВНИИ токов высокой частоты им. В.П. Вологдина (ВНИ-ИТВЧ) под руководством А.А. Фогеля проведены опыты по индукционной плавке титана в холодном тигле.

Стремление снизить загрязнение металла и тепловые потери в холодном тигле привели к использованию электромагнитных сил для отжатия металла от стенок, т.е. к созданию «электромагнитного тигля» (Л.Л. Тир, ВНИИЭТО, 1962 г.)

Плавка металлов во взвешенном состоянии для получения особо чистых металлов была предложена в Германии (О. Мук) еще в 1923 г., но не получила распространения из-за отсутствия источников питания. В 50-е годы этот метод начал развиваться во многих странах. В СССР много работали в этом направлении сотрудники ВНИИТВЧ под руководством А.А. Фогеля.

Плавильные ИКП и ИТП комбинированного нагрева стали применяться с 50-х годов вначале с использованием мазутных и газовых горелок, например ИКП для переплава алюминиевой стружки (Италия) и ИТП для чугуна (Япония). Позднее получили распространение плазменно-индукционные тигельные печи, например разработанная ВНИИЭТО в 1985 г. серия опытно-промышленных печей емкостью 0,16–1,0 т.

Установки индукционной поверхностной закалки. Первые опыты по индукционной поверхностной закалке проведены в 1925 г. В.П. Вологдиным по инициативе инженера Путиловского завода Н.М. Беляева, которые были признаны неудачными, так как в то время стремились к сквозной закалке. В 30-х годах В.П. Вологдин и Б.Я. Романов возобновили эти работы и в 1935 г. получили патенты на закалку с использованием токов высокой частоты. В 1936 г. В.П. Вологдин и А.А. Фогель получили патент на индуктор для закалки шестерен. В.П. Вологдин и его сотрудники разрабатывали все элементы закалочной установки: вращающийся преобразователь частоты, индукторы и трансформаторы (рис. 7.8).

Рис. 7.8. Закалочная установка для последовательной закалки
1 — закаливаемое изделие; 2 — индуктор; 3 — закалочный трансформатор; 4 — преобразователь частоты; 5 — конденсатор 

С 1936 г. Г.И. Бабат и М.Г. Лозинский на заводе «Светлана» (Ленинград) исследовали процесс индукционной закалки с использованием высоких частот при питании от лампового генератора. С 1932 г. закалка током средней частоты стала внедряться фирмой ТОККО (США).

В Германии в 1939 г. Г.В. Зойлен осуществил поверхностную закалку коленчатых валов на заводах фирмы АЕГ. В 1943 г. К. Кегель предложил специальную форму индуктирующего провода для закалки зубчатого колеса.

Широкое применение поверхностной закалки началось с конца 40-х годов. За 25 лет с 1947 г. ВНИИТВЧ разработал свыше 300 закалочных устройств, в том числе введены в эксплуатацию автоматическая линия для закалки коленчатых валов и установка для закалки железнодорожных рельсов по всей длине (1965 г.). В 1961 г. пущена первая установка для закалки шестерен из стали пониженной прокаливаемости на автозаводе им. Лихачева (ЗИЛ) (технология разработана К.З. Шепеляковским).

Одним из направлений развития индукционной термообработки в последние годы стали технологии закалки и отпуска труб нефтяного сортамента и газопроводных труб большого диаметра (820–1220 мм), строительных арматурных стержней, а также упрочнения железнодорожных рельсов.

Установки сквозного нагрева. Применение индукционного нагрева металлов для различных целей, кроме плавки, на первом этапе носило поисковый характер. В 1918 г. М.А. Бонч-Бруевич, а затем и В.П. Вологдин применили для нагрева анодов электронных ламп при их вакуумировании (дегазации) токи высокой частоты. В конце 30-х годов в лаборатории завода «Светлана» проводились опыты по использованию индукционного нагрева до температуры 800–900°С при обработке стального вала диаметром 170 и длиной 800 мм на токарном станке. Использовался ламповый генератор мощностью 300 кВт и частотой 100–200 кГц.

С 1946 г. в СССР начались работы по использованию индукционного нагрева при обработке давлением. В 1949 г. введен в эксплуатацию первый кузнечный нагреватель на ЗИЛе (ЗИСе). Эксплуатация первой индукционной кузницы начата на Московском заводе малолитражных автомобилей (МЗМА, позднее АЗЛК) в 1952 г. Интересная двухчастотная установка (60 и 540 Гц) для нагрева стальных заготовок (сечение — квадрат 160x160 мм) под обработку давлением была запущена в Канаде в 1956 г. Подобная же установка разработана в ВНИИТВЧ (1959 г.). Промышленная частота используется при этом для нагрева до точки Кюри.

Для прокатного производства в 1963 г. ВНИИТВЧ изготовил нагреватель слябов (габариты 2,5x0,38x1,2 м) мощностью 2000 кВт на частоту 50 Гц.

В 1969 г. на металлургическом заводе фирмы «Маклаут стил корп.» (США) применен индукционный нагрев стальных слябов массой около 30 т (габариты 7,9x0,3x1,5 м) с использованием шести технологических линий (18 индукторов промышленной частоты общей мощностью 210 МВт).

Индукторы имели специальную форму, обеспечивающую равномерность нагрева сляба. Работы по применению индукционного нагрева в металлургии велись также и во ВНИИЭТО (П.М. Чайкин, С.А. Яицков, А.Э. Эрман).

В конце 80-х годов в СССР индукционный нагрев использовался приблизительно в 60 кузнечных цехах (прежде всего на заводах автотракторной и оборонной промышленности) с общей мощностью индукционных нагревателей до 1 млн. кВт.

Низкотемпературный нагрев на промышленной частоте. В 1927–1930 гг. на одном из уральских оборонных заводов начались работы по индукционному нагреву на промышленной частоте (Н.М. Родигин). В 1939 г. там с успехом работали достаточно мощные индукционные нагревательные установки для термообработки изделий из легированной стали.

В ЦНИИТмаше (В.В. Александров) также проводились работы по применению промышленной частоты для термообработки, нагрева под посадку и т.д. Ряд работ по низкотемпературному нагреву выполнен под руководством А.В. Донского. В НИИжелезобетона (НИИЖБ), Фрунзенском политехническом институте и других организациях в 60–70-х годах проводились работы по термообработке железобетонных изделий с использованием индукционного нагрева на частоте 50 Гц. ВНИИЭТО также разработал ряд промышленных установок низкотемпературного нагрева для подобных целей. Разработки МЭИ (А.Б. Кувалдин) в области индукционного нагрева ферромагнитной стали были использованы в установках для подогрева деталей под наплавку, термообработки стали и железобетона, обогрева химических реакторов, пресс-форм и др. (70–80-е годы).

Высокочастотная зонная плавка полупроводников. Метод зонной плавки был предложен в 1952 г. (В.Г. Пфанн, США). Работы по высокочастотной бестигельной зонной плавке в нашей стране начались в 1956 г., и во ВНИИТВЧ был получен монокристалл кремния диаметром 18 мм. Созданы различные модификации установок типа «Кристалл» с индуктором внутри вакуумной камеры (Ю.Э. Недзвецкий). В 50-е годы изготовление установок для вертикальной бестигельной зонной плавки кремния с индуктором снаружи вакуумной камеры (кварцевой трубы) осуществлялось на заводе «Платиноприбор» (Москва) совместно с Государственным институтом редких металлов (Гиредмет). Начало серийного производства установок «Кристалл» для выращивания монокристаллов кремния относится к 1962 г. (на Таганрогском ЗЭТО). Диаметр получаемых монокристаллов достиг 45 мм (1971 г.), а позднее и свыше 100 мм (1985 г.)

Высокочастотная плавка оксидов. В начале 60-х годов Ф.К. Монфорт (США) провел плавку оксидов в индукционной печи (выращивание монокристаллов ферритов при использовании токов высокой частоты — радиочастот). Тогда же А.Т Чэпмен и Г.В. Кларк (США) предложили технологию переплавления поликристаллического оксидного блока в холодном тигле. В 1965 г. Ж. Рибо (Франция) получил расплавы оксидов урана, тория и циркония при использовании радиочастот. Плавка этих оксидов происходит при высоких температурах (1700–3250 °С), и поэтому требуется большая мощность источника питания.

В СССР технология высокочастотной плавки оксидов разработана в Физическом институте АН СССР (A.M. Прохоров, В.В. Осико). Оборудование разрабатывали ВНИИТВЧ и Ленинградский электротехнический институт (ЛЭТИ) (Ю.Б. Петров, А.С. Васильев, В.И. Добровольская). Созданные ими установки «Кристалл» в 1990 г. имели общую мощность свыше 10 000 кВт, на них производились сотни тонн оксидов высокой степени чистоты в год.

Высокочастотный нагрев плазмы. Явление высокочастотного разряда в газе известно с 80-х годов XIX в. В 1926–1927 гг. Дж.Дж. Томсон (Англия) показал, что безэлектродный разряд в газе создается индуцированными токами, а Дж. Таунсенд (Англия, 1928 г.) объяснял разряд в газе действием электрического поля. Все эти исследования проводились при пониженных давлениях.

В 1940–1941 гг. Г.И. Бабат на заводе «Светлана» при дегазации электронных ламп с использованием высокочастотного нагрева наблюдал плазменный разряд, а затем впервые получил разряд при атмосферном давлении.

В 50-е годы в разных странах проводились работы по высокочастотной плазме (Т.Б. Рид, Ж. Рибо, Г. Баркхофф и др.). В СССР они велись с конца 50-х годов в Ленинградском политехническом институте (А.В. Донской, С.В. Дресвин), МЭИ (М.Я. Смелянский, С.В. Кононов), ВНИТВЧ (И.П. Дашкевич) и др. Исследовались разряды в различных газах, конструкции плазмотронов и технологии с их использованием. Были созданы высокочастотные плазмотроны с кварцевой и с металлической (для мощностей до 100 кВт) водоохлаждаемой (создана в 1963 г.) камерами.

В 80-х годах высокочастотные плазмотроны мощностью до 1000 кВт на частоты 60 кГц — 60 МГц применялись для получения особо чистого кварцевого стекла, пигментного диоксида титана, новых материалов (например, нитридов и карбидов), особо чистых ультрадисперсных порошков и разложения отравляющих веществ.

7.1.4. ДИЭЛЕКТРИЧЕСКИЙ НАГРЕВ

Начальный период. Впервые эффект нагрева диэлектрика в переменном электромагнитном поле зафиксировали в 1864 г. Э.В. Сименс (Германия) и в 1886 г. И.И. Боргман (Россия) — исследовался нагрев стеклянной стенки конденсатора (лейденской банки) при заряде и разряде.

Диэлектрический нагрев первоначально нашел применение в медицине. В 1891 г. Ж.А. д'Арсонваль (Франция) обнаружил термическое воздействие переменного электромагнитного поля на человека. Р. фон Зейнек (Германия) в 1899 г. открыл возможность использования электромагнитных полей частотой свыше 200 кГц для нагрева тканей тела и лечения. С 1906 г. использование диатермии стало быстро распространяться, и до настоящего времени диэлектрический нагрев широко используется для физиотерапии.

В 1925 г. А. Эсау (Франция) заметил, что передатчик большой мощности метрового диапазона, т.е. сверхвысокочастотные (СВЧ) волны, вызывал ощущение нагрева у персонала и предложил использовать СВЧ-волны для терапии. Совместно с Е. Шлипхаке он провел испытания на животных и людях.

В 1930 г. И. Петцольд (Германия) исследовал влияние частоты на глубину прогрева.

Диэлектрический нагрев нашел широкое применение, несмотря на сложность и высокую стоимость оборудования, так как позволяет нагревать непроводящие однородные материалы с высокой скоростью и равномерностью, а неоднородные материалы — избирательно, например, при сушке или склеивании.

Диэлектрический нагрев токами высокой частоты. В 1930–1934 гг. началась разработка технологии сушки древесины токами высокой частоты (Н.С. Селюгин, Ленинградский филиал ЦНИИ механической обработки древесины). В это же время А.И. Иоффе получил авторское свидетельство на высокочастотную сушку (ВЧ-сушку) древесины. Одно из первых применений — сушка березовых и буковых заготовок на обувной фабрике «Скороход» (г. Ленинград). Позднее диэлектрический нагрев стал применяться и в других странах (Франция, США, Германия).

В 1933 г. Центральная научно-исследовательская лаборатория электромагнитных волн, которая исследовала сушку и стерилизацию фруктов (внедрение в гг. Тирасполе и Краснодаре, 1938–1940 гг.). В 1937 г. П.П. Тарутин (ВНИИзерна) изучал ВЧ-сушку и уничтожение вредителей зерна с применением токов высокой частоты.

В США в 40-е годы развиваются высокочастотный нагрев пластмасс, склеивание древесины и фанеры. Во Франции А. Эсау разрабатывает ВЧ-сушку текстиля и продуктов питания, склеивание древесины и нагрев пластмасс перед прессованием, М. Дескарсин (1946 г.) — нагрев керамики, Ледюк и Дюфур — вулканизацию каучука.

В СССР в 40-е годы продолжались работы по диэлектрическому нагреву. С 1941 г. началось промышленное применение ВЧ-сушки древесины. В ВЭИ исследуют получение с применением диэлектрического нагрева пресс-порошков (Н.В. Александров и В.М. Дегтев) и электроизоляционных материалов (Л.С. Левин). А в НИИ шинной промышленности (Х.Э. Малкина и А.П. Пухов) — вулканизацию массивных шин.

На развитие техники диэлектрического нагрева большое влияние оказали работы А.В. Нетушила, особенно выпущенная под его редакцией монография «Высокочастотный нагрев диэлектриков и полупроводников» (1959 г.).

Большой вклад в промышленное применение диэлектрического нагрева внес ВНИИТВЧ (А.А. Фрумкин, А.В. Дмитриев, Т.А. Шелина):

серийное производство установок для нагрева таблеток пресспорошков (1949 г.);

внедрение высокочастотной сушки пряжи на фабрике им. А.И. Желябова (г. Ленинград); 1953 г.;

начало серийного производства на Ленинградском заводе высокочастотных установок (ЛЗВУ) установок для сварки термопластов (1956 г.);

серийное производство установок для склеивания древесины (1962 г.);

начало опытной эксплуатации конвейерной установки для высокочастотной сушки литейных стержней на Минском тракторном заводе (1969 г.);

серийное производство конвейерных высокочастотных установок (1971 г.);

введение линии для получения пенополистирольной теплоизоляции для холодильников в г. Ереване (1972 г.).

На начало 1966 г. в СССР было изготовлено свыше 12 тыс. высокочастотных установок для диэлектрического нагрева общей колебательной мощностью около 30 МВт. Единичные мощности установок диэлектрического нагрева непрерывно возрастали от единиц до сотен киловатт.

В 80-е годы ВНИИТВЧ разработал высокочастотные установки диэлектрического нагрева периодического действия для сушки различных материалов с питанием от лампового генератора мощностью 60 кВт и частотой 13,56 МГц с использованием для перемещения материала вращающегося кольцевого дна из фторопласта или ленточного транспортера из металлической сетки. Были разработаны также технологические процессы и оборудование для диэлектрического нагрева пористых материалов (пенополистирола, пенополиэтилена, пористых резин) и высокочастотной сварки термопластичных материалов (полихлорвинилов, полистирола, полиакрилатов, искусственных кож).

Нагрев на сверхвысоких частотах (микроволновый нагрев). Нагрев на сверхвысоких частотах (СВЧ) стал применяться после изобретения магнетрона в 40-х годах. В США в 1947 г. появилась первая СВЧ-плита «Радарэндж» с рабочей частотой 2400 МГц (длина волны 12,5 см), установленная в вагоне-ресторане и предназначенная для размораживания и подогрева предварительно приготовленных и замороженных блюд. В начале 70-х годов в США использовалось около 2 млн. бытовых микроволновых печей, в Японии — около 500 тыс.

С 1961 г. в Москве на ВДНХ демонстрировалась печь, созданная ВНИИТВЧ. Ленинградский завод торгового машиностроения изготовил опытно-промышленную серию подобных печей с использованием магнетронов непрерывного действия мощностями 600 и 1600 Вт.

В начале 60-х годов проводились опытные работы по промышленному применению нагрева на сверхвысоких частотах, в частности для разрушения горных пород (США, Япония) и получения плазменного факела (США, ФРГ). У нас в стране работы по измельчению твердых горных пород проводил в 60-х годах Институт горного дела имени А.А. Скачинского, но из-за экономических показателей этот способ оказался неконкурентоспособным.

В конце 80-х годов фирма «Линн» (Австрия) разработала высокотемпературную СВЧ-установку для спекания оксидов (температура до 2000 °С), в которой использованы футеровка и водоохлаждение резонатора.

В последние годы в нашей стране выпускается ряд промышленных СВЧ-установок для диэлектрического нагрева мощностью 0,5–60 кВт. 

7.7.5. ПЛАЗМЕННЫЙ НАГРЕВ

Начальный период. Начало работ по плазменному нагреву относится к 20-м годам XX в. Сам термин «плазма» ввел И. Ленгмюр (США), а понятие «квазинейтральная» — В. Шоттки (Германия). В 1922 г. X. Гердиен и А. Лотц (Германия) провели опыты с плазмой, полученной при интенсивном охлаждении электрической дуги путем применения металлической диафрагмы и тангенциальной подачи воды. Затем в течение ряда лет проводились исследования физических свойств электрической дуги и плазмы, и только в 50-х годах начались разработки промышленных плазмотронов и плазменных технологических процессов.

Рис. 7.9. Плазмотрон с дугой, горящей в парах воды
1 — вода; 2 — катод; 3 — изоляция; 4 — плазма

Дуговые плазмотроны. В 1954 г. Т. Петерс (США) создал плазмотрон, представляющий собой камеру, в которой дуга горит в парах воды при давлении до 500 МПа (рис. 7.9). На выходе из сопла получены высокие сверхзвуковые скорости плазмы.

Фирмы США («Линде», «Плазмадин») с 1955 г. стали применять плазмотроны для нанесения покрытий (алюминий, вольфрам), а также для резки и сварки металлов.

В СССР развитие плазменного нагрева началось в конце 50-х — начале 60-х годов. Под руководством М.Я. Смелянского работы по применению плазменного нагрева велись на кафедре электротермических установок МЭИ. Во ВНИИ-ЭТО (Н.И. Бортничук, В.А. Хотин) в 1961 г. была запущена первая плазменная печь — стенд мощностью 30 кВт, а затем была создана лабораторная плазменная печь для плавки сталей и тугоплавких металлов (1965 г.). В 1970 г. пущена в эксплуатацию плазменная печь для плавки стали в керамическом тигле емкостью 3,5 т (г. Челябинск) и созданы дуговые плазмотроны и источники питания для плавильных печей на токи 1, 3 и 6 кА.

Исследования по промышленному применению плазменного нагрева велись в Институте металлургии АН СССР (Н.Н. Рыкалин, А.В. Николаев), Институте тепло- и массообмена АН БССР (О.И. Ясько), Московском авиационном институте (И.С. Паневин), Институте нефтехимического синтеза и неорганической химии АН СССР (Л.С. Полак) и ряде других организаций.

Особенно необходимо выделить Институт магнитогидродинамики Сибирского отделения АН СССР, где под руководством М.Ф. Жукова была создана научная школа по изучению и применению плазмы (М.С. Даутов, А.С. Аньшаков и др.); разрабатывалась теория и проводились экспериментальные исследования плазмотронов; были разработаны различные конструкции плазмотронов: с осевой стабилизацией дуги, двусторонним истечением плазмы, с вращением дуги в магнитном поле и т.д.

В 60-х годах фирма «Линде» (США) разработала конструкцию плазменно-дуговой сталеплавильной печи с керамическим тиглем и тремя плазмотронами. Подобные установки разрабатывали также фирмы Англии, Японии и ГДР.

В СССР разработки плавильных плазменных печей вел ВНИИЭТО: 1977–1979 гг. в ГДР была введена в эксплуатацию крупнейшая в мире печь емкостью 30–45 т и мощностью 20 МВт с четырьмя плазмотронами постоянного тока для плавки сталей и сплавов (изготовлена на Новосибирском ЗЭТО); 1979 г. — пуск печи емкостью 12 т на Челябинском металлургическом заводе.

Фирма «Дайдо Стил» (Япония, 1969 г.) ввела в эксплуатацию индукционно-плазменную печь емкостью 500 кг, общей мощностью около 400 кВт, из которых 200 кВт за счет индуктора и 200 кВт — плазмотрона постоянного тока с использованием аргона. В нашей стране индукционно-плазменные печи разрабатывал ВНИИЭТО. Основная энергия в металл передается индукционным методом. Плазмотрон позволяет интенсифицировать процесс расплавления шихты, а при рафинировании расплавленного металла подогревать шлак.

В начале 70-х годов в разных странах (Япония, СССР и др.) стали разрабатываться плазмотроны с полым катодом, работающие при давлениях 1–100 Па. По сравнению с электронно-лучевыми установками в них снижается испарение металла и легирующих добавок. Фирма «Ульвак» (Япония) создала плазменную вакуумную установку мощностью 2400 кВт для переплава титановой губки и титановых отходов. Установки такого типа разрабатывались также у нас во ВНИИЭТО и МЭИ.

В начале 70-х годов работали промышленные установки для крекинга метана мощностью 6–8 МВт (фирма «Хюльс», ФРГ) и 25 МВт («Вестингауз», США).

Шведская фирма «СКФ стил дивизион» в конце 70-х годов разработала новые плазменные процессы прямого восстановления железа, получения чугуна при усовершенствованной доменной плавке и извлечения металлов из улавливаемой пыли прокатного производства.

Сверхвысокочастотные (СВЧ) плазмотроны. В начале 70-х годов СВЧ-установки для нагрева газов серийно выпускались в США, Великобритании и Франции. Подобные установки были созданы и в СССР. В установке «Фиалка» СВЧ-разряд горел в кварцевой трубке диаметром 50 мм. Технические данные: рабочие газы — аргон, азот, воздух, температура 4000–6000 К, мощность до 5 кВт, частота 2375 МГц. 

7.1.6. ЭЛЕКТРОННО-ЛУЧЕВОЙ НАГРЕВ

Начальный период. Техника электронно-лучевого нагрева (плавка и рафинирование металлов, размерная обработка, сварка, термообработка, нанесение покрытий испарением, декоративная обработка поверхности) создана на основе достижений физики, электроники, электронной оптики и вакуумной техники.

После открытия электрона и измерения отношения его заряда к массе началось широкое изучение свойств электронных потоков, их получения и взаимодействия с электрическими и магнитными полями. Электронный микроскоп был создан трудами ряда ученых, в том числе Н. Руска, М. фон Арденна (Германия), В.К. Зворыкина (США) в 20–30-х годах. В нем применялись электронные пушки небольшой мощности с малыми токами и большими разгоняющими напряжениями. Тогда же были разработаны электростатические и магнитные системы управления электронным лучом.

Идея создания установки электронно-лучевого нагрева появилась еще в начале XX в., и в 1905 г. М. фон Пирани получил патент Германии на использование электронного луча как источника нагрева. Однако для технологического использования требовались более мощные электронные пушки, создание которых связано с различными конструктивными трудностями, а также были необходимы исследования взаимодействия электронного луча и материала обрабатываемого изделия.

Первые электронно-лучевые установки (ЭЛУ) для плавки ниобия и тантала были созданы в 50-х годах. С 1960 г. ЭЛУ стали использоваться для нанесения покрытий, а затем и для обработки поверхности и размерной обработки, с 1970 г. — для нетермической микрообработки и химической обработки полимеров.

Электронные пушки. Электронно-лучевые установки с кольцевыми катодами вначале получили широкое распространение, в частности в США, благодаря простоте конструкции, в которой катод расположен прямо в рабочей камере. Однако из-за невозможности сохранения высокого вакуума при плавке и возникновения электрических пробоев такая конструкция оказалась ненадежной, и поэтому стали разрабатываться конструкции электронных пушек со своей вакуумной системой.

Рис. 7.10. Плосколучевая электронная пушка конструкции ИЭС им. Б.О. Патона:
1 — катод; 2 — прикатодный электрод; 3 — анод; 4 — каналы водоохлаждения; 5 — пучок электронов 

Принципы создания электронной пушки для плавки или сварки были разработаны только в 1940 г. (Дж.Р. Пирц, США).

В СССР в конце 50-х годов работы по ЗЛУ начали вести несколько организаций: кафедра ЭТУ МЭИ (М.Я. Смелянский, Л.Г. Ткачев), ВЭИ (В.И. Переводчиков), ВНИИЭТО (В.А. Хотин), ИЭС им. Е.О. Патона АН УССР (Б.А. Мовчан), Всесоюзный институт легких сплавов — ВИЛС (А.Ф. Белов, И.А. Кононов), Государственный институт редких металлов — Гиредмет, Всесоюзный институт авиационных моторов — ВИАМ и др.

В МЭИ в 1959 г. был создан стенд с пушкой мощностью до 60 кВт, а позднее ЭЛУ мощностью 500 кВт. В 1961 г. по ВНИИЭТО изготовлена первая электронно-лучевая печь-стенд мощностью 200 кВт. Плосколучевые пушки мощностью 20–300 кВт при ускоряющем напряжении 15–20 кВ созданы ИЭС (рис. 7.10). Серию промышленных электронных пушек на мощности 60–500 кВт разработал ВЭИ.

За рубежом подобные пушки применяли фирмы «Гереус» (ФРГ) и «Штауффер темескал» (США). Мощные аксиальные электронные пушки (до 1200 кВт при напряжении 35 кВ) были созданы М. фон Арденне в ГДР.

Испарение и нанесение покрытий. Первый агрегат непрерывного алюминирования стали с использованием ЭЛУ вместо электролитического лужения был построен в США в 1965 г.

Для испарения материала (алюминий, цирконий, сталь, различные сплавы и др.) созданы специальные электронно-лучевые испарители. Промышленный испаритель подобного типа был установлен в ГДР в 1971 г. на основе разработки М. фон Арденне. На стальную ленту шириной 400 мм наносилось двустороннее покрытие алюминием толщиной 2 мкм на сторону при скорости движения ленты до 3 м/с.

Агрегаты такого типа разрабатывала также фирма «Лейбольд — Хереус» (ФРГ): общая мощность электронно-лучевых пушек 1500 кВт, испарителя 1500 кВт, ширина ленты 1000 мм, скорость ее движения до 5 м/с. Фирма «ЮС Стил» (США) изготавливала установки для ленты шириной до 1250 мм при скорости до 7,5 м/с.

В СССР практически одновременно использовались аналогичные агрегаты, разработанные ВНИИ металлургического машиностроения (ВНИИметмаш), СКБ вакуумных покрытий при Госплане Латвийской ССР, ИЭС. В них были использованы пушки аксиального и плосколучевого типа с поворотом луча магнитной системой на 90–270°.

В 1979 г. советскими космонавтами в космических условиях успешно испытана экспериментальная аппаратура «Испаритель» с применением электронно-лучевого нагрева. В перспективе возможно создание металлических покрытий (защитных, отражающих и др.) на конструкциях непосредственно в космическом пространстве, т.е. с использованием космического вакуума.

Плавка тугоплавких металлов, в том числе зонная плавка получение монокристаллов тугоплавких металлов. В конце 50-х в США ряд фирм, в том числе и «Темескал металлургикал», разработали оборудование для получения ниобия, тантала, молибдена и других тугоплавких металлов высокой чистоты. В 1959 г. появилась публикация данных о печи фирмы «Темескал металлургикал», позволяющей выплавлять слитки тугоплавких металлов массой до 90 кг с двумя, электронными пушками для плавления шихты и подогрева металла в кристаллизаторе. При плавке ниобия скорость плавления достигала 110 кг/ч при расходе энергии 1100 кВт?ч/т. Мощность установки 225 кВт. К 1970 г. в различных странах имелось более 100 электронно-лучевых плавильных печей мощностью до 1200 кВт, выплавлявших слитки массой до 12 т.

Уже в 60-х годах прорабатывались конструкции ЭЛУ с кольцевым катодом или тремя аксиальными пушками для вертикальной зонной плавки с целью получения монокристаллов тугоплавких металлов. Такие работы проводились в Институте металлургии им. А.А. Байкова АН СССР. В 1967 г. в США эта же технология использовалась для получения монокристаллов кремния.

Важная проблема утилизации отходов титана также была решена с использованием ЭЛУ. Фирма «Эйрко Темескал» (США, 1977 г.) проводила плавку стружки сплава титана в установке с шестью пушками общей мощностью 1200 кВт. Качество полученного слитка оказалось выше, чем при вакуумно-дуговом переплаве.

Японская фирма «Джапан электрон оптике лаб. корп.» в конце 60-х — начале 70-х годов выпускала плавильные ЭЛУ для переплава первичных слитков и сыпучей шихты. Подобные же установки выпускались в нашей стране по разработке ИЭС им. Е.О. Патона и в ГДР по разработке М. фон Арденне.

Для рафинирования стали при разливке электронно-лучевые установки используются с 1963 г., когда в США впервые была продемонстрирована опытная установка. Для холодноподового рафинирования применяют каскады камер с несколькими электронно-лучевыми пушками (до 18), при этом увеличивается обрабатываемая поверхность расплава.

В СССР плавильные электронно-лучевые печи разработанные ВНИИЭТО, стали внедряться в 70-е годы: в 1977 г. осуществлен пуск в промышленную эксплуатацию ЭЛУ емкостью 1 т на Узбекском комбинате тугоплавких и жаропрочных металлов; в 1980 г. на Новосибирском ЗЭТО изготовлена ЭЛУ для получения слитков массой 30 т.

Для получения порошков тугоплавких металлов (с последующим изготовлением деталей горячим прессованием) методом центробежного распыления вращающейся оплавляемой заготовки в 70-х годах начал использоваться электронно-лучевой нагрев (США, ФРГ, СССР).

Термообработка металлов. Электронно-лучевой нагрев позволяет реализовать технологические процессы поверхностной закалки и оплавления поверхности деталей. Для деталей сложной формы и больших габаритов электронно-лучевая закалка, которая стала применяться в 70-х годах, имеет преимущества по сравнению с индукционной закалкой. Оплавление поверхности деталей позволяет улучшить механические характеристики деталей из сталей, чугунов и алюминия.

С 1961 г. фирма «Темескал» (США) эксплуатирует установку с плосколучевой пушкой для рекристаллизационного отжига металлической ленты в вакууме. Подобную установку разработала также фирма «Дегусса» (ФРГ). Изготовленная в ГДР установка для термообработки ленты была оснащена аксиальной пушкой с системой управления перемещением электронного луча.

Размерная обработка материалов. В 1938 г. электронный луч был использован для получения мельчайших отверстий в металле (использовался электронный микроскоп). С помощью ЭЛУ в обрабатываемом изделии можно получать отверстия заданного диаметра и пазы различной формы и глубины в твердых и тугоплавких материалах. В таких установках используют аксиальные пушки на рабочее напряжение 60–150 кВ. Мощности установок в непрерывном режиме 1 кВт и в импульсном режиме до 15 кВт. В 1953 г. такие установки выпускала фирма ФРГ «Штайгервальд — Штальтехник» для сверления и перфорации металлических листов. Фирма «Роллс-Ройс» (Великобритания) использовала ЭЛУ в производстве газотурбинных двигателей и барабанов центрифуг.

В США в 70-х годах ЭЛУ использовалась для микрообработки полупроводниковых приборов. Промышленные установки для размерной обработки электронным лучом выпускались также в Японии, ГДР и других странах.

В нашей стране в 80-е годы для электроннолучевой обработки выпускались специализированные промышленные установки типов А306 и ЭЛУРО мощностью до 100 кВт, оборудованные системой перемещения заготовки. 

7.1.7. ЛАЗЕРНЫЙ НАГРЕВ

Начальный период. Лазер (сокращение английского Light Amplification by Stimulated Emission of Radiation) создан во второй половине XX в. и нашел определенное применение в электротехнологии.

Идею процесса вынужденного излучения высказал еще А. Эйнштейн в 1916 г. В 40-х годах В.А. Фабрикант (МЭИ) впервые экспериментально подтвердил возможность усиления света и получил диплом СССР на открытие (1951 г.), Н.Г. Басов, A.M. Прохоров, (СССР), Ч.Х. Таунс (США) получили Нобелевскую премию (1964 г.) за работы по квантовой электронике.

Первые лазеры создали:

Т.Х. Майман (США, 1960 г.) — импульсный твердотельный лазер (на рубине);

А. Яван, В.Р Беннет, Д.Р. Херриот (США, 1961 г.) — непрерывно работающий гелиево-неоновый лазер;

Р.Н. Холл, М.Дж. Натан, Т.М. Квист (США, 1962 г.) — лазер на арсениде галлия;

С. Пател (США, 1964 г.) — лазер на углекислом газе.

В 90-х годах известны уже около 200 рабочих тел для получения лазерного излучения, однако для электротехнологии наиболее часто применяют лазеры на углекислом газе, позволяющие получить наибольшие значения мощности и КПД, и твердотельные (рубиновые), имеющие меньшие габариты и удобные в эксплуатации.

Плотность потока энергии в лазерном луче достигает весьма высоких значений (до 1?1013 Вт/м2), чем главным образом и определяются технологические возможности лазерного нагрева.

Технологическое применение. Разработки лазерного оружия для «звездных войн» начались в США с начала 60-х годов, когда около 40 фирм получили правительственные заказы. С 1962 г. практически одновременно во всем мире началось технологическое применение лазеров: изготовление мельчайших отверстий, резка, сварка, поверхностная закалка. Фирма «Дженерал электрик» создала установку с использованием рубинового лазера для получения отверстий диаметром 0, 5 мм в алмазе за 0, 2 мс.

Первым процессом, внедренным в промышленность, являлось упрочение картера рулевого управления автомобиля в отделении фирмы «Дженерал моторе» (США) в 1974 г., при этом использовался лазер на углекислом газе мощностью 1 кВт.

В СССР первые лазерные технологические установки для поверхностной обработки были выпущены в 1964 г. на базе твердотельных лазеров типа «Квант» и газовых типа «Катунь», «Кардамон» и др. У первых установок с твердотельными лазерами для поверхностной обработки производительность и размеры обрабатываемого изделия были невелики. Переход на газовые лазеры позволил обеспечить значительно большую производительность.

В 1976 г. начались опытные работы по лазерному нагреву на ЗИЛе с участием МГУ им. М.В. Ломоносова и Института атомной энергии им. И.В. Курчатова (Е.П. Велихов). На предприятии запущена в производство автоматическая линия поверхностной лазерной обработки головок блоков цилиндров из алюминиевого сплава для двигателей внутреннего сгорания, внедрено упрочнение кромок вырубного пуансона, разработан процесс повышения износостойкости чугунного корпуса подшипника водяного насоса.

В 1978 г. началось промышленное применение лазерного нагрева на АЗЛК (г. Москва). Разработаны технология и оборудование с использованием газового лазера «Кардамон» для упрочнения коробки дифференциала заднего моста легкового автомобиля.

С 1964 г. лазерный луч нашел применение в биологии и медицине, например для приваривания сетчатой оболочки глаза.

С середины 70-х годов к работам по лазерному нагреву подключился ВНИИЭТО, где была создана лаборатория по использованию лазерного нагрева в промышленности.


7.2. ЭЛЕКТРИЧЕСКАЯ СВАРКА

7.2.1. ЭЛЕКТРИЧЕСКАЯ ДУГОВАЯ СВАРКА

Электрическая дуговая сварка была изобретена в России. Н.Н. Бенардос 6 июля 1885 г. подал заявку и получил привилегию Департамента торговли и мануфактур № 11982 (1886 г.) на способ «соединения и разъединения металлов непосредственным действием электрического тока» (рис. 7.11). Изобретение было запатентовано в Англии, Германии и некоторых других странах, причем эти патенты получены Н.Н. Бенардосом совместно с петербургским купцом С.А. Ольшевским, который финансировал зарубежное патентование.

Работы были начаты в 1881 г., а в 1885 г. в Петербурге на набережной р. Большой Невки, д. 41, была открыта показательная мастерская, в которой проводились сварочные работы по этому способу. Н.Н. Бенардос разрабатывал также автоматизацию сварки, применение инертных газов при сварке, сварку на переменном токе, подводную сварку и др. К середине 90-х годов XIX в. сварка по способу Н.Н. Бенардоса применялась более чем 100 заводами Западной Европы.

Рис. 7.11. Электрическая дуговая сварка по методу Н.Н. Бенардоса
1 — угольный электрод; 2 — присадочный материал; 3 — свариваемые детали

Н.Г. Славянов (1888 г.) предложил дуговую сварку с использованием расплавляемого электрода (рис. 7. 12). Этот метод впервые был использован в 1888 г. на Пермских казенных заводах при сварке вала паровой машины. В 1889 г. дуговая сварка по методу Славянова была использована на Пермских казенных заводах при строительстве парохода «Редедя князь Коссогский». В 1891 г. Н.Г. Славянов получил в Департаменте торговли и мануфактур привилегии № 8747 и 8748 на изобретения «электрической отливки металлов» и «электрического упрочнения металлов», а затем и патенты США и других стран. Им разрабатывались методы автоматического регулирования длины дуги, применения сварки под шлаком (использовалось дробленое стекло), использования предварительного подогрева свариваемых деталей, применения присадок ферросплавов для регулирования химического состава ванны и сварного шва.

Рис. 7.12. Электрическая дуговая сварка по методу Н.Г. Славянова
1 — металлический электрод; 2 — свариваемые детали 

В 1905 г. В.Ф. Миткевич предложил использовать трехфазную дугу для сварки металлов.

Одна из проблем электрической сварки — защита расплавленного металла от окисления и повышение устойчивости горения дуги, особенно при использовании плавящегося электрода. О. Кьельберг (Швеция, 1907 г.) предложил специальные покрытия для сварочных электродов, И. Ленгмюр (США, 1911 г.) разработал процесс дуговой сварки в атмосфере водорода, а позднее и с использованием других газов.

Параллельно с электрической сваркой развивалась и газовая сварка. Уже в 1902 г. А. Ле Шателье (Франция) применял кислородно-ацетиленовую сварку при ремонте паровых котлов. В 1903 г. Э. Фуше (Франция) получил патент на газовую сварочную горелку. Этот способ вскоре получил широкое распространение, что затормозило развитие электрической сварки. С 1908 г. на заводах Форда (США) стали применять газовую сварку. Во всем мире, в том числе и в России, газовая сварка стала применяться в различных отраслях промышленности.

Однако в 20-е годы развитие электрической сварки вновь продолжилось.

В 1919 г. фирма «Дженерал электрик» изготовила первую автоматическую дуговую сварочную головку. Подача электродной проволоки осуществлялась электродвигателем постоянного тока, а ток к электроду подводился через ролик. Длина дуги контролировалась по напряжению. В СССР автоматическую подачу электрода разработал в 1924 г. Д.А. Дульчевский. Он же применял угольный порошок при сварке меди для защиты от окисления.

Завод «Электрик» (г. Ленинград) внес значительный вклад в развитие электросварки в нашей стране: под руководством В.П. Никитина в 1924 г. были созданы первая электросварочная машина постоянного тока типа СМ-1 и сварочный трансформатор со встроенным регулятором (тип СТН). В 1926 г. начался выпуск машин для контактной сварки. В 1932–1933 гг. началось производство оборудования для автоматической дуговой и аргоноводородной сварки, был осуществлен выпуск первой в мире сварочной автоматической установки на переменном токе. В 1934 г. выпущен передвижной электросварочный агрегат типа САК-2, состоящий из бензинового двигателя Горьковского автозавода и сварочного генератора, смонтированных на общей раме. В 1947 г. начался серийный выпуск универсальных сварочных автоматов тракторного типа АДС-1000–1.

Первые применения сварки:

— в 1929 г. Николаевский судостроительный завод применяет дуговую сварку днищевых балок танкеров, а позднее и судовых трубопроводов; с 1931 г. в г. Магнитогорске при строительстве домны началось использование электрической сварки вместо клепки; (разрешение на сварку дал И.П. Бардин вопреки мнению американских специалистов, консультировавших строительство); при строительстве завода «Уралмаш» с помощью электрической сварки изготовили подкрановые балки пролетом 10 м; в том же 1931 г. началось внедрение дуговой сварки в мостостроение (Г.А. Николаев); на Западной железной дороге было установлено первое сварное пролетное строение длиной 19,8, а несколько позднее, в 1934 г.; на заводе «Стальмост» в г. Днепропетровске — цельносварное пролетное строение длиной 45 м; в те же годы изготовлены сварной мост (42 м) через водопад Челоне в США и однопролетный сварной мост решетчато-ферменного типа длиной 49,2 и шириной 8,25 м в г. Пльзень (Чехословакия).

В начале 30-х годов Е.О. Патон создал лабораторию электросварки, которая с 1934 г. реорганизована в Институт электросварки (с 1953 г. ИЭС им. Е.О. Патона), который занял ведущее положение в развитии сварочной техники и технологии. К числу важнейших разработок ИЭС относятся:

— высокопроизводительный способ автоматической дуговой электросварки под слоем флюса (1941 г.);

— конструкция сварочной головки с постоянной скоростью подачи электрода (1942 г.);

— новый способ полуавтоматической шланговой сварки (1944 г.);

— мощный трансформатор СТ-1000 с дистанционным управлением для автоматической сварки под флюсом (1947 г.);

— метод двухдуговой электросварки на больших скоростях (1949–1950 гг.);

— полуавтомат для подводной сварки (70-е годы).

Интересные результаты были получены и в других организациях:

— сварка меди под флюсом разрабатывалась Д.А. Дульчевским в начале 20-х годов;

К. К. Хренов разработал процесс ручной сварки под водой (1932 г.) и предложил сварочный трансформатор с поворотным верхним ярмом типа СТХ (1934 г.);

— сварочная лаборатория МВТУ им. Н.Э. Баумана разработала способ автоматической дуговой сварки с подачей в дугу гранулированного флюса (1934 г.);

— в 1946 г. В.П. Никитин создал новый трансформатор типа СТАН компактной конструкции и небольшой массы с тремя ступенями регулирования сварочного тока, предназначенный для монтажных работ;

— в 1949 г. Подольский завод им. С. Орджоникидзе разработал и освоил процесс сварки нефтеаппаратуры из нержавеющей стали;

— сотрудниками ЦНИИТмаш создана усовершенствованная аппаратура для автоматизации дуговой электросварки (1951 г.) и совместно с ИЭС разработана и внедрена серия флюсов для автоматической сварки (1952 г.);

— в начале 50-х годов во ВНИИавтоген проводились работы по дуговой сварке меди и ее сплавов на постоянном токе прямой полярности в атмосферах аргона и азота;

— технология сварки в атмосфере углекислого газа разработана в ЦНИИТмаше в 50-е годы под руководством К.В. Любавского. 

7.2.2. СВАРКА ЗА СЧЕТ РЕЗИСТИВНОГО НАГРЕВА

Сварка за счет резистивного нагрева (контактная) подразделяется на точечную, шовную и стыковую.

Е. Томсон (США, 1886 г.), автор почти 700 изобретений, получил патент на электрическую сварку металлических стержней и проводов. Всего им и его сотрудниками получено 150 патентов, относящихся к контактной сварке. В 1892 г. в США на фирме «Джонсон» впервые были сварены способом стыковой сварки железнодорожные рельсы. Н.Н. Бенардос (1887 г.) изобрел способ точечной и роликовой контактной сварки. В сварочных клещах его конструкции (рис. 7.13) в качестве электродов использовался графит.

Рис. 7.13. Сварочные клещи конструкции Н.Н. Бенардоса 

Контактная сварка стала развиваться несколько позднее, чем дуговая, так как ее применение целесообразно при выпуске крупносерийной продукции, например в автомобильной промышленности.

Машины для контактной сварки стали изготавливаться заводом «Электрик» с 1926 г. Первые машины для стыковой и шовной сварки были изготовлены в 1929 г. До 1935 г. завод «Электрик» изготовил 3821 машину для контактной сварки, в том числе 2625 для точечной, 1036 для стыковой и 160 для шовной. Это были в основном универсальные машины малой мощности (до 100 кВ?А), а в дальнейшем для контактной сварки стали изготавливаться машины мощностью 500–1000 кВ?А. На Московском автозаводе (позднее ЗИС и ЗИЛ) контактная сварка применялась с 1930 г. После расширения завода (1935 г.) на нем стали применяться более производительные машины — многоточечные (до 20 точек) мощностями до 250 кВ?А, а парк машин был значительно увеличен.

В годы Великой Отечественной войны ЦНИИТмаш разработал установку для контактной сварки рельсов в условиях работы с платформы. Машины типа РКСМ мощностью 250 и 320 кВ?А для контактной стыковой сварки рельсов производительностью 13–15 сварок в час выпускались на заводе «Ревтруд». В МВТУ им. Н.Э. Баумана (Г.А. Николаев, К.К. Хренов) выполнены работы по электродным покрытиям, технологии сварки при производстве вооружения и др.

В послевоенные годы продолжилось развитие контактной сварки:

1949 г. — были осуществлены разработка и освоение многоточечных сварочных автоматов последовательного действия на ЗИСе;

1953 г. — заводом «Электрик» в содружестве с Секцией электросварки и электротермии АН СССР была изготовлена высокопроизводительная контактно-стыковая машина типа МСГ-500 для сварки стержней арматуры диаметром 50–100 мм. 

7.2.3. ПРОЧИЕ ВИДЫ ЭЛЕКТРОСВАРКИ

Электрошлаковая сварка. Впервые оборудование и технология электрошлаковой сварки были разработаны в Институте электросварки АН УССР (Б.Е. Патон, Б.И. Медовар) в 50-х годах для сварки толстых листов и массивных изделий (от 30 до 2000 мм), например роторов турбин. На Всемирной выставке в Брюсселе в 1958 г. этот способ удостоен высшей награды «Гран-при».

Высокочастотная (индукционная) сварка. Высокочастотная сварка разрабатывалась в США, Канаде, ФРГ, Франции, Англии в 40-х годах. В СССР исследования в этой области были начаты в лаборатории В.П. Вологдина в 1944 г. А.А. Фогелем и продолжены А.Е. Слухоцким. Впервые высокочастотная сварка внедрена на заводе «Трубосталь» (г. Ленинград).

В середине 50-х годов во ВНИИТВЧ под руководством В.Н. Богданова и Н.П. Глуханова были начаты работы по стыковой сварке труб с поперечным и продольным швом. С конца 40-х годов стала развиваться индукционная сварка труб из ленты. В этой области работали также ИЭС им. Е.О. Патона, Всесоюзный научно-исследовательский трубный институт (ВНИТИ), ВНИИметмаш, ВНИИЭСО и заводы Московский трубный, «Лентрубосталь», «Москабель». Агрегаты для сварки алюминиевых оболочек кабелей созданы и внедрены ВНИИТВЧ, ВНИИметмашем и заводом «Москабель» (1963 г.)

В 1975 г. в СССР методом индукционной сварки ежегодно изготовлялось более 3 млн. м сварных труб диаметром 10–530 мм с толщиной стенки 0,5–10 мм из углеродистых и нержавеющих сталей, сплавов алюминия, меди и титана.

Разрабатывались различные конструктивные варианты индукционной сварки труб диаметром 159–219 мм:

охватывающим индуктором (фирма «Элфиак», Бельгия);

с использованием скользящих контактов (фирма «Терматул», США);

охватывающим индуктором и с вращающимися контактами (Северский трубный завод, СССР);

с внутренним индуктором (Новомосковский трубный завод) для труб диаметром 273–530 мм.

В конце 80-х годов ВНИИТВЧ и ВНИИЭСО разработали комплектные установки высокочастотной сварки на частоту 440 кГц мощностью от 160 до 1000 кВт и 10 кГц мощностью 1500 кВт.

Электронно-лучевая сварка. Первоначально применялась в атомном машиностроении, а затем при изготовлении особо ответственных деталей в авиа- и ракетостроении (например, сварка конструкций из титановых сплавов), в электронной промышленности.

Сварочные ЭЛУ нашли применение на автозаводах. Фирма «Лейбольд — Хереус» (Германия) применяла ЭЛУ для сварки при изготовлении мостов задних осей грузовиков (середина 60-х годов). Сварка производилась при давлении 5 Па, время рабочего цикла, включая вакуумирование, около 6 мин. С 1966 г. в Великобритании работает фирма «Электронное оборудование и процессы», которая специализируется на электронно-лучевой сварке.

В 1966 г. в мире насчитывалось около 1000 промышленных установок электронно-лучевой сварки. В 1975 г. их число достигло 2500, из которых 80% работали в США и СССР.

В 70-х годах была разработана технология применения местного вакуумирования, что позволило отказаться от использования крупных вакуумных камер. Ведущими в области применения ЭЛУ для сварки в локальном вакууме явились фирмы «Скияки» и «Ланжепин» (Франция). При этом способе накладная вакуумная камера располагается на свариваемом крупногабаритном изделии, а герметизация достигается с помощью специальных уплотнений. Фирма «Кавасаки Хиби индастер лтд.» (Япония) разработала оборудование для электронно-лучевой сварки крупногабаритных изделий с местным вакуумированием, например для сварки колец жесткости сферических резервуаров для морских перевозок сжиженного газа.

Особенно эффективна электронно-лучевая сварка толстых стальных листов, для чего обычно использовались пушки на напряжение 100 кВ и выше (Франция, ФРГ). В 1970–1975 гг. в МЭИ (Н.А. Ольшанский, Л.Г.Ткачев) была показана возможность высококачественной сварки стальных изделий толщиной до 200 мм и более при относительно небольших ускоряющих напряжениях 30–40 кВ.

В СССР промышленные сварочные ЭЛУ различных типов создавали ИЭС им. Е.О. Патона и ЦНИИТмаш.

Плазменная сварка. Одними из первых применений плазмотронов были сварка и резка металлов. В СССР с начала 60-х годов этими вопросами занимались Институт металлургии АН СССР (Н.Н. Рыкалин, И.Д. Кулагин, А.В. Николаев) и ИЭС (В.И. Лакомский, Б.А. Мовчан). Плазменная сварка используется для соединения как массивных, так и тонких изделий, так как дуга в потоке газа горит стабильно и при малых токах.

Лазерная сварка. Это одно из наиболее эффективных применений лазерного нагрева (см, подпараграф 7.1.7). Лазерная сварка стала широко использоваться в 70–80-е годы в электронике, приборостроении, автомобильной промышленности и других отраслях. В нашей стране и за рубежом применяется лазерная сварка микросхем, корпусов полупроводниковых приборов, анероидных коробок. В США с помощью лазера сваривают аэрозольные баллончики, в ФРГ — катоды кинескопов, в Японии — цилиндрические литиевые батареи.

Для точечной и шовной лазерной сварки в СССР выпускались лазерные твердотельные установки типов «Квант-10», «Квант-40», «Квант-50» средней мощностью до 0,15 кВт. Установка с газовым лазером «Латус-31» имела уже большую среднюю мощность — 1,5 кВт.


7.3. ЭЛЕКТРОФИЗИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

7.3.1. ЭЛЕКТРОЭРОЗИОННАЯ ОБРАБОТКА

Электрическая эрозия, т.е. разрушение контактов под действием электрических разрядов известна была давно. Много исследований было посвящено устранению или хотя бы уменьшению разрушения контактов.

Исследованиями явления управляемой электрической эрозии начали заниматься в 40-х годах нашего столетия отечественные ученые Б.Р. Лазаренко и Н.И. Лазаренко. Электрод-инструмент и электрод-заготовка помещались в ванну с жидким диэлектриком. В качестве генератора импульсов использовался конденсатор, заряжаемый от источника постоянного тока через резистор. При достижении определенной напряженности электрического поля между электродами возникал электрический разряд, который приводил к разрушению участка заготовки. Продукты обработки попадали в жидкость, где охлаждались, не достигнув электрода-инструмента, и осаждались на дне ванны. По истечении определенного времени электрод-инструмент прошивал заготовку, причем контур отверстия точно соответствовал профилю инструмента.

В начале 50-х годов были разработаны специальные генераторы импульсов, которые позволили вести обработку не только короткими импульсами (электроискровый разряд), но и более длительными (искродуговой и дуговой разряды). Большой вклад в развитие методов электроэрозионной обработки внесли отечественные ученые Б.Н. Золотых, А.Н. Лившиц, Л.С. Палатник, М.Ш. Отто.

В настоящее время применяют следующие виды электроэрозионной обработки: прошивание — удаление металла из полостей, углублений, отверстий и т.д.; электроэрозионное шлифование, при котором электрод-инструмент в форме диска совершает вращательное или поступательное движение относительно обрабатываемой заготовки; разрезание профильным или непрофильным инструментом заготовки на части; электроэрозионное упрочнение, осуществляемое, как правило, на воздухе (обеспечивает легирование и наращивание поверхности заготовки, причем нанесенный слой в процессе обработки закаливается и получает повышенную износостойкость). 

7.3.2. ЭЛЕКТРОИМПУЛЬСНАЯ ОБРАБОТКА ДАВЛЕНИЕМ

Электроимпульсную обработку давлением (электровзрывную обработку) применяют для формообразования и разделения заготовок, например для штамповки, гибки, чеканки, вытяжки, раздачи, дробления хрупких материалов, очистки крупных отливок от пригара, резки и развальцовки труб.

Известны две основные разновидности электровзрывного формообразования, отличающиеся способом создания ударной волны.

При высоковольтном разряде (электрогидравлическая обработка) используют электрогидравлический эффект, впервые примененный для технологических целей Л.А. Юткиным (1946 г.).

Рабочим веществом, как правило, служит техническая вода. Электрический разряд протекает в герметичной камере. В канале разряда происходит почти мгновенное испарение жидкости и образуется ударная волна. Силы, деформирующие заготовку, создаются главным образом ударной волной, а также высоким давлением в возникающем парогазовом пузыре. Энергия разряда может достигать десятков килоджоулей, а его длительность составляет несколько десятков микросекунд при токах до 50 кА и длине разрядного промежутка в несколько сантиметров. Скорость фронта ударной волны превышает скорость звука в воде и доходит до 3000 м/с. Максимальное давление в газовом пузыре доходит до 1?1010 Па. Линейные размеры обрабатываемых листовых заготовок толщиной до 5 мм могут превышать 1 м.

При электрическом взрыве генератор электрического импульса (накопительный конденсатор) разряжается на проводник, состоящий из одной или нескольких проволок, фольги или сетки. Проводник располагают в диэлектрической жидкости. При протекании импульса тока большой силы проводник нагревается и происходит его взрывное испарение. Дальнейший механизм воздействия на обрабатываемую заготовку и параметры взрывной волны аналогичны рассмотренным выше.

Применяют еще одну разновидность электровзрывной обработки — электрический взрыв в вакууме, который используют для нанесения покрытий. Покрытия наносят на различные материалы (в том числе на керамику и стекло) без предварительного нагрева изделия. 

7.3.3. ПРОЧИЕ МЕТОДЫ ЭЛЕКТРОФИЗИЧЕСКОЙ ОБРАБОТКИ

К числу новых направлений электротехнологии относится применение сильных электрических полей для непосредственного воздействия на частицы диспергированных материалов с целью получения готового продукта. В нашей стране это направление получило название «эллектронно-ионная технология», а за рубежом — «промышленное применение электростатики».

В России первые установки электронно-ионной технологии появились в начале XX в. Это были электрофильтры небольшой производительности для очистки дымовых газов от золы. Заметное распространение электрофильтры получили в 20-х годах нашего столетия.

Интенсивное развитие различных направлений электронно-ионной технологии в СССР началось в 60-х годах и связано с именем академика В.И. Попкова, который объединил усилия известных ученых Е.М. Балабанова, И.П. Верещагина, С.П. Жебровского, В.И. Левитова, Н.Ф. Олофинского, работавших в различных областях техники по применению сильных электрических полей.

В настоящее время сформировались следующие основные направления использования сильных электрических полей в электротехнологии.

Электрогазоочистка — удаление из промышленных газовых выбросов взвешенных в них частиц пыли или золы за счет действия электрического поля на предварительно заряженные частицы.

Нанесение защитных и декоративных покрытий в электрическом поле — зарядка и организация под действием поля движения заряженных частиц краски или полимерного порошка в направлении окрашиваемой поверхности и равномерное распределение их по поверхности при осаждении.

Электросепарация — использование различия в физических свойствах частиц различных материалов для разделения их смеси в процессе зарядки и движения в электрическом поле.

Электропечать — использование избирательного осаждения частиц проявителя на фотополупроводящие слои, на которых формируется скрытое электростатическое изображение объекта.

Электрофлокирование — ориентация, зарядка и осаждение в электрическом поле на основу частиц волокнистых материалов с целью получения ворсовых покрытий, ковров и т.д.

В этих работах в 60–70-е годы принимали участие следующие организации: Энергетический институт им. Г.М. Кржижановского, Московский энергетический институт и Научно-исследовательский институт очистки газов.


7.4. ЭЛЕКТРОХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

7.4.1. ЗАРОЖДЕНИЕ И РАЗВИТИЕ ЭЛЕКТРОХИМИЧЕСКОЙ ТЕХНОЛОГИИ

Создание первого источника тока — вольтова столба — привело к зарождению новой технологии, которая позднее получила название электрохимической.

Уже в 1800 г. В. Никельсон и А. Карлейль (Англия) разложили воду с помощью тока, полученного в вольтовом столбе. Образование осадков металлов при электролизе растворов солей было обнаружено в опытах, проводимых В. Никольсоном и А. Карлейлем, В. Крюйкшенком (Англия), В. Грюнером, В. Бекманом (Германия), Ш.Б. Дезормом (Франция) и И. Ганом (Швеция).

В 1807 г. X. Дэви (Англия) выделил натрий и калий электролизом расплавов.

В России В.В. Петров в 1802 г. создал самую мощную тогда батарею, состоящую из нескольких последовательно соединенных гальванических элементов, и с ее помощью осуществил исследования по электролизу воды, оксидов свинца, олова, ртути, а также органических соединений.

В 1838 г. российский академик Б.С. Якоби сообщил о разработанном им методе получения копий с рельефных изделий электролизом, получившим название гальванопластики. Открытие Б.С. Якоби вызвало большой интерес. Так, в период с 1842 по 1844 г. в Петербурге было выпущено шесть книг в области гальванопластики, золочения и серебрения. Первой из них была книга А.Ф. Грекова (1842 г.) «Теоретическое и практическое руководство к золочению, серебрению, платинированию, лужению». В 1844 г. князь В.Ф. Одоевский, писатель, композитор, критик написал книгу «Гальванизм в техническом применении». Уже в 1839 г. гальванопластика получила применение для печатания государственных бумаг и изготовления художественных изделий. Князь П.Р. Багратион изучал золочение из железосинеродистых электролитов. Академик Э.Х. Ленц изготавливал медальоны методом гальванопластики, а его сын Р.Э. Ленц изучал электроосаждение железа.

С 1844 г. метод Б.С. Якоби получает широкое применение для изготовления произведений искусства: статуй и барельефов для Эрмитажа, Зимнего дворца, Исаакиевского собора, Петропавловской крепости в г. Петербурге; медных копий фронтона Большого театра в Москве и др. В 1847 г. метод Б.С. Якоби получил в России второе практическое применение — электролитическое рафинирование меди. В 1867 г. Э.Г Федоровский предложил электрохимический метод получения бесшовных медных труб, в 1869 г. Е.И. Клейн — электролитический способ осаждения толстых слоев меди, нашедший применение при изготовлении государственных бумаг.

Широкое практическое использование электрохимическая технология получила после изобретения электромагнитных генераторов тока.

В настоящее время электролиз водных растворов и расплавов лежит в основе очень разветвленного направления техники — электрохимии, которая находится на стыке электротехники и химии.

К основным направлениям электрохимической технологии можно отнести:

электролитическое разложение воды;

получение хлора и щелочи;

электрохимический синтез соединений;

получение и рафинирование металлов;

гальванотехника;

анодное окисление и размерная обработка металлов.

7.4.2. ЭЛЕКТРОЛИТИЧЕСКОЕ РАЗЛОЖЕНИЕ (ЭЛЕКТРОЛИЗ) ВОДЫ

Всесторонние исследования электролиза воды провели русские ученые В.В. Петров (1802 г.), Ф.Ф. Рейс (1803 г.) и Ф. Гротгус (1805 г.).

Промышленный электролизер для получения водорода и кислорода впервые в мире был сконструирован в России Д.А. Лачиновым в 1888 г. Им были запатентованы монополярные и биполярные электролизеры, работающие как при нормальном, так и при повышенном давлении. В качестве электролита Д.А. Лачинов предлагал использовать раствор щелочи. Усовершенствованные щелочные электролизеры применяются в промышленности до сих пор.

В начале 70-х годов фирма «Дюпон» (США) разработала ионообменную мембрану «Нафион», имеющую высокую проводимость и стабильность. Фирма «Дженерал электрик» вскоре создала электролизер с этой мембраной, играющей роль твердого электролита (электролизер с твердополимерным электролитом). Расход энергии на получение водорода и кислорода в данном электролизере ниже, чем в электролизере с щелочным электролитом. Электролитический водород используется для охлаждения генераторов на электростанциях, для получения чистых металлов и полупроводниковых материалов, а также в пищевой, химической, нефтехимической и других отраслях промышленности.

В 1932 г. Г. Льюис (США) и в 1934 г. А.И. Бродский (СССР) предложили получать тяжелую воду методом электролиза. Так как скорость выделения на катоде протия Н2 значительно выше, чем дейтерия D2, то при длительном электролизе происходит обогащение воды дейтерием. Современный процесс получения тяжелой воды обычно осуществляется последовательно в каскаде электролизеров.

7.4.3. ПОЛУЧЕНИЕ ХЛОРА И ЩЕЛОЧИ

Если через электролизер с раствором хлорида натрия пропускать электрический ток, то на положительном электроде (аноде) будет выделяться хлор, а на отрицательном (катоде) — водород. При этом около катода накапливается щелочь NaOH. Первый патент на электролитическое производство хлора и щелочи получили в 1879 г. Н. Глухов и Ф. Ващук (Россия). В 1897 г. В. Степанову был выдан патент на аппарат для электролиза хлорида натрия. Промышленное получение хлора началось в 80-х годах прошлого века после создания диафрагмы, разделяющей анодное и катодное пространства. В России большой вклад в развитие промышленного получения хлора внесли П.П. Федотьев, В.В. Стендер, В.Г. Хомяков, Л.М. Якименко.

Длительное время с качестве анодов служил графит, который быстро изнашивался из-за окисления кислородом, выделяющимся на аноде параллельно с хлором. В 70-х годах XX в. были изобретены малоизнашиваемые аноды из оксидов рутения и титана (ОРТА), что позволило увеличить ресурс электролизеров между ремонтами в несколько раз. Кроме того, расход энергии в электролизерах с ОРТА ниже, чем в электролизерах с графитовыми анодами. Более чистую щелочь получают в электролизере с ртутным катодом, на котором при электролизе образуется амальгама натрия. Жидкую амальгаму натрия отводят на электролизере и разлагают водой.

В 70-х годах нашего столетия около 70% электролитического хлора получали в электролизерах с ртутным катодом. Однако из-за токсичности ртути производство хлора по этому методу в последние годы резко сократилось. Начинают применяться мембранные электролизеры, в которых анодное и катодное пространства разделены ионообменной мембраной типа «Нафион».

В настоящее время электролитическое производство хлора относится к числу крупнотоннажных производств (свыше 30 млн. т хлора в год).

7.4.4. ЭЛЕКТРОХИМИЧЕСКОЕ ПОЛУЧЕНИЕ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

Электролизом получают гипохлорит, хлораты, перхлораты, персульфаты, пероксид водорода, перманганат калия, диоксид марганца и др.

В 1882 г. А.П. Лидовым и В.А. Тихомировым был разработан электрохимический способ получения гипохлорита натрия NaOCl. Процесс

проводился в бездиафрагменном электролизере в растворе хлорида натрия NaCl. На аноде образовывался как гипохлорит-ион ClO, так и хлор. При взаимодействии хлора с гидроксид-ионами

ОН, накапливающимися у катода, образуется гипохлорит-ион. При более высоких напряжениях гипохлорит-ионы на оксидно-рутиниево-титановые анодах (ОРТА) окисляются до хлорат-ионов.

Электрохимический способ получения хлоратов натрия и калия был разработан в 1886 г.

При электролизе растворов хлоратов на аноде (платинированном титане или диоксиде свинца PbO2) образуются хлорная (НСlO4) и хлорноватая (НСlO3) кислоты. Из хлорной кислоты можно получить ее соли, называемые перхлоратами.

М. Вертело (Франция) исследовал электрохимический способ получения пероксида водорода Н2O2 (1872 г.). В 1905 г. Тейнером был предложен промышленный способ получения Н2O2 электролизом раствора серной кислоты. В 1930 г. разработан способ производства Н2O2 через стадию образования персульфата аммония. На платинированных титановых анодах сульфат аммония окисляется до персульфата аммония, который затем гидролизуется с образованием Н2O2.

В 1884 г. был предложен способ производства перманганата калия. Сначала химическим путем получали манганат калия К2MnO4 из диоксида марганца MnO2, а затем манганат калия электрохимически окисляют до перманганата.

В 1958 г. под руководством Р.И. Агладзе (СССР) был разработан простой способ получения перманганата калия путем анодного окисления марганца, при этом на катоде идет выделение водорода.

К одному из важнейших электрохимичеких процессов следует отнести электрохимическое получение диоксида марганца MnO2, применяемого в качестве катодного материала источников тока, катализатора, абсорбента, окислителя, поглотителя и т.д. В СССР первая установка по получению MnO2 была пущена к 1934 г. в Ленинграде. Процесс заключался в анодном окислении ионов Mn+ с выделением водорода на катоде. Первоначально в качестве анода служил графит, позднее — титан и сплав титана с марганцем.

7.4.5. ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ И РАФИНИРОВАНИЕ МЕТАЛЛОВ

Электроосаждение металла на катоде лежит в основе электрохимического получения металлов из растворов (гидроэлектрометаллургия) или из расплавов, а также рафинирования (очистки) металлов.

Металлы, имеющие электроположительные значения потенциала, например серебро Ag, золото Au, не растворяются и выпадают в виде частиц на дно электролизера (в шлам) из перешедших в раствор ионов. На катоде в первую очередь осаждаются металлы, имеющие электроположительные значения потенциала (основной металл, например медь). В результате электролиза очищаемый анодный металл растворяется и основной металл осаждается на катоде. Примеси, потенциал которых отрицательнее потенциала основного металла, остаются в растворе, а электроположительные (по потенциалу) примеси оказываются в шламе.

Важным шагом к открытию электролитического рафинирования было предложение Б.С. Якоби в 1840 г. использовать в гальванопластике растворимые аноды. В 1847 г. герцог М. Лейхтенбергский (Россия) высказал предположение о возможности электролитической очистки и разделения металлов. Практически применять электролитическое рафинирование меди стал Д.Р. Элькингтон в Америке с 1865 г. Промышленное производство возникло в Германии в 1878 г. В России производство рафинированной меди было организовано в начале 90-х годов XIX в. на Кавказе (г. Келакент) и в Нижнем Новгороде.

В это же время началось электролитическое получение меди как заключительная стадия гидрометаллургического производства. При осаждении меди из растворов ее солей, полученных путем переработки руд, используются нерастворимые аноды.

Электрохимический метод применяется для рафинирования и очистки многих металлов (около 80% выпускаемого никеля и значительная часть кобальта). При этом получается металл чистотой 99,99% (никель) и 99,6% (кобальт). При повторном рафинировании чистота металла повышается до 99,9999%. Электролитическое рафинирование применяется также для получения чистого серебра (99,99%) и золота (99,95%).

В 80-х годах XIX в. началась разработка электролитического метода получения цинка, а в 1909 г. в Германии его крупномасштабное производство. В России исследование электролиза цинка проводилось с 1909 г., а первая установка для получения цинка была запущена в 1925 г.

Исследования, проведенные еще в начале XX в. в России под руководством П.П. Федотьева, а затем в СССР под руководством Р.И. Агладзе, привели к организации производства чистого марганца гидроэлектрометаллургическим методом в конце 30-х годов. Под руководством Н.Т. Кудрявцева и А.В. Помосова в 60-х годах разработан электрохимический способ получения порошков металлов (меди, серебра, железа, никеля, цинка и свинца).

Электролизом расплавов производят алюминий, магний, щелочные металлы, кальций, бериллий, титан, цирконий, тантал, бор и фтор. Впервые в 1807 г. X. Дэви и С.П. Власовым электролизом был получен калий и натрий. В 1890 г. К. Кестнер (Германия) разработал промышленный способ получения натрия электролизом расплава NaOH. В этом случае на катоде выделяется натрий, а на аноде кислород и вода. В 1924 г. Г. Дауне (США) предложил проводить электролиз расплава NaCl — СаС12, позднее был разработан промышленный способ получения натрия электролизом расплава хлоридов. Этот способ используется до сих пор.

В 1887 г. П.Л.Т. Эру (Франция) и Ч. Холл (США) предложили способ получения алюминия путем электролиза расплава глинозема в криолите. Анодами в электролизере служил графит, окисляющийся при проведении процесса. В России исследования электролитического метода получения алюминия проводились под руководством П.П. Федотьева, А.И. Беляева, Ю.В. Баймакова, П.Ф. Антипина и др. Первый завод по производству алюминия в СССР был сдан в эксплуатацию в г. Волхове в 1930 г. Полученный на катоде алюминий обычно подвергают электролитическому рафинированию с получением алюминия чистотой 99,95–99,995%.

В 1886 г. А. Муассаном (Франция) был получен фтор электролизом смеси HF — KF с использованием платиновых электродов. Промышленное производство фтора началось в 40-х годах XX в. Процесс проводят либо при температуре 100°С в расплаве HF?2KF, либо при температуре 250 °С в расплаве HF?KF.

7.4.6. ГАЛЬВАНОТЕХНИКА

Гальванотехника включает в себя гальванопластику (см. подпараграф 7.4.1) и гальваностегию — процесс электроосаждения слоев металла (гальванопокрытий) с целью защиты от коррозии и придания различных физических и химических свойств поверхности изделий.

Как указывалось ранее, гальванотехника зародилась в начале XIX в. Наибольший вклад в зарождение этого направления внесли работы Б.С. Якоби, благодаря которым возникла практическая гальванопластика. Наряду с исследованиями электроосаждения меди Б.С. Якоби изучал электроосаждение золота, серебра, никеля и латуни. Е.И. Клейн в Петербурге исследовал электроосаждение железа, в 1869 г. процесс нашел практическое применение в полиграфической промышленности.

Электроосаждение меди первоначально проводилось из сернокислых электролитов, а в 40-х годах прошлого века для той же цели нашли применение и цианистые электролиты. Позднее были предложены комплексные нецианистые электролиты.

Уже в первой половине прошлого века широко применялось золочение из хлоридного электролита. В России зубной врач Бриан в 1842 г. предложил железосинеродистый электролит золочения, усовершенствованный затем А.Ф. Грековым и П.Р. Багратионом. П.И. Евреинов в 1843 г. разработал цианистый электролит золочения.

Патент на электролитическое серебрение из цианистых электролитов был получен в 1840 г. Опыты по платинированию проводились с начала 40-х годов прошлого века в Германии, России и других странах. А.Ф. Греков применил для этой цели раствор платинохлороводородной кислоты.

В России уже в 1844 г. была открыта мастерская, в которой проводились меднение, золочение, серебрение, а позднее и другие процессы.

С конца 40-х годов XIX в. в судостроении Англии и Франции получило применение электролитическое цинкование. В России цинкование начали использовать на 10 лет позднее (с 1858 г.). Практически с этого же времени вошло в практику гальваническое лужение.

Хотя уже в 60-х годах Б.С. Якоби и Е.И. Клейн изучали никелирование, однако практическое использование этот процесс получил в России в начале 70-х годов. С конца XIX в. начались опыты по получению блестящих никелевых покрытий.

Электрохимическое хромирование впервые предложил Р. Бунзен (Германия) в 1854 г. Практическое применение хромирование нашло лишь после 1924 г.

В 1844 г. Б.С. Якоби сообщил об исследовании латунирования. В 40–50-е годы француз Рюольз изучал электроосаждение бронзы. Однако практическое применение электроосаждения сплавов началось в 1950–1960 гг.

Создание генераторов тока в прошлом веке снизило стоимость работ в гальванотехнике в несколько раз, позволило сократить время осаждения покрытий, механизировать вспомогательные работы (шлифование, полирование и др.). К настоящему времени гальваническое производство практически полностью автоматизировано. Широкое применение находят процессы никелирования, хромирования, меднения, цинкования, лужения, серебрения, золочения, нанесения сплавов: латуни, бронзы, никеля с кобальтом и железом, золота и серебра. В СССР большой вклад в развитие гальванотехники внесли Н.Т. Кудрявцев, В.И. Лайнер, П.С. Титов, А.Т. Вагромян, Ю.Ю. Матулис, К.М. Горбунова, Ю.М. Полукаров и др.

Одной из серьезных проблем гальванотехники остается очистка сточных вод и создание замкнутого водооборота.

7.4.7. АНОДНАЯ ОБРАБОТКА МЕТАЛЛОВ

Разработано и широко применяется несколько методов анодной обработки металлов: электрополирование, анодное оксидирование и размерная обработка.

Электрохимическое полирование было открыто русским химиком Е.И. Шпитальским в 1910 г. Процесс заключается в анодной обработке металлов в концентрированных растворах преимущественно кислородсодержащих кислот (Н3РO4, H2Cr2O7, HClO4, H2SO4 и др.) при относительно высоких плотностях тока. К настоящему времени разработаны составы и условия электрополирования многих металлов и сплавов: железа и стали, никеля, серебра, цинка, алюминия и др.

При анодном оксидировании алюминия в растворах серной, хромовой, щавелевой или других кислот на его поверхности образуется пористый слой оксида. Этот процесс получил название анодирования. В зависимости от состава раствора и условий анодирования получают оксидные пленки с различными физическими и физико-химическими свойствами. Анодирование применяется для придания поверхности алюминия износостойкости, защитных электроизоляционных или иных свойств.

В 1928 г. В.Н. Гусев и Л.П. Рожков (СССР) разработали способ электрохимической размерной обработки металлов. По этому способу металл подвергается локальному анодному растворению при высоких плотностях тока в проточном растворе электролита. К настоящему времени применяются методы электрохимического фрезерования, сверления, шлифования, удаления заусенцев, разрезки металла и др. Созданы станки-автоматы, обеспечивающие придание металлу необходимой формы рельефа.

СПИСОК ЛИТЕРАТУРЫ

7.1. Очерки по истории энергетической техники СССР // Промышленная электротермия / А.Д. Свенчанский, А.В. Нетушил, Л.Д. Радунский, К.М. Филиппов. М.-Л.: Госэнергоиздат, 1954. Вып. 32.

7.2. История энергетической техники СССР. Т. 2. М.: Госэнергоиздат, 1957.

7.3. Elektrowarme. Theorie und Praxis. Essen: Verlag W.Girardet, 1974.

7.4. Свенчанский А.Д., Смелянский М.Я. Электрические промышленные печи. М.: Энергия, 1970. Ч. 2. Дуговые печи.

7.5. Высокочастотный нагрев диэлектриков и полупроводников/ А.В. Нетушил, Б.Я. Жуховицкий, В.Н. Кудин, Е.П. Парини. М.-Л.: Госэнергоиздат, 1959.

7.6. Руденко Д.И. Развитие техники высокочастотного нагрева. М.-Л.: Машгиз, 1954.

7.7. Петров Ю.Б., Ратников Д.Г. Холодные тигли. М.: Металлургия, 1972.

7.8. Шевцов М.С., Бородачев А.С. Развитие электротермической техники. М.: Энергоатомиздат, 1983.

7.9. Альтгаузен А.П. Развитие электропечестроения в СССР в послевоенный период (обзор). ВНИИЭТО. М., 1981.

7.10. Фарбман С.А., Колобнев И.Ф. Индукционные электропечи для плавки цветных металлов. М.-Л. — Свердловск: Госметаллу ргиздат, 1933.

7.11. Вологдин В.П. История, важнейшие задачи и перспективы применения токов высокой частоты (Труды Первой ленинградской конференции) / Под ред. В.П. Вологдина. М.-Л.: Машгиз, 1952.

7.12. Кувалдин А.Б. Индукционный нагрев ферромагнитной стали. М.: Энергоатомиздат, 1988.

7.13. Ткачев Л.Г., Кононов И.А. Промышленные установки электронно-лучевого нагрева // Итоги науки и техники. Сер. Электротехнология. Т. 3. М.: ВИНИТИ, 1980.

7.14. Корниенко А.Н. У истоков «Электрогефеста». М.: Машиностроение, 1987.

7.15. Прикладная электрохимия. 2-е изд. / Под ред. Н.Т. Кудрявцева. М.: Химия, 1975.

7.16. Лукьянов П.И. История химических промыслов и химической промышленности России. Т. VI. Электрохимическая промышленность. М.: Наука, 1965.

7.17. Павлова О.И. История техники электроосаждения металлов. М.: Изд-во. АН СССР, 1963.

7.18. Электротермия: Инф.науч.-техн. сб. Вып. 127. М.: Информэлектро, 1973.

7.19. Электротермия: Инф.науч.-техн. сб. Вып. 118–119. М.: Информэлектро, 1972.

7.20. Лазаренко Б.Р. Электрические способы обработки металлов и их применение в машиностроении. М.: Машиностроение, 1978.

7.21. Золотых Б.Н. Физические основы электроискровой обработки металлов. М.: Гостех-издат, 1953.

7.22. Hering M. Podstawy elektrotermii. Cz. 1. Warszawa: Wydawnictwa Naukowa-Techniczne, 1992.

7.23. Finkelburg W., Maecker H. Elektrische Bogen und Thermisches Plasma // Handbuch der Physik. 1956. Bd.XXII.


Глава 8.
ЭЛЕКТРОТЕХНИЧЕСКИЕ СИСТЕМЫ ТРАНСПОРТА И АВИАКОСМИЧЕСКОЙ ТЕХНИКИ

8.1. ЭЛЕКТРОТЕХНИЧЕСКИЕ СИСТЕМЫ ЖЕЛЕЗНОДОРОЖНОГО, ГОРОДСКОГО ТРАНСПОРТА И ПОДЪЕМНО-ТРАНСПОРТНОГО ОБОРУДОВАНИЯ

8.1.1. ЖЕЛЕЗНОДОРОЖНЫЙ ТРАНСПОРТ

Как уже отмечалось в гл. 3, еще в XIX в. в наиболее развитых странах мира предпринимались попытки использовать электрическую энергию для перемещения экипажей, в том числе и по рельсовому пути.

Различают два вида железнодорожного тягового подвижного состава: автономный и неавтономный. При автономном подвижном составе на локомотиве (тепловозе или моторном вагоне дизель-поезда) устанавливают первичный дизельный двигатель, приводящий во вращение генератор (постоянного тока или синхронный), от которого получают электроэнергию тяговые электрические двигатели (ТЭД), связанные с колесными парами и обеспечивающие перемещение подвижного состава по рельсовому пути.

При неавтономном подвижном составе на локомотиве (электровозе или моторном вагоне электропоезда) устанавливают только ТЭД с аппаратурой управления и регулирования (а иногда и преобразователи электрической энергии), первичным источником электроэнергии является электростанция. При этом электроэнергия от электростанции к локомотиву передается через линии электропередачи (ЛЭП) и системы тягового электроснабжения, включающие в себя подстанции и контактную сеть, от которой при помощи токоприемника получают питание ТЭД локомотива.

В зависимости от рода тока в контактной сети различают три системы электрической тяги: постоянного тока, однофазного переменного тока промышленной частоты и однофазного переменного тока пониженной частоты. На железных дорогах России применяются только две первые системы.

В современной системе электрической тяги постоянного тока номинальное напряжение на токоприемнике локомотива составляет 3 кВ. Такой уровень напряжения выбран для возможности согласования с номинальным напряжением

ТЭД, которые изготавливают на напряжение 1500 В (или 750 В) и соединяют на последней позиции регулирования соответственно по два или четыре последовательно. Помимо ТЭД на локомотиве размещают еще и пускорегулирующую аппаратуру. На тяговых подстанциях в такой системе тяги устанавливают понижающие трансформаторы и полупроводниковые выпрямительно-инверторные агрегаты. При этом расстояния между смежными подстанциями не превышают 15–20 км, а площадь поперечного сечения медных контактных проводов достигает 600 мм2 и более, что приводит к значительным расходам цветных металлов.

С целью упрощения устройств тягового электроснабжения применяют систему электрической тяги однофазного переменного тока промышленной частоты, причем напряжение на токоприемнике электровоза составляет 25 кВ. В этом случае на электровозе помимо пускорегулирующей аппаратуры и ТЭД размещают понижающий трансформатор и выпрямительный (или выпрямительно-инверторный) блок, а тяговые подстанции являются чисто трансформаторными. При этом из-за повышенного напряжения расстояние между тяговыми подстанциями можно увеличить до 40–60 км, а сечение контактных проводов уменьшить в 2–3 раза.

Поскольку однофазная контактная сеть получает питание от трехфазной системы внешнего электроснабжения, это приводит к несимметричной загрузке генераторов, трансформаторов и ЛЭП и ухудшает их работу. Кроме того, однофазный тяговый ток оказывает значительное электромагнитное влияние на работу систем автоматики и радиосвязи, что вынуждает принимать специальные меры по обеспечению электромагнитной совместимости тяговых и нетяговых потребителей электроэнергии.

Система электрической тяги однофазного переменного тока пониженной частоты (16 (2/3) Гц в Европе, 25 Гц в США) позволяет устанавливать на локомотиве однофазные коллекторные двигатели переменного тока, получающие питание непосредственно от понижающего трансформатора локомотива и имеющие электротяговые характеристики, аналогичные таким же характеристикам ТЭД постоянного тока. Напряжение на токоприемнике локомотива составляет 15 кВ, а расстояние между тяговыми подстанциями, оборудованными электромагнитными или полупроводниковыми преобразователями частоты и числа фаз, достигает 40–60 км.

Поскольку тяговый подвижной состав, предназначенный для железных дорог, электрифицированных на постоянном и переменном токе, а также для автономной тяги, оборудован аналогичными по своим характеристикам ТЭД постоянного (или пульсирующего) тока, а принципиальные схемы систем передачи и регулирования потока энергии от контактной сети ТЭД локомотивов, как было отмечено выше, различны для различных видов электрической тяги, представляется целесообразным рассмотреть отдельно историю развития электротехнических систем электроподвижного состава (электровозов и электропоездов), предназначенного для эксплуатации на линиях, электрифицированных на постоянном и переменном токе, и автономных локомотивов. В дальнейшем будет проанализировано развитие электротехнических систем железнодорожного подвижного состава на примере СССР (а затем России). Это представляется достаточно обоснованным потому, что российские ученые и инженеры на всех этапах развития электрической тяги занимали передовые позиции, а в ряде случаев, например в создании электровоза и электропоезда переменного тока с асинхронными и синхронными тяговыми двигателями и статическими преобразователями электрической энергии, были одними из первых в мире. Среди известных русских ученых, внесших наибольший вклад в создание таких локомотивов, необходимо отметить Е.С. Аваткова, Д.А. Завалишина, Б.Н. Тихменева.

Первые восемь электровозов постоянного тока серии С10 были поставлены в СССР в 1932 г. американской фирмой ДЖИИ, причем только на первых двух были установлены ТЭД американского производства, а на шести последних уже были установлены отечественные двигатели типа ДПЭ-340 мощностью 340 кВт, выпущенные заводом «Динамо». В том же году завод «Динамо» совместно с Коломенским машиностроительным заводом, переработав американскую документацию, выпустил два отечественных аналога электровозов серии СЮ; они начали серию Сс. На всех электровозах этой серии было установлено по шесть ТЭД (масса каждого составляла 4300 кг) номинальным напряжением 1500 В. Для изменения скорости движения поезда использовались три схемы соединения ТЭД (последовательное, последовательно-параллельное и параллельное), причем на каждом соединении использовалось еще и двухступенчатое уменьшение магнитного потока. При рекуперативном торможении якоря ТЭД также имели три схемы соединения. Изменение направления движения осуществлялось посредством изменения направления тока в обмотках возбуждения ТЭД. Дискретное повышение напряжения на ТЭД при пуске достигалось за счет уменьшения сопротивления пусковых резисторов путем закорачивания их отдельных секций, состоящих из чугунных пластинчатых элементов, а впоследствии еще и за счет их параллельного соединения. Электрическая связь электрооборудования электровозов с контактным проводом осуществлялась при помощи двух токоприемников пантографного типа, причем в нормальных условиях работал только один пантограф. Все переключения в цепях пусковых и стабилизирующих (при рекуперации) резисторов осуществлялись индивидуальными пневматическими контакторами. Аналогичные контакторы применялись и в цепях регулирования магнитного потока.

На электровозах серий С10 и Сс было установлено по два мотор-компрессора и по два мотор-вентилятора для охлаждения ТЭД, мотор-генератор мощностью 57 кВт для питания обмоток возбуждения ТЭД при рекуперативном торможении и одноякорный двухколлекторный делитель напряжения (динамотор) с генератором тока управления на общем валу. От динамотора получали питание электродвигатели вспомогательных машин, рассчитанные на напряжение 1500 В.

Для питания цепей управления, сигнализации и освещения, имевших номинальное напряжение 50 В, при неработающих генераторах тока управления использовалась свинцовая аккумуляторная батарея. В качестве регулятора напряжения генератора тока управления использовались аппараты со столбиками угольных дисков.

Защита цепей ТЭД осуществлялась с помощью трех реле перегрузки, воздействующих на быстродействующий выключатель, а цепей электродвигателей вспомогательных машин — с помощью плавких предохранителей. Установленные на электровозах быстродействующие выключатели были сконструированы таким образом, что чем быстрее нарастал ток короткого замыкания, тем при меньшем его значении происходил разрыв их контактов.

В 1933–1934 гг. СССР закупил у итальянской фирмы «Итальяно техномазио Броун Бовери» семь электровозов серии Си, электрооборудование которых было в основном аналогичным электрооборудованию электровозов серий С10 и Сс. Различие состояло в большей мощности ТЭД и выполнении двигателей вспомогательных машин на номинальное напряжение 3000 В, вследствие чего динамотор на них отсутствовал, а генераторы тока управления приводились во вращение от электродвигателей вентиляторов.

В 1932 г. на заводе «Динамо» и в Центральном локомотивопроектном бюро началось рабочее проектирование шестиосного грузопассажирского электровоза серии ВЛ19 с меньшей по сравнению с электровозами серии Сс нагрузкой на рельсы. В отличие от его предшественников на этом электровозе было применено резистор-ное торможение.

В 1936 г. завод «Динамо» выпустил первый шестиосный грузовой электровоз серии СК с тяговыми двигателями типа ДПЭ-340, рекуперативным торможением и значительно улучшенной схемой электрического торможения в отношении использования секций пускового резистора.

В 1938 г. заводом «Динамо» и Коломенским машиностроительным заводом были начаты работы по созданию модернизированного электровоза серии Сс. При сохранении ТЭД типа ДПЭ-340 электродвигатели вспомогательных машин этого электровоза, которому было присвоено обозначение ВЛ22, были выполнены на номинальное напряжение 3000 В. Вместо пантографов с двумя полозами на электровозах были установлены пантографы с одним полозом, имевшие меньшую массу.

В 1940 г. завод «Динамо» изготовил шесть ТЭД типа ДПЭ-400, которые были предназначены для замены двигателей на электровозах серий ВЛ22, ВЛ19, Сс и СК без переделки механической части.

Последний электровоз серии ВЛ22 был построен на заводе «Динамо» в 1946 г., после чего их выпуск был освоен на созданном на базе разрушенного во время войны паровозостроительного завода Новочеркасском электровозостроительном заводе (НЭВЗ). Первому электровозу НЭВЗ было присвоено обозначение ВЛ22м. Электрические схемы силовых цепей и цепей управления электровозов серии ВЛ22м с рекуперативным торможением незначительно отличались от аналогичных схем электровозов серий ВЛ22 и Сс, что позволяло этим электровозам работать по системе многих единиц.

В 1953 г. на НЭВЗ был изготовлен первый двухсекционный восьмиосный грузовой электровоз постоянного тока серии Н8. Восемь ТЭД типа НБ-406А имели три группировки, на каждой из которых имелось по три ступени уменьшения магнитного потока.

Для уменьшения мощности и массы мотор-генераторов в режиме рекуперативного торможения была применена схема с циклической стабилизацией без стабилизирующих резисторов.

В 1963 г. эти электровозы получили обозначение ВЛ8 и строились по 1967 г. включительно.

Электровозы серии ВЛ22м, предназначенные специально для обслуживания поездов на горных участках, не отвечали условиям эксплуатации на линиях с холмистым и равнинным профилем. Поэтому в 1954 г. на НЭВЗ был разработан эскизный проект нового шестиосного грузового электровоза серии ВЛ23 с ТЭД типа НБ.

Вспомогательные электрические машины и аппараты были унифицированы с электровозами серий ВЛ22м и ВЛ8.

К началу 60-х годов электровозы серии ВЛ8 с тяжелыми литыми тележками уже не отвечали возросшим требованиям к локомотивам такого класса. Кроме того, необходимо было унифицировать тележки для электровозов постоянного и переменного токов.

Новый двухсекционный восьмиосный электровоз, имевший большую мощность ТЭД типа ТЛ-2 и оборудованный устройством для выравнивания нагрузок от колесных пар на рельсы при больших тяговых усилиях, был изготовлен Тбилисским электровозостроительным заводом в 1961 г. (первоначальное обозначение Т8). Электрическая аппаратура электровоза была такой же, как у электровозов серии ВЛ8. Начиная с 1963 г. электровозы получили обозначение ВЛ10.

До 1957 г. на линиях, электрифицированных на постоянном токе, пассажирские поезда обслуживались электровозами серий ВЛ22м, ВЛ22 и ВЛ19, которые по своим тяговым характеристикам и динамическим качествам не соответствовали условиям пассажирского движения. Поэтому в 1956 г. было подписано соглашение о поставке из Чехословацкой Социалистической Республики двух опытных электровозов, выполненных на базе чешских четырехосных электровозов типа 12Е. На первых электровозах этой серии, получившей обозначение ЧС1, устанавливались шестиполюсные ТЭД, имеющие слабонасыщенную магнитную систему, благодаря чему можно было за счет значительного уменьшения магнитного потока двигателя регулировать скорость движения электровоза в широких пределах. Переключение ТЭД с последовательного соединения на параллельное осуществлялось при помощи мостового перехода. При последовательном соединении ТЭД имелось четыре ступени уменьшения магнитного потока, при параллельном — шесть. На электровозе было установлено по два мотор-компрессора и по два мотор-вентилятора. Двигатели вентиляторов вращают генераторы тока управления, служащие для питания цепей управления и освещения и заряда железоникелевой аккумуляторной батареи.

В 1960 г. на электровозах серии ЧС1 были установлены ТЭД с пятью ступенями уменьшения магнитного потока на каждой группировке. Таким электровозам было присвоено обозначение серии ЧСЗ.

Дальнейшее повышение скоростей движения пассажирских поездов обусловило необходимость увеличения мощности электровозов, и в 1958 г. на базе чехословацких электровозов типа 25Е были изготовлены для СССР два шестиосных пассажирских электровоза серии ЧС2. На электровозах имелись три группировки ТЭД с пятью ступенями уменьшения магнитного потока двигателей на каждой. Переход от одной группировки к другой осуществлялся посредством подключения параллельно одной из групп ТЭД переходного резистора (так называемое шунтирование ТЭД резистором). Цепи защиты и вспомогательные машины выполнялись так же, как на электровозе серии ЧС1, только мотор-вентиляторов было четыре. В 1962 г. на электровозах серии ЧС2 вместо четырех мотор-вентиляторов было установлено два мотор-вентилятора, но большей мощности, причем номинальное напряжение их двигателей составляло 3000 В. Двигатели мотор-компрессоров также перевели на напряжение 3000 В. Ранее применявшиеся чугунные секции пусковых резисторов были заменены на более легкие фехралевые.

В период с 1966 по 1975 г. продолжалось серийное изготовление (с некоторой модернизацией) электровозов серии ВЛ10 двумя заводами — Новочеркасским и Тбилисским. На них, в частности, были установлены ТЭД типа ТЛ-2К1. Впервые в отечественной практике для питания обмоток возбуждения ТЭД в 1970 г. был установлен статический преобразователь постоянного напряжения 3000 В в постоянное напряжение 38 В. Несколько позже аналогичный преобразователь был использован на одном электровозе для питания обмоток возбуждения в режиме рекуперативного торможения.

Восьмиосные электровозы серий ВЛ8 и ВЛ10 имели общую силовую цепь ТЭД для обеих секций, что не позволяло использовать их при работе в одну секцию. В ряде случаев было необходимо иметь локомотив с 10–12 тяговыми осями. Поэтому было принято решение спроектировать новый грузовой электровоз постоянного тока на базе четырехосной автономной секции, а число секций набирать по мере надобности. В 1975 г. Тбилисский электровозостроительный завод выпустил первый двухсекционный электровоз этой серии (ВЛ11) с ТЭД типа ТЛ-2К1. Четыре ТЭД каждой секции имели только два соединения: четыре двигателя последовательно и две параллельные группы ТЭД, каждая из которых содержит два последовательно соединенных ТЭД. На каждом соединении ТЭД имеется по четыре ступени уменьшения магнитного потока.

В 1973 г. НЭВЗ выпустил первый восьмиосный двухсекционный электровоз серии ВЛ12 с ТЭД типа НБ-407Б. Как и на электровозе серии ВЛ11, на каждой секции предусматривалось два соединения ТЭД, причем для изменения группировок использовался мостовой переход. Применено независимое возбуждение ТЭД в режиме тяги, а также при резисторном и рекуперативном торможении, причем для питания обмотки возбуждения во всех режимах были использованы статические преобразователи. Для заряда аккумуляторных батарей использован трехфазный генератор в сочетании с полупроводниковым выпрямителем.

Для обеспечения пассажирского движения с максимальной скоростью 200 км/ч (линия Москва — Ленинград) ЧССР в 1975 г. начала поставку восьмиосных двухсекционных электровозов серии ЧС200. Четыре двигателя каждой секции имели две группировки, на каждой из которых предусмотрено по пять ступеней уменьшения магнитного потока, а изменение группировок осуществлено по мостовой схеме. Схема резисторного торможения аналогична такой же схеме электровозов серии ЧС2т.

Известные недостатки системы электрической тяги постоянного тока обусловили в 60-х годах начало работ по повышению напряжения в контактной сети постоянного тока до 6 кВ. Состояние преобразовательной техники в то время было таково, что ни на полупроводниковых приборах, ни тем более на тиратронах надежно работающий статический преобразователь реализовать было невозможно. Однако идеи, предложенные отечественными учеными, ведущую роль среди которых играл В.Е. Розенфельд, для того времени были весьма прогрессивными и не имели аналогов в мире. Структура преобразования электроэнергии на электровозе была такой: постоянное напряжение в тиратронном варианте вначале преобразовывалась в напряжение трехфазной системы переменного тока повышенной частоты. При помощи разделительного трансформатора контактная сеть гальванически отделялась от цепи ТЭД, причем на выходе трансформатора формировалась трехфазная система напряжения с уровнем, оптимальным по напряжению ТЭД. Затем это напряжение выпрямлялось и прикладывалось к ТЭД постоянного тока. В полупроводниковом варианте на секции электровоза устанавливался шестиканальный импульсный преобразователь постоянного напряжения, предназначенный для преобразования постоянного высокого напряжения в постоянное регулируемое по значению напряжение.

Экспериментальные работы по применению этой системы проводились в СССР в 1964–1975 гг. на электровозах серии ВЛ8 (в 1966 г. это был первый в мире электровоз постоянного тока со статическими преобразователями на напряжение 6 кВ) и ВЛ22. Однако дальше изготовления опытных образцов электровозов из-за низкой надежности работы преобразовательного оборудования эти исследования не продвинулись.

Дальнейшее развитие электровозов постоянного тока с ТЭД постоянного тока шло по пути увеличения мощностей локомотивов за счет увеличения количества тяговых осей. В 1984 г. Тбилисским электровозостроительным заводом был построен двухсекционный двенадцатиосный грузовой электровоз серии ВЛ15 с ТЭД типа ТЛЗ. Схема силовой цепи электровоза предусматривает наличие трех группировок ТЭД с четырьмя ступенями уменьшения магнитного потока на каждой. Для маневровой работы, а также для отключения неисправного двигателя предусмотрена возможность соединения последовательно всех 12 ТЭД. С целью ограничения провалов силы тяги при переходе от одной группировки к другой применен вентильный переход. В остальном электрическая схема аналогична схеме электровозов серий ВЛ10 и ВЛ11. Для питания обмоток возбуждения ТЭД в режиме рекуперации использовались как машинные, так и статические преобразователи.

При очень высокой грузонапряженности железных дорог СССР актуальным являлось уменьшение количества пассажирских поездов при одновременном увеличении количества вагонов в них, что требует локомотивов с увеличенной силой тяги. Поэтому на первом этапе работы было решено у электровозов серии ЧС200 изменить передаточное число редукторов без изменения электрической схемы. Такие электровозы, поставка которых в СССР началась в 1981 г., получили обозначение серии ЧС6.

Использовав многие аппараты и узлы электровозов серий ЧС2т, ЧС200 и ЧС6, заводы «Шкода» в 1983 г. изготовили 20 двухсекционных восьмиосных пассажирских электровозов серии ЧС7. Имеется три группировки ТЭД, причем при восьми последовательно соединенных двигателях реализована общая схема силовой цепи для двух секций. На каждой группировке предусмотрено по пять ступеней уменьшения магнитного потока двигателей.

Электровозы этой серии были последними электровозами, поставленными из ЧССР в СССР. С распадом СССР поставки электровозов в Россию из ЧССР и Грузии были прекращены.

В настоящее время в соответствии с федеральной программой развития железнодорожного транспорта НЭВЗ в кооперации с другими заводами России готовит к выпуску опытный образец восьмиосного электровоза постоянного тока серии ЭП100 с трехфазными синхронными (вентильными) ТЭД. В качестве входного звена на электровозе используется импульсный преобразователь постоянного напряжения, в качестве выходного — трехфазный автономный инвертор тока.

В 1961 г. НЭВЗ выпустил первый восьмиосный электровоз однофазно-постоянного тока серии ВЛ80 со ртутными выпрямителями и высоковольтным регулированием напряжения. При эксплуатационных испытаниях этих электровозов были выявлены неполадки в системе высоковольтного переключателя ступеней, что обусловило переход к регулированию напряжения на вторичной обмотке трансформатора. В дальнейшем на электровозах ртутные выпрямители были заменены полупроводниковыми — диодными (электровозы серии ВЛ80к), применено резисторное торможение при независимом возбуждении ТЭД (электровозы серии ВЛ80т). Установка на электровозах тиристорных выпрямителей вместо диодных позволила реализовать плавное зонно-фазовое регулирование напряжения на ТЭД и рекуперативное торможение при независимом возбуждении двигателей (электровозы серии ВЛ80р).

Последним серийным электровозом однофазно-постоянного тока, выпущенным в СССР, был электровоз серии ВЛ80с, имеющий в основном электрическую схему и характеристики электровоза ВЛ80р, но предназначенный для работы по системе многих единиц [8.1–8.13].

Для пополнения парка электровозов однофазно-постоянного тока, выработавших свой ресурс, НЭВЗ продолжает выпускать электровозы новых серий. К ним относятся грузовой шестиосный электровоз серии ВЛ65 и пассажирский шестиосный электровоз серии ЭП1.

В соответствии с федеральной программой развития железнодорожного транспорта основным направлением при создании электроподвижного состава в России является использование на нем бесколлекторных (в первую очередь, асинхронных) ТЭД.

Еще в 1967 г. НЭВЗ изготовил макетную секцию, а в 1970 г. опытный восьмиосный электровоз с синхронными (вентильными) ТЭД (в создании электровоза активное участие принимали работники Всесоюзного научно-исследовательского института железнодорожного транспорта (ВНИИЖТ) под руководством Б.Н. Тихменева и Всесоюзного научно-исследовательского и проектно-технологического института электровозостроения (ВЭлНИИ) под руководством Б.К. Баранова). В 1970–1975 гг. было построено три таких электровоза (ВЛ80в).

Параллельно с этим НЭВЗ велись работы по созданию электроподвижного состава переменного тока с асинхронными ТЭД, и в 1967 г. была изготовлена опытная секция, а в 1971 г. опытный восьмиосный электровоз с асинхронными ТЭД (ВЛ80а).

Среди электровозов нового поколения, появление которых ожидается в ближайшие годы, следует отметить восьмиосный электровоз переменного тока серии ЭП200 с асинхронными ТЭД, шестиосный пассажирский электровоз серии ЭП2 с асинхронными ТЭД шестиосный пассажирский электровоз двойного питания серии ЭП10 с асинхронными ТЭД и восьмиосный электровоз постоянно-переменного тока (контактная сеть постоянного тока, ТЭД переменного тока) серии ЭП100 с синхронными ТЭД.

Для обеспечения пригородных и межобластных перевозок в СССР, а затем и в России использовались электропоезда, которые в отличие от пассажирских поездов не имели локомотива и прицепных вагонов, а состояли из секций, каждая из которых включала в себя моторный (т.е. оборудованный тяговыми двигателями с системой управления) и прицепной вагоны. В специальной литературе моторные и прицепные вагоны объединяются общим понятием «мотор-вагонный электроподвижной состав».

Пригородные поезда мотор-вагонной тяги формируют, как правило, из нескольких секций. ТЭД и электрооборудование вагонов с целью экономии места в салоне располагают под вагоном.

В дореволюционной России мотор-вагонный подвижной состав использовался на узкоколейных (шириной 1000 мм) подъездных путях г. Лодзь. Для этих линий Русско-Балтийский вагоностроительный завод («Руссо-Балт», г. Рига) в 1900 г. изготовил 16 моторных и 20 прицепных вагонов. На моторных вагонах были установлены тяговые двигатели постоянного тока типа GE-58, изготовленные фирмой «Дженерал электрик» (США). Питание контактной сети осуществлялось от двух электростанций, на каждой из которых был установлен генератор постоянного тока мощностью 110 кВт (выходное напряжение 550 В, ток 200 А).

Первые в СССР пригородные электропоезда были введены в эксплуатацию в 1926 г. на линии Баку — Сабунчи. Моторные вагоны для этой дороги были изготовлены Мытищинским вагоностроительным заводом, тяговые двигатели и пусковые резисторы — заводом «Динамо», электрические аппараты — фирмой «Элин» (Австрия) и тормозное оборудование — фирмой «Кнорр» (Германия). На каждом моторном вагоне было установлено по четыре ТЭД типа ДБ-2 номинальным напряжением 600 В (напряжение в контактной сети 1200 В). Тяговые двигатели имели две группировки.

При создании систем мотор-вагонной тяги в 20–30-х годах этого столетия в СССР рассматривалось несколько вариантов уровней напряжения в контактной сети постоянного тока: 600–800; 1200–1500 и 3000 В. На том этапе было принято напряжение 1500 В, что обусловливалось меньшими затратами меди для контактной сети по сравнению с напряжением 600–800 В и возможностью создания надежного электрооборудования моторного вагона, что нельзя было выполнить в то время для напряжения 3000 В.

Каждая трехвагонная секция серии Св состояла из одного моторного и двух прицепных вагонов. На каждом моторном вагоне были установлены четыре ТЭД типа ДП-150, изготовленные заводом «Динамо». Электрическая аппаратура была изготовлена английской фирмой «Метрополитен Виккерс». Двигатели имели две группировки, причем на параллельном соединении (по два последовательно) было возможно движение с уменьшенным магнитным потоком.

От коротких замыканий и перегрузок двигатели защищались при помощи реле максимального тока, отключающего линейные контакторы, и главного предохранителя. Реверсирование электропоезда осуществлялось посредством изменения направления тока в обмотках возбуждения ТЭД, а при повреждении одного из двигателей предусматривалась возможность отключения группы из двух последовательно соединенных двигателей. Цепи управления и освещения секций питались постоянным током напряжением 50 В от мотор-генератора или аккумуляторной батареи, установленных под кузовом моторного вагона.

Одним из наиболее слабых мест в электромеханическом оборудовании электропоездов серии Св оказались ТЭД типа ДП-150, в которых была применена хлопчатобумажная изоляция проводников якоря. В последующем эта изоляция была заменена полуслюдяной. Кроме того, имелись определенные недостатки и в электрической аппаратуре. Поэтому по мере износа ТЭД и электрической аппаратуры моторные вагоны секций серии Св начали переделывать в моторные вагоны вначале переходных серий, а затем серии Сд. Вагоны секций этой серии отличались от вагонов серии Св электрической аппаратурой. Прежде всего это различие состояло в том, что переход от одной группировки ТЭД к другой осуществлялся по способу короткого замыкания группы двигателей.

Начиная с 1935 г. вместо тяговых двигателей типа ДП-150 начали выпускаться более мощные и конструктивно улучшенные двигатели типа ДПИ-150.

В 1946 г. в связи с электрификацией пригородного участка Москва — Домодедово завод «Динамо» выпустил первый комплект нового электрооборудования и ТЭД типа ДК-103А для электропоездов серии Сд. Такие электропоезда могли работать при двух уровнях напряжения в контактной сети (1500 и 3000 В) и получили обозначение серии См.

В 1947 г. Рижским вагоностроительным заводом (РВЗ) была выпущена первая мотор-вагонная секция нового электропоезда серии Ср, электрооборудование и ТЭД которой были аналогичны секции электропоезда серии См.

В дальнейшем электротехнические системы электропоездов принципиально повторили ту же эволюцию, что и аналогичные системы электровозов. С 1952 г. вместо электропоездов серий Ср на РВЗ был освоен выпуск электропоездов серии С, предназначенных для эксплуатации только на линиях напряжением 3 кВ. В 1957 г. эти электропоезда начали оборудовать системой автоматического ведения поезда. В том же году на РВЗ вместо трехвагонных секций стали выпускать двухвагонные секции, ставшие основой электропоезда серии ЭР1, на которых стали устанавливаться новые ТЭД типа ДК-106Б. Кроме калориферов для подогрева воздуха в салонах с 1962 г. стали устанавливать под пассажирскими сиденьями электрические печи, причем в 1963 г. на Московском локомотиворемонтном заводе (МЛРЗ) все электропоезда раннего выпуска переоборудовались на комбинированную систему электроотопления. В 1962 г. РВЗ вместо электропоездов серии ЭР1 стал выпускать электропоезда серии ЭР2, на которых с 1964 г. стали устанавливать ТЭД типа УРТ-ПОА, имеющие одинаковые с ТЭД типа ДК-106Б электромеханические характеристики, но изготовленные с применением современных пластмасс.

По инициативе Прибалтийской железной дороги в 1970 г. были начаты работы по замене контакторно-резисторного электрооборудования на бесконтактное, позволяющее обеспечить плавное регулирование напряжения на ТЭД в процессе пуска электропоезда. В 1971 г. на одном из восьмивагонных электропоездов серии ЭР2 под кузовами всех четырех моторных вагонов были установлены статические импульсные преобразователи постоянного напряжения, работающие в режиме частотно-широтно-импульсного регулирования напряжения. Тягово-энергетические испытания показали, что применение для пуска импульсных статических преобразователей позволяет заметно снизить расход электроэнергии на тягу.

В 1970 г. МЛРЗ оборудовал шестивагонный электропоезд серии ЭР2 импульсными преобразователями постоянного напряжения с частотно-импульсным регулированием напряжения, которые в отличие от поезда Прибалтийской железной дороги были постоянно включены в цепь ТЭД (в работе принимали участие ученые Московского энергетического института и работники проектно-конструкторского бюро Главного управления локомотивного хозяйства МПС СССР).

Несмотря на положительные результаты испытаний электропоездов постоянного тока со статическими импульсными преобразователями, из-за отсутствия необходимой для их комплектации элементной базы (силовых полупроводниковых приборов и конденсаторов) дальнейшие работы по созданию таких электропоездов в СССР были прекращены.

С целью уменьшения времени доставки пассажиров на линии Москва — Ленинград в 1974 г. РВЗ совместно с Рижским электромашиностроительным заводом (РЭЗ) изготовил скоростной десятивагонный электропоезд постоянного тока серии ЭР200, имеющий конструктивную скорость 200 км/ч. Два моторных вагона имеют объединенную электрическую схему силовых цепей, при которой четыре ТЭД каждого вагона постоянно соединены последовательно, а в начальной стадии пуска последовательно соединяют восемь ТЭД. Пуск резисторный, десятиступенчатый, причем между ступенями плавное регулирование напряжения осуществляется при помощи статического импульсного преобразователя. Для плавного уменьшения магнитного потока ТЭД также используется импульсный преобразователь. При этом при скорости выше 30 км/ч использована система «автомашинист». На электропоезде применено резисторное торможение. После завершения тягово-энергетических испытаний электропоезд поступил на Октябрьскую железную дорогу, где после нескольких модернизаций эксплуатируется и в настоящее время.

В связи с бурным развитием электрической тяги переменного тока в 1959 г. РВЗ была выпущена опытная двухвагонная секция, а в 1961 г. первый десятивагонный электропоезд однофазного постоянного тока серии ЭР7 со ртутными выпрямителями и ТЭД типа РТ51В пульсирующего тока, соединенными попарно-параллельно. В отличие от электровозов уже на первых электропоездах однофазно-постоянного тока выпрямители были выполнены по мостовой схеме. Регулирование напряжения, прикладываемого к ТЭД, осуществлялось дискретно на вторичной обмотке за счет изменения коэффициента трансформации трансформатора. Дополнительно для расширения диапазона регулирования скорости электропоезда использовались ступени уменьшения магнитного потока двигателей. Электродвигатели компрессоров, вентилятора, насоса трансформатора, вентилятора реактора и других вспомогательных машин питаются трехфазным током напряжением 220 В, получаемым от электромашинного фазорасщепителя. Щелочная аккумуляторная батарея (напряжение ПО В) питается от специальной вторичной обмотки тягового трансформатора через выпрямитель.

В 1961 г. по инициативе ВНИИЖТ была начата модернизация выпрямительных установок электропоездов серии ЭР7, заключавшаяся в замене в них ртутных вентилей полупроводниковыми, и к 1964 г. на всех моторных вагонах ртутные выпрямители на МЛРЗ были заменены полупроводниковыми, располагаемыми под моторными вагонами. Этим поездам было присвоено обозначение серии ЭР7к. В отличие от электрической схемы электропоездов серии ЭР7 на электропоездах серии ЭР7к для регулирования напряжения был использован так называемый «вентильный переход», позволяющий устранить громоздкий делительный реактор, а для защиты вентилей от токов короткого замыкания применены быстродействующие разъединители, разрывающие цепь тока в непроводящий полупериод.

В том же году РВЗ совместно с РЭЗ и Всесоюзным электротехническим институтом (ВЭИ) выпустил опытную, двухвагонную секцию электропоезда серии ЭР9, полупроводниковая выпрямительная установка которого располагалась в тамбуре моторного вагона. При сохранении того же принципа регулирования напряжения и тех же ТЭД, что на поездах серии ЭР7к, по предложению ВЭИ бесконтактная защита вентилей от токов короткого замыкания была заменена контакторной при помощи главного воздушного выключателя типа ВОВ-25–4 с одновременным увеличением индуктивного сопротивления в контуре короткого замыкания за счет введения между вторичной обмоткой трансформатора и входными зажимами выпрямительной установки токоограничивающих реакторов. Впоследствии выпрямительные установки были перенесены под кузов моторных вагонов (электропоезд серии ЭР9п).

Электропоезда серий ЭР9 (с модернизациями) были единственными в СССР серийно выпускаемыми поездами однофазно-постоянного тока. Их выпуск продолжался до распада СССР, а в 1995 г. возобновлен на Демиховском машиностроительном заводе, причем электропоезда серии ЭД9т оборудованы системой резисторного торможения с независимым возбуждением ТЭД.

Наряду с выпуском серийных электропоездов однофазно-постоянного тока в СССР в 60-х годах велись научно-исследовательские работы по созданию электропоезда переменного тока с асинхронными ТЭД и статическими преобразователями электроэнергии, завершившиеся выпуском в 1970 г. первого в мире восьмивагонного электропоезда серии ЭР9а с асинхронными ТЭД типа ЭТА-300 мощностью часового режима 300 кВт каждый. В отличие от вентильного перехода электропоезда серии ЭР9 вентильный переход нового электропоезда был выполнен на тиристорах, что обеспечило плавное зонно-фазовое регулирование выпрямленного напряжения. От выходных зажимов выпрямителя асинхронные ТЭД питались через автономные инверторы напряжения (как и на электровозе серии ВЛ80а). К сожалению, несмотря на положительные результаты испытаний, отсутствие в то время необходимой элементной базы не позволило пустить электропоезд в нормальную эксплуатацию.

Вторично задача создания электропоездов переменного тока с асинхронными ТЭД нашла свое решение в 80-х годах, когда на базе электропоезда серии ЭР9 РЭЗ и Московским институтом инженеров железнодорожного транспорта (МИИТ) была оборудована асинхронными ТЭД и статическими преобразователями электроэнергии двухвагонная секция.

Секция успешно прошла пусконаладочные и испытательные поездки вначале на Горьковской железной дороге, а на испытательном кольце ВНИИЖТ, но в связи с отделением Латвии дальнейшие работы по созданию электропоезда с асинхронными ТЭД были прекращены.

Третья и наиболее успешная попытка создания электропоезда переменного тока с асинхронными ТЭД была предпринята по инициативе МПС РФ в 1995 г., когда ВЭлНИИ совместно с МИИТ, ВНИИЖТ и Новосибирским научно-исследовательским институтом комплектного электрооборудования (НИИКЭ) создал двухвагонную макетную секцию, одна из тележек моторного вагона которой была оборудована асинхронными ТЭД. Преобразователь электроэнергии был выполнен по схеме двухзонный тиристорный выпрямитель — автономный инвертор тока, причем секция была оснащена микропроцессорной системой автоматического управления режимами тяги и торможения. Успешные тягово-энергетические испытания секции на кольце ВНИИЖТ позволили вплотную подойти к решению задачи создания на НЭВЗ опытного шестивагонного электропоезда переменного тока серии ЭНЗ с асинхронными ТЭД.

На Демиховском машиностроительном заводе ведутся подготовительные работы по созданию электропоезда постоянно-переменного тока серии ЭД6 с асинхронными ТЭД и статическими преобразователями электроэнергии. Преобразователь электроэнергии такого электропоезда двухзвенный. Во входном звене преобразователя установлен импульсный преобразователь постоянного напряжения, а в выходном — автономный инвертор тока, что позволяет унифицировать узел автономный инвертор — асинхронный ТЭД для перспективных электропоездов, предназначенных для линий постоянного и переменного токов.

Необходимо при этом отметить, что по инициативе РАО «Высокоскоростная магистраль» Октябрьской железной дорогой, АО «Сила» в содружестве с МИИТ и ЗАО «Асинхрон» создана и в 1997 г. успешно прошла испытания макетная двухвагонная секция с асинхронным и тяговыми двигателями, преобразовательная установка которой выполнена на отечественной элементной базе.

Наряду с созданием главных тяговых электроприводов с асинхронными ТЭД в России ведутся работы по полной замене приводных электродвигателей постоянного тока для вспомогательных машин асинхронными приводными двигателями.

В 1996 г. на МЛРЗ был испытан образец статического преобразователя электроэнергии, изготовленного АО «Электровыпрямитель» (г. Саранск) с участием ЗАО «Асинхрон» и предназначенного вместо машинного преобразователя для питания асинхронного двигателя компрессора и бортовых цепей постоянного тока. По откорректированной в результате испытаний макетного образца документации АО «Электровыпрямитель» в 1997 г. был изготовлен опытный образец такого преобразователя с улучшенными характеристиками, который после наладочных испытаний на МЛРЗ поступит для испытаний на кольцо ВНИИЖТ.

Следует отметить, что, несмотря на пионерскую роль СССР в создании электроподвижного состава c бесколлекторными ТЭД, за последние 15 лет ведущим фирмам Германии, Японии, Франции, Италии удалось создать большое количество тяговых единиц с асинхронными (значительно реже с синхронными) ТЭД. Это объясняется в первую очередь тем, что передовые электротехнические фирмы значительно опередили российские предприятия в выпуске современных силовых приборов — GTO-тиристоров и JGBT-транзисторов и модулей на их основе. В настоящее время благодаря использованию современного технологического оборудования положение выравнивается, и, надо полагать, что в ближайшее время будут созданы высокоэкономичные отечественные тяговые преобразовательные установки на силовых полупроводниковых приборах нового поколения.

Еще в начале 90-х годов XIX в. русскими инженерами Л.Г. Кузнецовым и А.И. Одинцовым был разработан проект дизельного тепловоза с электрической передачей, в котором на валу дизеля предлагалось установить трехфазные генераторы переменного тока, питающие ТЭД и приводящие в движение колесные пары локомотива.

В начале XX в. на Коломенском машиностроительном заводе (КМЗ) в числе других был разработан проект тепловоза мощностью 1600 л.с. с электрической передачей, но такой тепловоз создан не был.

В 1924 г. на КМЗ был изготовлен первый отечественный тепловоз с электрической передачей, предложенной ЯМ. Гаккелем. Имея максимальную мощность дизеля, равную 1030 л.с., тепловоз, имевший конечное наименование Щэл 1, был в то время самым мощным в мире (мощность 100 кВт). Первые отечественные тепловозные ТЭД были спроектированы под руководством А.Е. Алексеева.

В дальнейшем развитие электротехнических систем отечественных тепловозов, повторяя, а иногда опережая развитие таких систем за рубежом, шло по пути совершенствования и увеличения мощности тяговых генераторов постоянного тока и ТЭД, а также другого электротехнического оборудования. При этом практически сразу наметились различия в электрооборудовании тепловозов, электровозов и электропоездов в уровне напряжений при принципиально одинаковой структуре преобразования и регулирования потока энергии в непосредственно электрической передаче. Это объяснялось тем, что поскольку тепловоз является автономным (не связанным с контактной сетью) локомотивом, то в нем может быть выбран более низкий уровень напряжения, прикладываемого к ТЭД, что и было сразу же сделано. В дальнейшем это напряжение постепенно повышалось.

Поэтому основные этапы развития электротехнических систем тепловозов и электроподвижного состава совпадают. Как и у электровозов, у которых сначала источником электроэнергии являлась контактная сеть постоянного тока, у тепловозов первых поколений в качестве источников электроэнергии выступали генераторы постоянного тока (с различными типами систем возбуждения). Электродвигатели и другое электротехническое оборудование тепловозов выпускали завод «Динамо», а впоследствии Харьковский электромашиностроительный завод (затем завод «Электротяжмаш»).

В конце 1967 г. Ворошиловградский (впоследствии Луганский) тепловозостроительный завод выпустил первый односекционный тепловоз серии ТЭ109 с электрической передачей переменно-постоянного тока, позволяющей иметь более легкий и надежный главный генератор. Главный синхронный генератор типа ГС-501А был выполнен с независимым возбуждением и принудительной вентиляцией. Для уменьшения пульсаций выпрямленного напряжения на статоре генератора расположены две трехфазные обмотки, одноименные векторы напряжений которых сдвинуты один относительно другого на 30° (электрических). К каждой статорной обмотке подключены входные зажимы трехфазных мостовых диодных выпрямителей, соединенных по отношению к нагрузке (тяговым двигателям) последовательно. Обмотка ротора генератора получает питание от машинного возбудителя через выпрямитель. На тепловозе установлены шесть ТЭД типа ЭД-112А. Предусмотрены две ступени уменьшения магнитного потока.

В дальнейшем развитие тепловозов шло по пути увеличения мощности как за счет увеличения количества тяговых осей, так и за счет увеличения мощности ТЭД, без принципиальных изменений в электрооборудовании.

Начало следующего этапа в развитии электрооборудования тепловозов относится к 1975 г., когда на Ворошиловградском тепловозостроительном заводе был изготовлен первый тепловоз типа ТЭ120 с электрической передачей переменного тока. Тяговый агрегат тепловоза типа А-711 состоит из главного синхронного генератора типа ГС-504А и вспомогательного генератора типа ГС-507 для питания цепей электрического отопления пассажирских вагонов. Такое совмещение в одном агрегате главного и вспомогательного генераторов в отечественном тепловозостроении было осуществлено впервые.

К двум трехфазным статорным обмоткам главного генератора подключены входные зажимы двух мостовых диодных выпрямителей, соединенных по отношению к нагрузке последовательно. К выходным зажимам выпрямителей через индивидуальные трехфазные автономные инверторы напряжения подключены статорные обмотки шести асинхронных ТЭД типа ЭД-900. Уровень напряжения, прикладываемого к ТЭД, регулируется возбудителем главного генератора, а частота этого напряжения — автономным инвертором.

По результатам испытаний опытного тепловоза с асинхронными ТЭД были сделаны рекомендации о выпуске такого тепловоза в двухсекционном варианте, но, как и в случае с электровозами, эти работы были приостановлены из-за отсутствия необходимой элементной базы (силовых полупроводниковых приборов и конденсаторов).

В связи с распадом СССР выпуск тепловозов в России перешел полностью на Коломенский тепловозостроительный завод, который продолжает выпускать грузовые и пассажирские тепловозы с электрической передачей переменно-постоянного тока, электрооборудование которых не претерпевает принципиальных изменений [8.13].

8.1.2. ГОРОДСКОЙ ЭЛЕКТРИЧЕСКИЙ ТРАНСПОРТ

Трамвай. Происходит от английского слова Tramway (Tram — вагон и way — путь) — городская наземная электрическая дорога. Трамвай стал развиваться с начала 80-х годов прошлого столетия. Впервые трамвай был пущен в пригороде Берлина в 1881 г.

Трамвайные вагоны того времени имели малую вместимость — всего 24 пассажира, открытые площадки, маломощные двигатели в 4,5 л.с., ручной тормоз. Электрический ток подводился к двигателям по рельсам. Скорость таких вагонов не превышала 19 км/ч.

С применением в 1883 г. верхнего контактного провода и роликовых токоприемников начался период быстрого усовершенствования вагонов и строительства трамвайных предприятий.

В России первый трамвай был построен в Киеве в 1892 г., затем был пущен трамвай в Нижнем Новгороде, Казани, Ташкенте. В Москве трамвайное движение было открыто в 1903 г., в Санкт-Петербурге — в 1907 г.

Московский и Санкт-Петербургский трамваи представляли собой поезда из двухосных моторных и прицепных вагонов значительной вместимости, оборудованных сравнительно мощными электродвигателями. Они имели хорошее освещение, а также отопление в зимнее время.

К началу первой мировой войны в России было уже 35 трамвайных хозяйств, 30 из них полностью или частично принадлежали иностранным концессиям. Подвижной состав, его механическое, пневматическое и электрическое оборудование заказывалось за границей.

В 1925 г. завод «Электросила» выпустил отечественный тяговый двигатель постоянного тока ПТ-30Н, а с 1926 г. завод «Динамо» приступил к производству электродвигателей ДМ-1А повышенной мощности, которые не уступали заграничным. Помимо двухосных вагонов с 1926 г. в России стали строить и эксплуатировать более вместительные четырехосные вагоны.

В 1928 г. Коломенский завод начал выпуск серии четырехосных трамвайных вагонов типа КМ. В 1938 г. были построены первые четырехосные трамвайные вагоны М-38 с двигателями смешанного возбуждения и оригинальной схемой управления, разработанной заводом «Динамо». С 1947–1948 гг., отечественные заводы выпускают цельнометаллические четырехосные трамвайные вагоны типа МТВ-82 (Тушинский машиностроительный завод) и двухосные моторные и прицепные вагоны типа КТМ-1 иКТП-1 (Усть-Катавский вагоностроительный завод).

В дальнейшем к строительству вагонов приступили Ленинградский и Рижский вагоностроительные заводы, выпустив соответственно вагоны ЛМ-49, ЛП-49, ЛМ-57 и РВЗ.

Трамваестроение на этом этапе развивалось в направлении перехода от двухосных моторных и прицепных вагонов к более емким четырехосным вагонам, повышения их вместимости, роста энерговооруженности, повышения динамических показателей.

В 60–70-х годах Усть-Катавский вагоностроительный завод проектирует и переходит к массовому выпуску четырехосных трамвайных вагонов модели КТМ-5М и модели 71–605, которые эксплуатируются в городах России до настоящего времени. Для Санкт-Петербурга Петербургский трамвайно-механический завод изготавливает четырехосные вагоны модели ЛМ-68М.

Прогресс в области трамваестроения сопровождался прогрессом в области тягового электрического оборудования.

Оно включало в себя современные тяговые двигатели типа ДК-259 мощностью 40–45 кВт, управление которыми осуществлялось автоматической контакторно-резисторной системой управления (РКСУ), а электрическая аппаратура характеризовалась большой степенью унификации. Электрооборудование обеспечивало маневровый режим работы, автоматический пуск, электродинамическое торможение, спуск с уклонов с различными установками, работу вагонов по системе многих единиц. Применение нового электрооборудования повысило динамические показатели вагонов (скорость до 65–70 км/ч, ускорение до 1,3 м/с2, замедление до 1,2 м/с2) и улучшило комфорт пассажиров.

С 80-х годов трамвай как один из современных и экологически чистых видов транспорта, переживает свое второе рождение. Современный этап его развития характеризуется повышением требований к его провозной способности, удобству пассажиров, снижению эксплуатационных затрат, повышению надежности работы.

Развивается и реализуется концепция строительства шести- и восьмиосных трамвайных вагонов вместимостью 220 и 320 человек с различной комбинацией числа тяговых двигателей.

Другим направлением по созданию подвижного состава повышенной провозной способности является разработка четырехосных активных и пассивных прицепных вагонов вместимостью до 135 человек.

В 1990 г. для перспективных отечественных четырехосных трамвайных вагонов модели 71–608 и шестиосных вагонов модели 71–86 заводом «Динамо» совместно с другими предприятиями начато серийное производство тягового электрооборудования с двигателями типа ДК-263 повышенной мощности (80 кВт) и энергосберегающими тиристорно-импульсными системами управления (ТИСУ).

В настоящее время выпущено 25 000 трамвайных вагонов различных модификаций, которые перевозят пассажиров в 92 городах России и ближнего зарубежья.

Работа по совершенствованию моделей трамвайных вагонов и созданию новых проводится постоянно. Так, появились вагоны нового поколения: модели 71–608 (с ТИСУ), 71–608КМ (с РКСУ), 71–611 (для эксплуатации на скоростных линиях), ЛМ-93 (четырехосный вагон с РКСУ), ЛВС8–1-93 (восьмиосный вагон с двумя моторными и двумя опорными тележками и четырьмя двигателями суммарной мощностью 80 кВт), ЛВС8–2-93 (восьмиосный вагон с четырьмя тележками и восемью двигателями мощностью 60 кВт).

В 1996 г. изготовлены и проходят испытания два четырехосных вагона модели 71–616, созданных в кооперации Усть-Катавским вагоностроительным заводом, заводом «Динамо» и фирмой «Сименс» (Германия).

Этот первый в России вагон нового поколения способствует значительной (до 25%) экономии электроэнергии за счет применения тягового оборудования с ТИСУ и оптимизации режимов движения бортовым компьютером. Привод колес вагонов осуществляется от четырех тяговых двигателей суммарной мощностью 76 кВт.

Троллейбус. Происходит от английского слова «Trolleybus» («Trolley» — контактный привод, роликовый токоприемник и «bus» — автобус) — вид городского безрельсового транспорта.

Этот вид транспорта родился как гибрид трамвая и омнибуса и впоследствии превратился в автобус с электродвигателем.

Первая троллейбусная линия была построена в 1882 г. в Германии в Шпандау. Вслед за Германией опытные маршруты безрельсового электрического транспорта появляются также в ряде других стран.

В наши дни в подавляющем большинстве случаев троллейбусы используются для пассажирских перевозок в крупных городах, для пригородного сообщения, в отдельных случаях для доставки грузов. Преимущества троллейбуса перед автобусом в простоте устройства, меньшей трудоемкости обслуживания, особенно в зимнее время, и главное — троллейбус менее шумен и не загрязняет атмосферу городов.

В 1900 г. открылось троллейбусное движение во Франции (в Лионе), в 1902 г. в Чехословакии, в 1903 г. в Италии, в 1911 г. в Англии, в 1912 г. в Швейцарии.

Однако крупные конструктивные недостатки первых троллейбусов ограничивали область их практического применения, и только после первой мировой войны, когда были решены принципиальные вопросы электротехники, техники автомобилестроения, вопросы усовершенствования дорог, троллейбусное движение становится массовым.

Первые российские троллейбусы типа ЛК, построенные заводом «Динамо», Ярославским и Московским автомобильными заводами и Научным автотракторным институтом (НАТИ), появились в Москве в 1933 г.

В 1936 г. Ярославский автомобильный завод совместно с заводом «Динамо» начал серийный выпуск троллейбусов типа ЯТБ-1. Это был более комфортный для того времени троллейбус, имеющий специальное шасси и полу обтекаемый кузов, надежную тормозную пневматическую систему, а также центральный тормоз, действующий на тяговую передачу.

Высоковольтная аппаратура располагалась в шкафах в салоне троллейбуса. Электрическая схема с двигателем мощностью 60 кВт обеспечивала резисторное и рекуперативное торможение и приемлемые динамические показатели машины.

В течение 1937–1941 гг. были выпущены другие модели: ЯТБ-2, ЯТБ-4, ЯТБ-4А, ЯТБ-5, а также двухэтажный троллейбус ЯТБ-3. Усовершенствование шло по линии доработки кузова, применения колесного тормоза, лучшей защиты электрооборудования, модернизации червячного редуктора. На троллейбусе ЯТБ-4 был применен двигатель мощностью 74 кВт, что позволяло ему развивать большие скорости, ускорения и замедления.

В 1946 г. Тушинским машиностроительным заводом было освоено серийное производство цельнометаллических троллейбусов типа МТБ-82. Они обладали по сравнению с троллейбусами ЯТБ большей вместимостью, легким долговечным кузовом, более комфортным пассажирским салоном. Электрическая схема обеспечивала реостатное и рекуперативное торможение, система управления — неавтоматическая с индивидуальными электромагнитными контакторами, управляемыми с помощью контроллера управления. Троллейбус оборудован двигателем смешанного возбуждения мощностью 78 кВт.

В 1959 г. заводы им. Урицкого и «Динамо» создали троллейбус с цельнометаллическим несущим кузовом типа ЗиУ-5. Длина, ширина и высота троллейбуса соответственно 11830, 2680, 3530 мм, масса тары 9000 кг, общая вместимость 90 пассажиров. Тяговый двигатель типа ДК-207А мощностью 95 кВт обеспечивал троллейбусу конструктивную скорость 60 км/ч и ускорение 1,3–1,4 м/с.

На троллейбусе применена система автоматического пуска тягового двигателя с помощью группового контроллера, приводимого в движение исполнительным двигателем. Режим работы задается с помощью контроллера управления. Панели с аппаратурой расположены в кабине водителя, групповой контроллер находится под кузовом троллейбуса вблизи пускотормозных резисторов. Впервые на этом типе троллейбуса применена пневматическая подвеска кузова.

Представляют интерес троллейбусы ТБ и МТБС, изготовленные Сокольническим вагоноремонтным заводом (СВРЗ) на базе троллейбуса МТБ-82. Отличительной особенностью их является повышенное остекление крыши салона.

В 1959 г. СВРЗ и заводом «Динамо» был создан первый в России шарнирно сочлененный троллейбус типа ТС особо большой вместимости. Одноэтажный четырехосный троллейбус имел одну ведущую ось, состоял из двух секций цельнометаллической конструкции. Длина, ширина троллейбуса соответственно 17 500 и 2700 мм. Максимальная вместимость достигала 200 человек. Масса тары составляла 16 000 кг. Троллейбус приводился в движение двумя тяговыми двигателями последовательного возбуждения мощностью по 100 кВт. При нормальном наполнении салона скорость троллейбуса достигала 60 км/ч, ускорение 1,1 м/с2. Электрическая схема троллейбуса обеспечивала автоматический пуск и резисторное торможение с помощью группового контроллера, приводимого в движение испытательным двигателем под контролем реле ускорения и замедления.

Следует отметить, что наряду с пассажирскими троллейбусами отечественной промышленностью в 50–60-х годах были выпущены грузовые троллейбусы, контактные теплоэлектробусы, а также троллейные электромобили.

В 1966 г. троллейбусным заводом им. М.С. Урицкого и заводом «Динамо» была создана модель двухосного троллейбуса большой вместимости ЗиУ-9, обладающая рядом преимуществ по сравнению с предыдущими типами. Это был наиболее массовый троллейбус, его выпуск составил более 42 тыс. единиц. Он имеет цельнометаллический закрытый кузов несущей конструкции вагонной компоновки, предназначен для внутригородских перевозок пассажиров по дорогам с покрытием первой и второй категорий и с предельным уклоном до 80%о. На троллейбусе установлен тяговый двигатель модели ДК-210А мощностью 110 кВт. Система управления троллейбусом косвенная полуавтоматическая с групповым реостатным контроллером. Она позволяет осуществлять различные режимы вождения троллейбуса в эксплуатации: движение с малыми скоростями на маневровой позиции, автоматический разгон, движение с различными скоростями, выбег, электродинамическое (реостатное) торможение, изменение направления движения. Схемой предусмотрены следующие виды защиты электрооборудования: защита тягового двигателя от перегрузок, нулевая защита, защита аппаратуры и отдельных его цепей от токов короткого замыкания, защита от радиопомех.

Троллейбусы оборудованы рабочим пневматическим тормозом, действующим на все колеса машины, ручным стояночным и электродинамическим тормозами. На троллейбусах ведущий задний мост с колесными планетарными передачами и главной центральной гипоидной передачей. Длина и ширина троллейбуса соответственно 11 709 и 2500 мм, масса тары 10 050 кг, масса троллейбуса с номинальной нагрузкой 16 490 кг, число мест для сидения 31, конструктивная скорость 70 км/ч.

С 1988 г. заводы им. М.С. Урицкого и «Динамо» выпускают усовершенствованную модель — троллейбусы типа ЗиУ-682Г и ЗиУ-682П.

Троллейбусы ЗиУ-682Г и ЗиУ-682П двухосные трехдверные, предназначены для городских перевозок. Количество мест для сидения 27, полная вместимость 118 пассажиров, передаточное отношение трансмиссии 1:10,699.

На троллейбусах использована классическая релейно-контакторная система управления РКСУ, как и на троллейбусе ЗиУ-9. Управление приводом косвенное, полуавтоматическое с групповым реостатным контроллером. Режим работы задается контроллером водителя.

Троллейбус ЗиУ-682Г оборудован усовершенствованным двигателем типа ДК-113 смешанного возбуждения мощностью 115 кВт. Максимально преодолеваемый подъем для этой машины 8%о. С целью реализации лучших динамических показателей, больших подъемов на троллейбусе ЗиУ-682Г1 установлены тяговый двигатель типа ДК-211БМ последовательного возбуждения мощностью 170 кВт и аппаратура управления и защиты повышенной энергоемкости. Троллейбус ЗиУ-682П способен преодолевать уклоны до 12‰. Интересно отметить, что этот троллейбус может быть выпущен в исполнении с автономным тяговым приводом, содержащим аккумуляторную батарею емкостью 140 А?ч и обеспечивающим автономное движение до 5 км.

Потенциал отечественной науки позволил в 1985 г. создать опытные образцы двухосных троллейбусов типа ЗиУ-684Б и шарнирно сочлененных троллейбусов ЗиУ-683Б с энергосберегающими тиристорно-импульсными системами управления (ТИСУ). Тем самым была успешно завершена работа ученых МЭИ, завода «Динамо», Запорожского электроаппаратного завода и ряда других.

Создание тягового электрооборудования с ТИСУ впервые в отечественной практике транспортостроения позволило достигнуть мирового технического уровня.

Серийное производство троллейбусов ЗиУ-683Б (в дальнейшем ЗиУ-6205) было начато в 1987 г., серийное производство двухосных машин ЗиУ-684Б (ЗиУ-52642) — с 1995 г.

Комплект электрооборудования с ТИСУ обеспечивает в эксплуатации следующие режимы работы: движение с различными скоростями, плавный автоматический безреостатный пуск и электродинамическое (рекуперативно-реостатное) торможение с широким диапазоном ускорения и замедления, задаваемых водителем, быстродействующее замещение рекуперативного торможения реостатным при отсутствии потребителей электроэнергии в контактной сети и обратный переход, движение в режиме выбега.

Шарнирно сочлененный троллейбус ЗиУ-6205 предназначен для эксплуатации на городских магистралях с большим пассажиропотоком. Управляемая секция прицепа обеспечивает маневренность троллейбуса ЗиУ-6205 на улицах, где эксплуатируются двухосные троллейбусы длиной 12 000 мм.

Троллейбус ЗиУ-52642 может эксплуатироваться на дорогах с уклонами до 15‰ и имеет следующие характеристики: масса снаряженного троллейбуса 11 537 кг, вместимость 116 человек, мест для сидения 30, длина, ширина и высота соответственно 11710, 2514, 3300 мм, максимальная скорость (при номинальной нагрузке) 60 км/ч, время разгона с места до 50 км/ч не более 20 с.

Отличительные особенности применяемого электрооборудования этого троллейбуса от троллейбуса ЗиУ-683Б (ЗиУ-6205) следующие: регулятор РТ 300/700 БМ в двухблочном исполнении, в системе собственных нужд использован двигатель ДК-662 мощностью 14 кВт, тормозные резисторы расположены на крыше.

В 1996 г. создана и проходит испытания новая модель двухосного троллейбуса «Тролза-52643», являющаяся плодом сотрудничества АО «Троллейбусный завод», АЭК «Динамо» и фирмы «Сименс» (Германия). Этот троллейбус оснащен совершенной ТИСУ, выполненной на основе самозапираемых тиристоров, статическим преобразователем напряжения 550/24 В, бортовым компьютером контроля и управления работой тягового привода, люминесцентными лампами освещения пассажирского салона, молниеразрядником, дистанционными автоматическими выключателями.

В настоящее время отечественные троллейбусы эксплуатируются в 200 городах, в том числе в 8 странах дальнего и 11 странах ближнего зарубежья.

Метрополитен. Происходит от французского слова metropol (буквальный перевод — столичный) — вид рельсового пассажирского транспорта, перспективный в условиях больших городов с насыщенным уличным движением. Линии метрополитена обычно прокладываются под землей (в туннелях), при необходимости по поверхности и на эстакадах.

Первая линия метрополитена (3,6 км) построена в Лондоне (1863 г.), с 1868 г. метрополитен действует в Нью-Йорке. Старейшие метрополитены на Европейском континенте — Будапештский (1896 г.), Венский (1898 г.), Парижский (1900 г.). Впоследствии метрополитены были построены в Мадриде, Барселоне, Афинах, Стокгольме, Осло и других городах.

В СССР первая линия метрополитена введена в Москве (1935 г.). Первые комплекты тягового электрооборудования для вагонов метрополитена были изготовлены заводом «Динамо» в конце 1934 г. Действуют метрополитены в Санкт-Петербурге (с 1955 г.), Киеве (с 1960 г.), Тбилиси (с 1966 г.), Баку (с 1967 г.), Харькове (с 1972 г.), Ташкенте (с 1977 г.), Ереване (с 1982 г.), Минске (с 1984 г.), Нижнем Новгороде (с 1985 г.), Новосибирске (с 1985 г.), Самаре (с 1987 г.). С 1988 г. строится метрополитен в Екатеринбурге и Днепропетровске.

В последние годы интенсивность движения на Московском метрополитене значительно увеличилась. Количество перевозимых пассажиров составляет около 10 млн. в день. Это значит, что нагрузка вагонов метрополитена изменяется в основном в диапазоне 15–18 т на вагон с незначительными отклонениями в ту или другую сторону. Для того чтобы при увеличивающихся пассажиропотоках обеспечивалось обслуживание пассажиров на надлежащем уровне, постоянно совершенствовались технические решения комплексно всех устройств: увеличивалась мощность двигателей, улучшалась их коммутационная устойчивость, вводились устройства автоматического управления, новые системы безопасности, совершенствовалась защита, вводились резервные системы управления.

В настоящее время действующий метрополитен представляет собой сложный автоматизированный перевозочный комплекс, в котором все взаимосвязано и выполнено на достаточно высоком уровне при высокой степени безопасности движения. При этом следует учитывать, что при средних эксплуатационных скоростях движения 40–48 км/ч, пропускной способности линий 42–48 пар поездов в час (за рубежом самая высокая пропускная способность у метрополитена в Токио — 40 поездов в час), провозной способности поезда до 60 000 пассажиров/ч в одном направлении должен быть особенно высоким психологический комфорт для пассажиров.

8.1.3. ПОДЪЕМНО-ТРАНСПОРТНОЕ ОБОРУДОВАНИЕ

Грузоподъемные машины и механизмы являются одним из основных средств комплексной механизации всех отраслей народного хозяйства. Эти машины, к которым, в первую очередь, относятся краны, представляют собой машины прерывистого циклического действия и предназначаются для перегрузки грузов на предприятиях, строительных площадках, железнодорожных станциях, морских и речных портах и других объектах.

Кроме того, краны на ряде предприятий являются основным звеном технологического цикла производства.

В отличие от большинства других производственных механизмов грузоподъемные машины характеризуются весьма разнообразными режимами работы как по значению статической нагрузки, так и по продолжительности работы и частоте включений.

В соответствии с действующими в нашей стране стандартами все многообразие режимов работы грузоподъемных машин сводится к пяти режимам (легкий — Л; средний — С; тяжелый — Т; весьма тяжелый — ВТ; весьма тяжелый, непрерывный — ВТН). В понятие режима работы входят: относительная продолжительность включений (ПВ), частота пусков, годовое и суточное использование, коэффициент использования грузоподъемных машин по грузоподъемности и другие показатели напряженности работы.

Категорией напряженности режима учитывается температура окружающей среды, а также и

такой показатель, как степень ответственности машины, которая может потребовать повышенных запасов прочности. Так, например, разливочный кран мартеновского цеха по частоте включений и ПВ может быть отнесен к легкому режиму. Однако предъявляемые к нему исключительные требования безопасности вынуждают выбирать кран применительно к режиму ВТ или ВТН.

Подавляющее большинство грузоподъемных машин, изготавливаемых отечественной промышленностью, имеет электрический привод основных рабочих механизмов, и поэтому эффективность действия этих машин в значительной степени зависит от качественных показателей используемого кранового электрооборудования. Электропривод большинства грузоподъемных машин характеризуется повторно-кратковременным режимом работы при большой частоте включений, широким диапазоном регулирования скорости и постоянно возникающими значительными перегрузками при разгоне и торможении механизмов.

Особые условия использования электропривода в грузоподъемных машинах являлись основой для создания специальных серий электрических двигателей и аппаратов кранового исполнения. В настоящее время крановое электрооборудование имеет в своем составе серии крановых электродвигателей переменного и постоянного тока, серии силовых кулачковых и магнитных контроллеров, командоконтроллеров, кнопочных постов, пультов управления, конечных выключателей, тормозных электромагнитов и электрогидравлических толкателей, пускотормозных резисторов, полупроводниковых устройств регулирования, устройств управления по радиоканалу или одному проводу и ряд других аппаратов, комплектующих различные крановые электроприводы.

Специальные двигатели и аппараты для кранов выпускаются уже с конца прошлого века. Крупносерийное производство основного кранового электрооборудования в нашей стране было начато в 1930–1931 гг. после соответствующей специализации завода «Динамо», который до настоящего времени является ведущим предприятием в разработке комплектных крановых электроприводов и в изготовлении основных элементов этих комплектов.

Основным родом тока для крановых и судовых электроприводов является переменный ток напряжением 380 В и частотой 50 Гц. Это и предопределяет весьма широкое применение электроприводов с использованием асинхронных двигателей с фазным и короткозамкнутым ротором. Следует отметить в перспективе применение в качестве источника питания сеть переменного тока напряжением 660 В, 50 Гц. Это, в свою очередь, вызывает необходимость иметь электрические машины и аппаратуру управления (в основном контакторы, автоматы), рассчитанные на эти напряжения.

Менее широкое распространение получили электроприводы постоянного тока: их применяют металлургические предприятия, суда рыболовного флота, а также суда старой постройки, на которых используются источники постоянного напряжения 110, 220 и 440 В.

Можно констатировать, что сегодня около 90% всех крановых и судовых электроприводов выполняются на переменном токе и только 10% — на постоянном токе.

Все системы крановых и судовых электроприводов можно разделить на две группы: электроприводы с непосредственным управлением с помощью кулачковых контроллеров и с дистанционным управлением с помощью командоаппаратов (командоконтроллеров и кнопочных выключателей). Первая система является наиболее простой и дешевой, отличается простотой наладки. Вместе с тем эта система имеет невысокие эксплуатационные характеристики, невысокий ресурс работы, неудобна в управлении. В силу своей простоты система с непосредственным управлением нашла применение для крановых и судовых механизмов с относительно невысокими требованиями к эксплуатационным параметрам.

Более 80% крановых и судовых механизмов выполняются с электроприводами с кулачковым контроллером. При этом на переменном токе система построена на применении асинхронных двигателей с фазным ротором и ступенчатым изменением сопротивлений резисторов в цепи ротора, короткозамкнутых асинхронных двигателей с изменением сопротивлений резисторов в цепи статора. На постоянном токе применяются в основном потенциометрическая схема включения двигателей для механизмов подъема и схема с изменением сопротивлений резисторов цепи якоря для механизмов горизонтального перемещения грузов. Подобные системы отличаются невысоким диапазоном регулирования скорости, который для электроприводов постоянного тока не превышает 1:6, а для электроприводов переменного тока — 1:3 (в электроприводах с односкоростными короткозамкнутыми двигателями скорость вообще не регулируется).

В 70-е годы для общепромышленных крановых механизмов было освоено производство кулачковых контроллеров серии ККТ переменного тока и серии ККП постоянного тока. Для судовых механизмов была внедрена серия кулачковых контроллеров КВ1 и КВ2. Максимальная мощность управления составляла 40 кВт.

Остальная часть крановых и судовых механизмов имеет электроприводы с дистанционным управлением. Причем основная масса этих электроприводов построена с релейно-контакторным управлением. И только менее 5% электроприводов выполняются с применением полупроводниковых средств управления — различных тиристорных регуляторов и преобразователей (преобразователей частоты и постоянного тока). Системы дистанционного управления релейно-контакторного типа построены аналогично системам с кулачковыми контроллерами как на постоянном, так и на переменном токе. Однако в отличие от указанных приводов в последние годы разработаны системы электроприводов с применением асинхронных двигателей с фазным ротором, в которых используется принцип динамического торможения с самовозбуждением и принцип импульсно-ключевого регулирования. Указанные системы регулирования обеспечивают диапазон регулирования уже в пределах 1:8.

В настоящее время заводом «Динамо» изготавливаются панели и блоки управления переменного тока серии П и Б мощностью до 125 кВт. Для управления двигателями постоянного тока мощностью до 185 кВт разработаны панели управления серии П9000. Для судовых механизмов были внедрены магнитные контроллеры серии БТ и ВТ, управляющие многоскоростными короткозамкнутыми двигателями серии МАП.

Одним из существенных недостатков электроприводов с непосредственным и дистанционным управлением при релейно-контакторной системе (кроме системы с динамическим торможением с самовозбуждением и импульсно-ключевым регулированием) является необходимость для получения устойчивых посадочных скоростей осуществлять частые переключения управляющего органа (кулачкового контроллера или командоконтроллера) с одного фиксированного положения на другое. Такие частые переключения снижают срок службы электрооборудования вследствие износа коммутационных элементов и аппаратов. Тем не менее все рассмотренные системы электроприводов благодаря их простоте и дешевизне получили широкое распространение.

Следует учесть, что в последние годы ко многим грузоподъемным устройствам и комплексам возросли требования с точки зрения повышения производительности труда, ресурса, надежности и удобства обслуживания. Наметилась вместе с тем тенденция к увеличению мощности электроприводов, что прежде всего связано с ростом грузоподъемности и скорости перемещения грузов. Одновременно с этим наметилась четкая тенденция к снижению посадочных скоростей грузов, определяющихся прежде всего условиями выполнения различных монтажных и технологических операций, точностью установки и доводки грузов, а также безопасностью их перемещений. Создаются новые грузоподъемные комплексы на основе современных способов перегрузки: контейнерные, грейферно-бункерные перегружатели, мощные плавучие краны, суда-лихтеровозы, крупные строительные краны.

В 70–80-е годы на заводе «Динамо» были созданы электроприводы для целого ряда уникальных грузоподъемных механизмов и комплексов с использованием преобразовательной техники, в том числе с применением полупроводниковых устройств управления:

1) освоено серийное производство тиристорных электроприводов постоянного тока для механизмов подъема строительных башенных кранов с грузовым моментом 300 т?м;

2) созданы крановые регулируемые электроприводы переменного тока мощностью от 2 до 50 кВт со статическими преобразователями частоты непосредственного типа и мощностью от 1,7 до 120 кВт со статическими преобразователями с импульсной системой управления;

3) освоено производство частотно-регулируемых электроприводов для судовых грузовых лебедок грузоподъемностью 3 т;

4) разработан и внедрен в эксплуатацию электропривод механизма подъема с применением тиристорных преобразователей мощностью 1000 кВт для установки непрерывной разливки стали быстроходного 450-тонного разливочного крана. В 1979 г. налажено и запущено в эксплуатацию пять кранов на Новолипецком металлургическом комбинате;

5) освоено производство комплектного электропривода с полуавтоматическим управлением для грейферного крана грузоподъемностью 32 т;

6) разработаны и сданы в эксплуатацию комплектные тиристорные электроприводы постоянного тока для грейферно-бункерного перегружателя производительностью 800 т/ч;

7) разработаны и сданы в эксплуатацию комплектные многодвигательные электроприводы переменного тока для уникальных плавучих кранов «Витязь» грузоподъемностью 1000/1600 т и «Волгарь» грузоподъемностью 1400 т;

8) освоено серийное производство электроприводов постоянного тока по системе Г-Д для плавучих кранов «Черноморец» грузоподъемностью 100 т и «Богатырь» грузоподъемностью 300 т;

9) разработан и сдан в эксплуатацию многодвигательный электропривод переменного тока напряжением 660 В, частотой 50 Гц механизма самоподъемной буровой установки СПБУ6500/100 для бурения скважин и добычи нефти и газа на континентальном шельфе на глубине до 100 м.

В последние годы специалистами завода АЭЗ «Динамо» проводятся как модернизация серийных систем электроприводов, так и создание новых на основе современной элементной базы.

Что касается наиболее массовых крановых электроприводов переменного тока с непосредственным регулированием, то проводится разработка электроприводов на базе силовых кулачковых контроллеров и блока электроники, реализуемых в едином пульте. С помощью этого пульта осуществляется управление несколькими механизмами крана. Применение в разрабатываемых электроприводах блока электроники позволяет улучшить эксплуатационные характеристики кранов. Предполагается внедрение пультов со встроенными малогабаритными командоконтроллерами и в системах электроприводов с дистанционным управлением.

В настоящее время для ряда крановых механизмов ведется разработка полупроводниковых преобразователей частоты инверторного типа (на базе силовых транзисторов) на мощности до 30 кВт.

Как отмечалось ранее, ряд крановых и судовых электроприводов с исполнительными двигателями переменного тока мощностью до 50 кВт разработаны и выпускаются заводом «Динамо» с использованием преобразователей частоты с непосредственной связью (НПЧ). При этом в качестве базовой схемы преобразователя выбрана 18-вентильная схема НПЧ с естественной коммутацией и питанием от трехфазной сети напряжением 380 В и частотой 50 Гц без нулевого провода (преобразователи типа ТТС, изготовитель АО «Электровыпрямитель», г. Саранск). Электроприводы данного класса обеспечивают плавное регулирование частоты вращения асинхронных короткозамкнутых двигателей в интервале частот от 1,5 до 25 Гц, а также его работу на естественной механической характеристике при частоте 50 Гц. Дальнейшим улучшением выходных параметров преобразователей указанного типа является введение в них устройств, позволяющих плавно регулировать частоту на выходе преобразователя в интервале от 1,5 до 50 Гц. Это обеспечит их конкурентоспособность с преобразователями частоты со звеном постоянного тока инверторного типа, а также 36-вентильными НПЧ с раздельным питанием фаз асинхронного двигателя.

В настоящее время проводится также работа по созданию многодвигательных автоматизированных электроприводов для самоподъемной буровой установки СПБУ «Арктика», предназначенной для разведывательного бурения скважин на нефть и газ глубиной до 650 м на шельфе арктических морей России на глубинах от 10 до 30 м. Электроприводы этой установки выполняются на напряжение 660 В и частоту 50 Гц.

Следует отметить и работы по созданию электроприводов постоянного тока с использованием тиристорных преобразователей. Это, как правило, грузоподъемные комплексы с исполнительными двигателями большой мощности (перегружатели, плавучие краны, крупные монтажные краны и т.д.). В таких электроприводах предусматривается применение тиристорных преобразователей серии ТПЕ (изготовитель — завод «Преобразователь», г. Запорожье) на токи 100, 160, 250, 400 и 630 А, заменивших крановые тиристорные преобразователи серий АТК и АТРК.

В настоящее время имеются модификации тиристорных преобразователей постоянного тока в морском исполнении серии ТПС, что позволяет использовать их в электроприводах на плавучих кранах и других судах и объектах.

Последние годы характеризуются бурным ростом микропроцессорной техники, что коснулось и крановых электроприводов. Специалистами ВНИПТИ в настоящее время начаты работы по созданию на базе этой техники современных крановых электроприводов. Применение микропроцессоров качественно изменит систему управления крановыми механизмами, что позволит, в частности, улучшить выходные характеристики приводов, оптимизировать процессы пуска, торможения и реверса, облегчить управление, ввести диагностику неисправностей и т.д.

Внедрение микропроцессорной техники ставит на повестку дня ряд задач:

создания нового поколения командоаппаратов малогабаритного исполнения;

адаптации микропроцессоров к существующим системам управления.


8.2. СУДОВЫЕ ЭЛЕКТРОТЕХНИЧЕСКИЕ СИСТЕМЫ

8.2.1. ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ

Электроэнергетические системы (ЭЭС) современных гражданских судов и военных кораблей являются сложными комплексными системами, в которых нашли применение новейшие достижения практически во всех областях науки и техники [8.14–8.22].

Важнейшими задачами в развитии ЭЭС являются: структурное построение ЭЭС в целом; расположение и количество электростанций и источников электроэнергии; структурные связи в ЭЭС; единичная мощность генераторов и нагрузки; параметры тока и напряжения.

Период 18691917 гг. Практическое внедрение электричества на кораблях началось с установки мощных направленных источников света с дуговыми лампами (прожекторов) в 1869 г. на пароходе «Ильмень», а затем на броненосном фрегате «Петропавловск».

В качестве источников питания были применены поршневые машины с генераторами постоянного тока напряжением 30–50 В, мощностью от 1 до 3 кВт, которые обеспечивали долговременное и надежное электроснабжение прожекторов.

Более широкое применение электричества на кораблях произошло в результате внедрения ламп накаливания, которые становятся основными источниками света. В опытном порядке электрическое освещение с лампами накаливания в 1882 г. монтируется на находящихся в строю кораблях: винтовом корвете «Скобелев» и броненосном фрегате «Адмирал Лазарев». В том же году построенный за рубежом крейсер «Ярославль» («Память Меркурия») оборудуется более значительной сетью электрического освещения со 114 лампами накаливания.

Большое значение для развития ЭЭС имела разработка (впервые) проекта электрооборудования в процессе проектирования броненосного крейсера «Адмирал Нахимов», вступившего в строй в 1887 г. Проект был выполнен под руководством талантливого русского электротехника Е.П. Тверитинова. Проектом предусматривалось полное электрическое освещение всех корабельных помещений. Источниками электроснабжения служили четыре генератора постоянного тока мощностью по 9,1 кВт со смешанным возбуждением напряжением 65 В и две аккумуляторные батареи для аварийного питания. Схемой распределения были предусмотрены три кольцевые магистрали — центральная и две по бортам.

В 1890 г. вступил в строй броненосный крейсер «Память Азова», первый корабль отечественной постройки, на котором применили систему распределения электроэнергии по типу системы, примененной на броненосном крейсере «Адмирал Корнилов», построенного во Франции по заказу Морского ведомства. Проект выполнялся французской фирмой «Соттер и Лимонье», в нем предусматривалось питание от главных распределительных щитов (ГРЩ) с помощью многопозиционных переключателей пяти кольцевых магистралей освещения: боевой, постоянной, ходовой, вечерней и наружной. На этом корабле впервые установлены автоматические выключатели обратного тока для предотвращения перехода генератора в двигательный режим при зарядке аккумуляторов.

В 1887–1892 гг. проводятся интенсивные работы по созданию, изготовлению и испытанию электроприводов вентиляторов, поворота башен орудий, подачи снарядов, рулевого устройства на русских крейсерах и броненосцах.

Значительный рост потребления электроэнергии в связи с внедрением электроприводов механизмов и устройств обусловил необходимость установления основных принципов распределения электроэнергии:

расположение генераторов постоянного тока в носовой и кормовой частях корабля;

отделение сети питания электродвигателей от сети палубного освещения;

обеспечение питания важных электромеханизмов от магистралей двух бортов;

применение электрического привода для рулевого устройства;

выделение автономных магистралей для механизмов артиллерийских установок;

разделение кольцевых магистралей в боевом режиме на четверти;

обеспечение параллельной работы генераторов при расположении их в одном помещении;

создание общего резерва мощности (с целью повышения живучести), составляющего 20–50% от мощности боевого режима.

Так, на кораблях, построенных перед русско-японской войной (1904–1905 гг.), наиболее типичной являлась ЭЭС броненосцев типа «Бородино», на которых были установлены четыре генератора мощностью по 157,5 кВт и два генератора по 67,5 кВт постоянного тока со смешанным возбуждением напряжением 105 В, с приводом от паровых машин. Генераторы мощностью по 157,5 кВт расположены в электростанциях попарно в носовой и кормовой частях корабля и в каждой электростанции могут работать параллельно. Общая силовая кольцевая магистраль, образованная соединением электростанций двумя бортовыми перемычками, в боевом режиме разделяется на четверти с помощью магистральных выключателей. Генераторы мощностью по 67,5 кВт, размещенные в средней части корабля вместе с осветительной кольцевой магистралью образуют вспомогательную установку, используемую в повседневных условиях. Силовая и осветительная системы взаимозаменяемые. Резерв мощности 50%.

В войне с Японией выявились недостаточная живучесть кораблей в целом и их оборудования и систем, что заставило внести в проекты кораблей ряд изменений, направленных на обеспечение большей их живучести. Повышение живучести ЭЭС предусматривалось в основном за счет изменения структурных связей” и размещения электрооборудования.

Характерным примером является линкор «Император Павел I». Количество, мощность (765 кВт), тип и привод генераторов приняты, как на броненосцах типа «Бородино», построенных до войны с Японией, но для существенного повышения живучести размещение оборудования и схема распределения изменены: ГРЩ носовой и кормовой электростанций вынесены из помещений генераторов; кольцевая силовая магистраль соединяет между собой только ГРЩ, генераторные щиты не охватываются ею; главные силовые распределительные щиты разукрупнены на ряд отсечных бортовых щитов, охватываемых кольцевой магистралью; в местах ответвлений от осветительной магистрали установлены распределительные коробки; один из вспомогательных генераторов мощностью 67,5 кВт перенесен с жилой палубы на нижнюю и приобрел функции резервного; в боевом режиме осветительная магистраль наравне с силовой получает питание от основных генераторов; магистральные кабели в свинцовой оболочке проложены в специальных коридорах на нижней броневой палубе.

Внедрение электротехники на кораблях, рост количества и мощности потребителей электрической энергии, накопление опыта, выработка практикой принципов построения схем распределения электроэнергии и расположения электрооборудования обусловили появление на кораблях организованных ЭЭС, влияющих на их боевые качества.

Для создания ЭЭС последующих кораблей в 1908 г. были разработаны и изданы специальные «Правила по электротехнике для кораблей флота».

Корабли того периода, создаваемые по новым проектам с учетом изданных Правил, характеризуются дальнейшим насыщением электрооборудованием, электрифицированными механизмами и ростом мощности источников электроэнергии. Увеличение мощности ЭЭС, длины и разветвленности сетей привело к необходимости повышения напряжения до 225 В.

Для привода основных генераторов вместо паровых поршневых машин используются паровые турбины, что позволило существенно улучшить технико-экономические показатели генераторных агрегатов. Также впервые в мире на кораблях отечественного флота начинают использовать дизельные двигатели в качестве приводных двигателей генераторов, а на менее крупных — керосиновые двигатели. В качестве приводных двигателей механизмов стали применять трехфазные асинхронные электродвигатели, отличающиеся надежностью и простотой обслуживания.

Первыми из серии новых кораблей начали строить линкоры типа «Севастополь». В проекте, разработанном Бюро Балтийского завода, предусматривалось применение постоянного тока напряжением 225 В. Положительные результаты испытаний на минном заградителе «Амур» электродвигателей переменного тока послужили основанием для пересмотра проекта ЭЭС линкора «Севастополь» и принятия решения о частичном применении переменного тока для привода вентиляторов и бытовых потребителей. Источники электроэнергии таких кораблей — четыре турбогенератора (ТГ) постоянного тока мощностью по 320 кВт; два дизель-генератора (ДГ) мощностью по 320 кВт; три ДГ мощностью по 120 кВт.

Турбогенераторы становятся основными источниками электроэнергии, ДГ мощностью по 320 кВт — резервными, ДГ мощностью по 120 кВт предназначаются для собственных нужд. Таким образом, общая установленная мощность генераторов составляет 2280 кВт при потреблении в боевом режиме 1494 кВт.

При проектировании ЭЭС линкора «Севастополь» был предусмотрен ряд новых дополнительных мер по улучшению живучести системы, в частности: увеличено количество рассредоточенных энергетических центров за счет образования четырех дополнительных бортовых электростанций; повышен коэффициент резервирования генераторной мощности до 100%; для резервных генераторов предусмотрено использование дизелей, работа которых не зависит от состояния основной энергетической (паровой) системы; введены поперечные перемычки между противоположными бортами ГРЩ; предусмотрена двойная система шин на ГРЩ; для силовых потребителей применена фидерная система питания; частично использован переменный ток.

Принципы, составляющие основу построения ЭЭС на линкорах типа «Севастополь», находят дальнейшее развитие при разработке линейных крейсеров типа «Измаил». К 1913 г. общая мощность установленных на линкоре генераторов составила 2560 кВт. Резерв мощности 100%.

Поиски путей повышения живучести ЭЭС нашли свое отражение в полном переходе к фидерной системе распределения электроэнергии в силовой сети и надежном укрытии в цитадели всех энергетических центров корабля.

Почти за полвека к 1917 г. корабельные ЭЭС прошли основной путь развития и из систем с ограниченным использованием электроэнергии для нужд освещения развились в мощные высокоорганизованные ЭЭС, обеспечивающие питание разнообразных потребителей электроэнергии и обладающие большой живучестью и надежностью, обеспечивая боеспособность кораблей.

Период 19181945 гг. Из первой мировой и гражданской войн Россия вышла, израсходовав все боевые и материальные ресурсы, потеряв большую часть кораблей и вспомогательных судов, лишившись части военно-морских баз. Флот практически прекратил свое существование, а его остатки требовали капитального ремонта и больших восстановительных работ. Различные иностранные компании, выполнявшие электротехнические проектные и монтажные работы на судах, после революции прекратили свою работу в России.

Организованный в 1922 г. Электротехнический военно-морской отдел, позднее преобразованный в Электромортрест возглавил все проектные и монтажные работы, связанные с ремонтом и модернизацией электрооборудования и систем кораблей и судов. В последующие годы создаются специальные электромонтажные предприятия, занимающиеся электромонтажными работами на кораблях в качестве контрагентов у судостроительных заводов. На крупнейших судостроительных заводах Петрограда (Балтийском и Адмиралтейском) были организованы конструкторские бюро с электротехническими отделами.

С 1922 года на заводе «Электросила» начались работы по ремонту электрооборудования кораблей и изготовлению отдельных видов электрооборудования и аппаратуры по старым чертежам.

В 1925 г. были организованы Центральное конструкторское бюро (ЦКБ) судостроения №1 и Конструкторское бюро морского судостроения с электротехническими отделами. Они вели проекты модернизации старых кораблей и выполняли первые проекты электрооборудования новых надводных кораблей (НК), подводных лодок (ПЛ) и судов. В Ленинградском электротехническом институте им. В.И. Ульянова (Ленина) в 1930 г. создается кафедра по электрооборудованию судов. В 1936 г. организовано ЦКБ-52 для разработки электрооборудования кораблей.

В 30-е годы проектирование кораблей сопровождалось передачей соответствующих работ из заводских КБ в ЦКБ, специализированные по классам кораблей.

Планомерное развитие отечественного кораблестроения началось с 1926 г., и до конца Великой Отечественной войны все усилия были направлены на создание и поддержание военного потенциала страны, строительство кораблей и судов. Постройка судов гражданского назначения в этот период (за исключением первой пятилетки) практически не велась, так же как и в дореволюционный период.

Впервые в СССР были созданы «Правила электрооборудования кораблей ВМФ» (1925 г.) и «Правила Регистра СССР по электрооборудованию гражданских судов» (1927 г.).

Развитие ЭЭС в этот период сопровождается ростом мощности генераторов, применением нового создаваемого электрооборудования в морском исполнении, автоматизацией части судовых электроприводов, дальнейшим совершенствованием структур ЭЭС и повышением их живучести и надежности.

Разработка проектов кораблей всех типов и их постройка в предвоенный период производились с ЭЭС постоянного тока напряжением источников 115 и 230 В. Например, на легком крейсере «Киров», построенном в 1935 г., было установлено четыре ТГ и два ДГ мощностью 165 кВт каждый, напряжением постоянного тока 230 В; на крейсерской подводной лодке типа «К» XIV серии (1939–1944 гг.) установлены гребные электродвигатели (ГЭД) постоянного тока на напряжение 220 В мощностью по 1200 л.с.

Рост мощности ЭЭС привел к более сложному их построению и вступил в противоречие с требованиями эксплуатации. Магистральная и магистрально-фидерная системы распределения перестали удовлетворять требованиям селективности при отключении поврежденных участков сети и уступили место более прогрессивной фидерно-групповой системе.

Простота и надежность электрического оборудования переменного тока в сочетании с меньшей стоимостью позволяли значительно улучшить технические и эксплуатационные качества ЭЭС и легче унифицировать судовое оборудование переменного тока с общепромышленным. Поэтому в 30-х годах начали проводиться работы по проектированию судов с ЭЭС переменного тока. В 1935–1938 гг. ЦКБ-17 разрабатывает проект эсминца с ЭЭС, оборудованного трехфазными генераторами.

Так, на эсминце «Страшный» устанавливаются два ТГ трехфазного тока мощностью по 120 кВ?А и два ДГ мощностью по 60 кВ?А напряжением 230 В, частотой 50 Гц, частотой вращения 1500 об/мин, работающие раздельно. ГРЩ имели две системы шин, на которые подавалось напряжение от своего или другого генератора. ТГ и их ГРЩ располагались побортно в машинных отделениях, а ДГ — в выгородках на верхней палубе. Была предусмотрена максимальная и нулевая защита автоматическими выключателями, а также селективная защита. Система распределения электроэнергии была принята магистрально-фидерная. По фидерам питались мощные и ответственные потребители, подключение которых к магистрали могло вызвать недопустимое падение напряжения в сети. Для питания потребителей постоянным током был предусмотрен преобразователь мощностью 12 кВт с выходным напряжением 115 В постоянного тока.

Швартовные и ходовые испытания электрооборудования корабля по расширенной программе прошли успешно и подтвердили надежность и простоту обслуживания ЭЭС. Начавшаяся Великая Отечественная война не позволила закончить государственные испытания. На корабле был поднят военно-морской флаг, и он вышел на боевые операции.

В 1944 г. вновь были развернуты работы по созданию серии судового электрооборудования на переменном токе, а также механизмов и устройств с электроприводом переменного тока.

По результатам боевой эксплуатации эсминца «Страшный» в июне 1944 г. было принято решение проектировать электроэнергетические системы кораблей легких сил ВМФ (эсминцы, сторожевики и тральщики) на переменном токе напряжением 220 В и частотой 50 Гц.

Так было положено начало внедрению на отечественных военных кораблях переменного тока, без применения которого невозможно было создать в будущем ЭЭС большой мощности и их комплексную автоматизацию.

Период с 1946 г. по настоящее время. После окончания Великой Отечественной войны предстояло восстановление промышленности страны, в том числе судостроительной. В ноябре 1945 г. был утвержден план военного судостроения на 1946–1955 гг., предусматривавший достройку части кораблей, заложенных до войны, по откорректированным с учетом военного опыта проектам, а также продолжение строительства малых кораблей и катеров улучшенной модификации. В дальнейшем планировалась постройка кораблей по новым проектам: сначала с использованием освоенного промышленностью оборудования, а затем уже принципиально нового.

В обеспечение реализации этой программы в 1946–1949 гг. создается несколько новых ЦКБ и НИИ, значительное развитие получает экспериментальная база ЦНИИ-45, воссоздается ЦНИИ военного кораблестроения в системе ВМФ. В первые послевоенные годы модернизация и новое проектирование ЭЭС кораблей и подводных лодок выполнялись на освоенном электрооборудовании постоянного тока.

Примером такого подхода могут служить:

ЭЭС постоянного тока проекта эскадренного миноносца (ЦКБ-53), состоящая из двух ТГ мощностью по 150 кВт, двух аварийных ДГ мощностью по 75 кВт и одного стояночного ДГ 25 кВт напряжением постоянного тока 230 В;

дизель-электрические ПЛ послевоенной постройки, имеющие на валах двухъякорные ГЭД постоянного тока напряжением 175–320 В и электродвигатель экономического хода.

В 1948 г. ЦКБ-53 был разработан технический проект первого послевоенного эскадренного миноносца с ЭЭС переменного тока, ставшего после строительства экспериментальным кораблем «Неустрашимый». Рабочие чертежи разрабатывались в 1949–1950 гг.

К 1950 г. электротехнической промышленностью было освоено основное электрооборудование переменного тока: генераторы серии МС, электродвигатели серии МАФ, MP, MAP, новые серии ГРЩ, измерительные приборы и установочные автоматы в ударостойком исполнении.

В качестве источников электроэнергии на корабле были установлены два турбогенератора мощностью по 400 кВт, два дизель-генератора мощностью по 200 кВт и один стояночный турбогенератор мощностью 100 кВт. Все генераторы напряжением 230 В частотой 50 Гц. Турбогенераторы, дизель-генераторы и ГРЩ были размещены в двух электростанциях. Каждый ГРЩ имел отдельные шины ТГ и ДГ, соединяемые между шинным автоматом. К шинам ДГ подключены потребители, работа которых не должна прекращаться в боевом режиме или при остановке ТГ. Второе резервное питание эти потребители получали от шин ГРЩ турбогенератора удаленной электростанции. Испытания на эсминце «Страшный» (1940 г.) выявили, что прямой пуск асинхронного электродвигателя обеспечивается (при сохранении при этом качества электроэнергии в нормированных пределах) при его мощности около 20% от мощности наименьшего генератора, работающего в режиме. Поэтому электродвигатели были применены с короткозамкнутым ротором. Вся система распределения электроэнергии трехпроводная незаземленная фидерно-групповая с защитой от токов короткого замыкания. В отличие от кораблей предыдущих проектов впервые в отечественном кораблестроении взамен кабелей СРМ были применены кабели марок КНРП, КНРЭ и их разновидности.

С учетом важности внедрения переменного тока и определения принципов построения ЭЭС были проведены испытания исследовательского характера по расширенной программе во время швартовных и ходовых испытаний. На испытаниях были определены:

устойчивость параллельной работы генераторов;

способ синхронизации и окончательный выбор его;

селективность защиты путем проведения натурных коротких замыканий в различных точках системы;

устойчивость работы и сохранение параметров в норме при пусках мощных асинхронных электродвигателей;

работоспособность рулевого устройства и якорного шпиля в наиболее тяжелых режимах.

Большой вклад в разработку ЭЭС и проведение расширенных испытаний внесли сотрудники ЦКБ-53 В.А. Торопов — главный конструктор по электрооборудованию; М.И. Величко — начальник электротехнического отдела; работник Электромортреста П.И. Щербинин — непосредственный исполнитель настройки ЭЭС и проведения всех видов испытаний.

В связи с ростом токов короткого замыкания при увеличении мощности ЭЭС в 1957–1958 гг. ЦКБ-53 была разработана ЭЭС на переменном токе напряжением 380 В. В дальнейшем, как правило, ЭЭС надводных кораблей и гражданских судов создавались на напряжение 380 В. На подводных лодках ЭЭС на переменном токе начали внедрять с 1967 г.

В 50-х годах одновременно с разработкой комплексов вооружения начались интенсивные проектные и комплексные исследовательские работы по поиску оптимальных типов ПЛ и НК с ракетным оружием и другими техническими средствами.

В связи с дальнейшим повышением роли ЭЭС в обеспечении надежности электроснабжения атомных энергетических установок (АЭУ), оружия, радиоэлектронных систем вооружения (РЭВ) и других технических средств в апреле 1965 г. на базе исследовательских и технологических подразделений ЦКБ-55 был организован Научно-исследовательский институт судовой электротехники и технологии (НИИСЭТ), впоследствии переименованный в Центральный научно-исследовательский институт судовой электротехники и технологии (ЦНИИСЭТ). В рассматриваемый период директорами института были А.А. Азовцев, В.А. Косенков, П.И. Щербинин.

ЦНИИСЭТ были выполнены важнейшие работы, позволившие ему внедрить комплекс методик, стандартов и нормативно-технической документации, обеспечивающий проектирование судостроительными конструкторскими бюро ЭЭС (методы расчета переходных процессов, динамической устойчивости, искажения кривой и несимметрии напряжения, токов короткого замыкания, структурной надежности, электрических нагрузок, защиты и др.), разработку электромонтажных чертежей по установке электрооборудования, приборов и монтажу кабелей на кораблях и судах, а также производство работ по подготовке и подключению кабелей в электрооборудовании и приборах различных отраслей промышленности. Специалисты ЦНИИСЭТ принимали участие в периоды строительства и испытаний кораблей и судов всех типов в настройке электрооборудования, проведении натурных коротких замыканий в ЭЭС, проверке селективности защиты, обеспечении электромонтажных и других работ.

С середины 60-х годов по 1991 г. достигнут значительный прогресс в создании атомных и дизель-электрических подводных лодок и надводных кораблей с различными видами ракетного, торпедного, зенитного и артиллерийского вооружения. Период с середины 60-х годов до начала 80-х явился «золотым веком» отечественного судостроения.

Следующее десятилетие, ставшее «лебединой песней» нашего судостроения — это период, когда начали вступать в строй наиболее совершенные ПЛ и НК третьего поколения, качественно превосходящие своих предшественников.

В 1955–1991 гг. коллективы проектных организаций совместно с многочисленными научно-исследовательскими институтами, заводами, строителями, поставщиками комплектующего оборудования, службами и личным составом ВМФ внесли большой вклад в развитие ЭЭС и электрооборудования. В этот период основные проектных организаций были направлены на разработку нескольких десятков экспериментальных и серийных кораблей с ракетным и другими видами оружия, причем многие из них остались нереализованными.

Значительный научный и практический вклад в создание и развитие ЭЭС и корабельного электрооборудования при проведении проектирования, строительства и испытаний больших серий подводных лодок и надводных кораблей внесли главные конструкторы по электрооборудованию:

Г.Я. Альтшулер, B.C. Соколов — дизель-электрические и атомные подводные лодки (ЦКБ морской техники «Рубин» — ЦКБ-18);

В.П. Горячев, С.П. Катков — атомные подводные лодки (СПМБМ «Малахит» — СКБ-143 и ЦКБ-16);

П.И. Щербинин — большие противолодочные корабли, надводные крейсеры, тяжелые атомные ракетные крейсеры (Северное ПКБ — ЦКБ-50);

Н.А. Кузнецов, А.И. Андреев — противоминные корабли, спасательные суда (Западное ПКБ — ЦКБ-50);

В.М. Морозов — быстроходные ракетные и артиллерийские катера, десантные катера на воздушной подушке и глубокопогружных управляемых подводных крыльях (ЦМКБ «Алмаз» — ЦКБ-5);

Б.Н. Бровкин — заместитель главного конструктора проекта, начальник электротехнического отдела (Невское ПКБ — ЦКБ-17).

Создание первой отечественной атомной подводной лодки (АПЛ) стало крупным научно-техническим достижением в области военного кораблестроения (1958 г.). Атомная энергетическая установка придала совершенно новые тактико-технические свойства подводным лодкам. ЭЭС первой АПЛ была постоянного тока напряжением 175–320 В, состояла из двух генераторов с приводом от главного турбозубчатого агрегата (ГТЗА) (основные источники электроэнергии), двух ГЭД, двух резервных ДГ и двух групп аккумуляторных батарей (АБ).

Гребные электродвигатели могут использоваться в качестве генераторов при работе на гребной винт. В ЭЭС обеспечено непрерывное питание электропотребителей при переводе нагрузки с генераторов на АБ при помощи запорного вентильного устройства. Указанный принцип непрерывного питания был применен на всех последующих АПЛ.

АПЛ, вступившие в строй в 1967 г., имеют ЭЭС переменного тока частотой 50 Гц и напряжением 380 В с ТГ типа ТМВ с водяным охлаждением статора и ротора генераторов, ГЭД и резервными ДГ. Зарядка АБ, а также питание от них потребителей сети частотой 50 Гц обеспечивается при помощи обратимых преобразователей переменно-постоянного тока. Сеть распределения фидерно-групповая. На лодках третьего поколения в большей степени применены автоматизированное управление ЭЭС и статические преобразователи.

Параллельно с созданием атомного флота судостроительная промышленность вела и ведет по настоящее время работу по созданию дизель-электрических ПЛ.

Следует выделить подводную лодку, вступившую в строй в 1971 г. В создании ее был впервые реализован ряд новых технических решений, в том числе комплексная автоматизация управления работой всех технических средств и корабля в целом из единого командного пункта и внедрение ЭЭС с использованием переменного тока повышенной частотой 400 Гц.

На надводных кораблях ЭЭС имеют автономные генераторы переменного тока частотой 50 Гц и напряжением 380 В. Причем на них предусмотрено не менее двух электростанций, располагаемых в удалении друг от друга для обеспечения живучести ЭЭС.

В каждой электростанции расположено по два или три генератора с обеспечением их параллельной работы. Электростанции НК в эксплуатационных режимах могут соединяться при помощи перемычек по типу «лесенка» или «кольцо» без обеспечения их длительной параллельной работы. Не менее одного из приводных двигателей генераторов электростанций надводных кораблей автономные и не зависят от работы паропроизводящей установки. Сочетания генераторных агрегатов в электростанциях этих кораблей: турбогенератор — газотурбогенератор, турбогенератор — два дизель-генератора, турбогенератор — дизель-генератор, газотурбогенератор — газотурбогенератор, дизель-генератор — дизель-генератор. Мощности генераторов 500, 750, 1000, 1250, 1500 и 3000 кВт. Схема распределения электроэнергии фидерно-групповая. От проекта к проекту происходило повышение степени автоматизации и качества электрооборудования. Последние проекты имеют автоматизированные ЭЭС.

Все катера с динамическими принципами поддержания (ДПП) имеют ЭЭС переменного тока частотой 400 Гц, напряжением 220 В. Для кораблей с ДПП промышленностью были созданы электрооборудование и механизмы небольшой мощности частотой 400 Гц, такие как дизель-генераторы ДГР-30, турбогенераторы ГТГ-100, электродвигатели, электронасосы, преобразователи и другое электрооборудование.

В связи с созданием кораблей с ДПП, оборудованных ЭЭС с частотой 400 Гц, и строительством подводных лодок с ЭЭС частотой 400 Гц у головных институтов (1 ЦНИИ МО РФ и ЦНИИСЭТ) сложилось убеждение о повсеместном переходе на частоту 400 Гц с обеспечением электроснабжения радиоэлектронного вооружения (РЭВ) от групповых преобразователей 50/400 Гц (централизованное питание) или от общесудовых ЭЭС на частоту тока 400 Гц.

Для обеспечения создания подобных систем в задания на новые разработки РЭВ вписывались требования по их питанию током частотой 400 Гц, что в конечном счете приводило к увеличению количества преобразователей в ЭЭС НК и ПЛ. Было начато проведение работ по созданию серийных образцов электрооборудования на частоту 400 Гц.

Попытка внедрить на больших кораблях групповое питание РЭВ показала несовместимость работы систем РЭВ и привела к переводу в период постройки питания РЭВ от индивидуальных преобразователей.

В связи с принципиальными разногласиями по применению частоты 400 Гц на НК и ПЛ Северное ПКБ и ЦКБ МТ «Рубин» в 70-х годах выполнили детальные проектные проработки ЭЭС на напряжение 380 В и частоту 400 Гц, которые показали практическое отсутствие выигрыша в массогабаритных показателях в целом.

По результатам рассмотрения всего комплекса вопросов было принято совместное решение о прекращении работ по созданию серийных образцов электрооборудования на частоту 400 Гц и разработке вторичных источников электропитания в системах РЭВ, обеспечивающих их работу от общесудовой ЭЭС. В стандарт были включены положения о применении на кораблях всех классов ЭЭС на переменном токе напряжением 380 В частотой 50 Гц и рекомендовано применение частоты тока 400 Гц в ЭЭС кораблей с динамическими принципами поддержания.

Первый отечественный боевой надводный корабль с АЭУ, разрабатывался с середины 60-х годов, сначала как атомный сторожевой корабль, и облик тяжелого атомного ракетного крейсера он приобрел лишь в ходе длившегося в течение 10 лет проектирования, сопровождавшегося широкими военно-экономическими исследованиями по оптимизации его тактико-технических характеристик. ЭЭС корабля состоит из четырех электростанций, которые в эксплуатационных режимах могут соединяться при помощи перемычек в «кольцо» без длительной их параллельной работы.

Для обеспечения параллельной работы генераторных агрегатов большой мощности в одной электростанции, превышающих допустимую мощность по условиям обеспечения коммутационной способности и динамической стойкости автоматических выключателей, предусмотрено ограничение тока короткого замыкания путем повышения сверхпереходного индуктивного сопротивления генератора (с приводом от паровой турбины) по продольной оси и установки между параллельно работающими генераторами токоограничивающего устройства.

С целью сокращения габаритов ГРЩ электростанций и числа магистральных кабелей на корабле для канализации энергии большой мощности впервые в практике судостроения были применены бортовые подстанции с размещением в них основной части распределительных секций ГРЩ.

Такое решение позволило получить дополнительный эффект: выделить электростанции и подстанции в отдельные технологические электромонтажные участки (энергокольцо), в которых электромонтажные работы могут выполняться с опережением по отношению к другим помещениям и обеспечить более раннюю подачу электроэнергии в отсеки корабля, что не может выполняться на кораблях с традиционными принципами распределения электроэнергии.

Тяжелые атомные ракетные крейсеры воплощают все новейшие достижения отечественной техники и не имеют аналогов в иностранных флотах. Автоматизированная ЭЭС этих кораблей является на сегодняшний день непревзойденной в Российском ВМФ как по принципам ее построения, так и по мощности каждой электростанции. Крейсеры вступили в строй:

«Киров» (ныне «Адмирал Ушаков») в 1980 г.;

«Фрунзе» («Адмирал Лазарев») в 1984 г.;

«Калинин» («Адмирал Нахимов») в 1988 г.;

«Юрий Андропов» («Петр Великий») в 1998 г.;

Развитие зарубежных корабельных ЭЭС [8.19, 8.20, 8.23]. В зарубежных странах с развитым судостроением ЭЭС переменного тока начали внедряться в 30-е годы, а в послевоенный период происходил активный перевод ЭЭС на переменный ток. В соответствии со стандартами НАТО на военных кораблях стран — членов НАТО применяются ЭЭС напряжением 440 В частотой 60 Гц. На судах гражданского флота европейских стран, как правило, применяются ЭЭС напряжением 400 В частотой 50 Гц.

В послевоенный период развитие зарубежных корабельных ЭЭС (как и отечественных) сопровождалось увеличением их мощности, которое определялось в основном ростом водоизмещения кораблей, применением атомных энергетических установок, новых видов вооружения.

Так, например, на кораблях, построенных в 60–80-е годы в США, Великобритании, Франции, Италии, ФРГ, Нидерландах, энерговооруженность (отношение установленной мощности генераторов ЭЭС к водоизмещению корабля) находится в пределах 0,58–1,42 кВт/т.

Важное значение имеют структуры ЭЭС, которые в определенной степени зависят от мощности генераторных агрегатов (ГА) и ЭЭС в целом. Максимальная единичная мощность генераторов напряжением 440 В была принята равной 2500 кВт (по условиям коммутационной способности и динамической стойкости автоматических выключателей (АВ)). При такой единичной мощности длительная параллельная работа не применяется и в каждой электростанции располагается, как правило, один ГА (в частности, на атомных кораблях).

Так, на авианосце «Enterprise» установлено 16 ТГ мощностью по 2500 кВт, расположенных в 16 бортовых помещениях в районах электрических нагрузок. Все 16 щитов электростанций могут быть соединены перемычками в «кольцо». Четыре резервных дизель-генератора мощностью по 1000 кВт расположены в четырех электростанциях, близких к диаметрали. Всего на корабле 20 самостоятельных электростанций. Такая система расположения по живучести несколько выше принятой в соответствии с обычными требованиями, но увеличение количества электростанций сверх определенного предела повышает живучесть так незначительное, что совсем не оправдывает затрат и потерь, обусловливаемых большим количеством электростанций.

Особенностью ЭЭС иностранных надводных кораблей является наличие резервных электростанций, состоящих из ДГ и ГРЩ, соединенных с основными электростанциями перемычками.

Важнейшие потребители (например, некоторые системы вооружения, рулевое устройство) имеют тройное питание, другие ответственные потребители имеют двойное питание (например, пожарные насосы), менее ответственные — одинарное.

На большинстве надводных кораблей стран НАТО применены ЭЭС, состоящие из двух электростанций. ГРЩ разделены на три секции. Перемычки между секциями могут отделить аварийную секцию. Связь электростанций осуществляется с помощью двух перемычек с двумя АВ в каждой, расположенных в своих ГРЩ. В каждой электростанции ГА включаются на параллельную работу, если обеспечена допустимость их работы по коммутационной способности АВ.

Применены также и другие структуры ЭЭС. Так, в американской практике используются ЭЭС с тремя и пятью генераторными агрегатами. Пятый генератор одновременно выполняет функцию аварийного генератора. При нечетном числе ГА обеспечена возможность подключения резервного ГА к любому заранее выбранному генератору.

На фрегатах английских и германских ВМС исходя из необходимой надежной и простой схемы электроснабжения принят режим параллельной работы ГА.

Для повышения суммарной мощности генераторных агрегатов повышается отключающая способность АВ, а также значение сверхпереходного индуктивного сопротивления генераторов без существенного ухудшения таких параметров, как провалы напряжения и время его восстановления. Этому способствовало усовершенствование быстродействующих регуляторов напряжения. Комплексное решение вопросов ограничения токов короткого замыкания сделало допустимым включение на параллельную работу трех ГА мощностью по 2500 кВт.

На боевых кораблях высокое напряжение широкого применения не нашло (за исключением авианосцев с большой мощностью ЭЭС, таких например, как атомные авианосцы ВМС США типа «Nimitz».

Одной из причин такого положения является то, что на надводных кораблях отсутствуют электродвигатели мощностью более 150 кВт, в то же время целесообразным является применение высоковольтных электродвигателей мощностью более 300 кВт.

В гражданском судостроении, особенно в 80-е годы при освоении ресурсов Мирового океана, при строительстве судов специального назначения, ледоколов и др. высоковольтные ЭЭС нашли широкое применение.

На боевых кораблях наряду с основными параметрами ЭЭС (напряжение 440 В переменного тока частота 60 Гц) применяли электромашины и статические преобразователи в основном частотой 60/400 Гц.

Так, начиная с 50-х годов корабли флота США, СССР и других стран стали оснащаться вооружением нового типа, электронными системами радиолокации, управления, навигации, связи и т.п. На кораблях внедрялись системы РЭВ с питанием частотой 400 Гц от электромашинных преобразователей, которое использовалось в авиации и наземной технике вооруженных сил.

На конец 70-х годов установленная мощность преобразователей частотой 60/400 Гц для питания систем РЭВ на кораблях ВМС США превышала 1000 кВт, а доля потребителей с частотой 400 Гц в общей нагрузке основных ЭЭС с частотой 60 Гц достигла 14%. Рост мощности систем с частотой 400 Гц привел к тому, что эффект уменьшения массогабаритных характеристик электронного оборудования на 400 Гц оказался несущественным по сравнению с массой, которую привнесли установленные на борту преобразователи частоты.

Как правило, большинство систем проектировали из условия питания их от централизованной системы частотой 400 Гц, что приводило к еще большему росту потребления электроэнергии частотой 400 Гц. Как показала практика, часть оборудования РЭВ затрудняет нормальное функционирование других потребителей, создавая при этом искажения и значительные провалы напряжения в питающей сети. Это влечет за собой установку индивидуальных преобразователей, что особенно характерно для кораблей с ракетным вооружением. В конце 70-х годов на кораблях ВМС США общее количество преобразователей единичной мощностью от 1,25 до 300 кВт достигло 1200 единиц.

Несовместимость друг с другом оборудования РЭВ при централизованном питании потребовала детального анализа условий функционирования, режимов работы входных трактов цепей электропитания электронного оборудования.

Например, радиолокационная станция типа AN/SPG-55B, система целеуказания типа TAS и другие несовместимы с другими потребителями и требуют установки индивидуальных преобразователей. Индивидуальное питание оборудования РЭВ привело к тому, что на отдельных кораблях число преобразователей частоты достигло 33 единиц.

Анализ стоимости показал целесообразность проектирования систем РЭВ непосредственно от основной сети частотой 60 Гц. Разработанная в 1981 г. управлением морских систем ВМС США (NAVSEA) инструкция, в частности, предусматривает, что на надводных кораблях и подводных лодках, использующих ЭЭС с частотой 60 Гц, все оборудование спецсистем должно получать питание только от незаземленной трехфазной сети напряжением 440 В и частотой тока 60 Гц.

Положения этой инструкции исходят из того, что, во-первых, затраты на приобретение и монтаж преобразовательных устройств систем частотой от 400 Гц постоянно растут, соответственно увеличиваются эксплуатационные расходы и все больше места приходится резервировать под установку дополнительного оборудования. Во-вторых, существующая технология позволяет создавать электронное оборудование, для которого безразлична частота переменного тока. Это оборудование допускает питание от сети переменного тока частотой 60 или 400 Гц или постоянного тока.

Предполагается, что на всех перспективных кораблях ВМС США (после 2000 г.) электрические сети частотой 400 Гц будут полностью исключены и питание корабельных систем будет осуществляться от ЭЭС частотой 60 Гц.

Этот принцип также принят департаментом кораблестроения Великобритании и руководством ВМС НАТО. В инструкции STANAD 1008 по проектированию электрооборудования для кораблей стран НАТО указано, что оборудование не должно проектироваться для питания от сети нестандартных параметров, если сеть с напряжением 440 В и частотой 60 Гц является удовлетворительной по качеству питания. 

8.2.2. ГРЕБНЫЕ ЭЛЕКТРИЧЕСКИЕ УСТАНОВКИ (СИСТЕМЫ ЭЛЕКТРОДВИЖЕНИЯ)

История развития гребных электрических установок (ГЭУ) тесно связана как с развитием судов различных типов и назначений, так и с техническим развитием машиностроения, электротехники и электроники [8.15].

В зависимости от применения на судах тех или иных генераторов, ГЭД и преобразователей развитие ГЭУ шло по следующим направлениям:

ГЭУ постоянного тока;

ГЭУ переменно-постоянного тока;

ГЭУ переменного тока;

единые электрические системы с ГЭУ переменно-постоянного или переменного тока.

Исторической родиной ГЭУ является Россия. В 1911 г. при проектировании на Балтийском заводе линейных кораблей типа «Севастополь» был предложен вариант совместного использования ДГ и ГЭД для обеспечения экономического хода корабля.

В начале проектирования механизмов специалисты столкнулись с рядом нерешенных вопросов, основным из которых было обеспечение надежности применения электродвижения. 2 апреля 1911 г. состоялось заседание Морского технического комитета (МТК) по этому вопросу. В его работе приняли участие известные кораблестроители А.Н. Крылов и И.Г Бубнов, которые подчеркнули экономичность электродвижения. У присутствующих вызывала сомнение возможность обеспечения надежности вариантов компоновки турбины, ГЭД и гребного вала. Сомнение мог рассеять только эксперимент, поэтому принятие решения отложили до проведения опытов на учебном судне «Рында», и в дальнейшем электродвигатели применения не нашли.

В 30-е годы проводились работы по освоению Северного морского пути, в связи с чем руководство Главсевморпути рассчитывало на пополнение ледокольного флота за счет создания проверенных типов ледоколов и новых ледоколов с дизель-электрическими установками (ДЭУ) мощностью 6–10 МВт.

Спроектированный институтом «Судопроект» ледокол водоизмещением 12 000 т с ДЭУ мощностью 8,8 МВт был предпочтительнее парового из-за большей дальности плавания и лучшей маневренности. В 1934 г. было принято решение о параллельной постройке паровых и дизель-электрических ледоколов, но к строительству последних так и не приступили.

В 1938–1940 гг. по заказу СССР в Амстердаме (Нидерланды) были построены два товаро-пассажирских турбоэлектрохода каждый с двумя ТГ и двумя ГЭД общей мощностью на валах 8,68 МВт.

Таким образом, до Великой Отечественной войны и в послевоенные годы в СССР эксплуатировалось лишь несколько турбоэлектроходов зарубежной постройки. В 1947 г. было принято решение о постройке серии мощных ледоколов для Арктики, предусматривалось также создание транспортных судов ледового плавания, которые могли бы следовать за мощными ледоколами.

В том же году организовывается специальное бюро по проектированию ледоколов и судов ледового плавания — ЦКБ-15 (позднее ЦКБ «Айсберг»), первой работой которого стал проект ледокола с турбоэлектрической установкой на постоянном токе мощностью 22 МВт.

В процессе проектирования этого ледокола специалисты ЦКБ-15 выполнили большой объем опытных работ и исследований, результаты которых были использованы в последующие годы при проектировании первого в мире атомного ледокола «Ленин» и атомных ледоколов второго поколения типа «Арктика» (главные конструкторы по электрооборудованию Г.А. Агафонов, Б.А. Горбунов).

Первым дизель-электроходом отечественной постройки стал танкер «Генерал Ази-Асланов», вступивший в эксплуатацию в 1950 г. На нем впервые применили тепловозные высокооборотные ДГ с дизелем Д50 и специально спроектированное и изготовленное электрооборудование. Дизели Д50 показали себя надежными в эксплуатации, и было решено оборудовать ими крупную серию проектировавшихся китобойных судов, отличающихся от судов транспортного флота более тяжелыми режимами эксплуатации.

Китобойное судно имело один вал с двухъякорным ГЭД постоянного тока мощностью 2x1400 кВт напряжением 920 В на каждом якоре и частотой вращения 180/200 об/мин, использовалось четыре главных ДГ типа 5Д50, каждый из которых состоял из дизеля Д50 и одноякорного генератора постоянного тока мощностью 760 кВт напряжением 460 В при частоте вращения 740 об/мин. Цепь главного тока одноконтурная с попеременно-последовательным соединением генераторов и якорей ГЭД. Машинные возбудители генераторов и ГЭД обеспечивали постоянство мощности дизелей во всех режимах работы ГЭУ. Головное китобойное судно серии «Мирный» вступило в строй в конце 1956 г. (всего за период с 1956 по 1964 г. было построено 90 судов, которые входили в состав всех советских китобойных флотилий).

Высокая скорость (17 узлов), хорошие маневренные качества и экономичность показали их преимущества перед аналогичными судами с другими энергетическими установками при эксплуатации в Арктике и на Дальнем Востоке. При проектировании в ЦКБ «Балтсудопроект» (главные конструкторы по электрооборудованию А.В. Черников, Е.И. Трапер) рефрижераторного судна типа «Актюбинск» и сухогруза типа

«Днепрогэс» в ГЭУ этих судов были применены созданные к этому времени транспортные двигатели-дизели типа Д100.

В состав ГЭУ этих судов входили четыре ДГ типа ЗД100, каждый из которых состоял из одноякорного генератора постоянного тока мощностью 1375 кВт напряжением 500 В; один двухъякорный ГЭД постоянного тока мощностью 2x2580 кВт напряжением на якоре 1000 В и частотой вращения 115/140 об/мин; щиты, преобразователи, посты управления.

Цепь главного тока была одноконтурная, как и на китобойном судне «Мирный», с попеременно-последовательным соединением генераторов и ГЭД.

В 1960 г. вступил в строй головной рефрижератор типа «Сибирь» (всего было построено 60 судов), который являлся улучшенным проектом рефрижератора типа «Актюбинск» (ЦКБ-32 и ЦКБ-53).

При таком же составе ГЭУ, как и на судах «Актюбинск» и «Днепрогэс», рефрижераторы типа «Сибирь» имели следующие отличия: цепь главного тока обеспечивала 33 сочетания (из 35 возможных) включения генераторов и якорей ГЭД вместо семи; при потере вращающего момента одним из последовательно включенных ДГ цепь обеспечивала при мощности оставшихся генераторов ход судна и реверс ГЭД в течение 5 мин, что повышало безопасность судна при плаваниях в узких местах и при его швартовке.

50-е годы характеризовались началом массового строительства отечественных судов с ГЭУ. Электротехническая промышленность осваивает новые типы электрических машин, щитов, аппаратуры, устройств и других элементов ГЭУ. Накапливался опыт проектирования, строительства и эксплуатации электроходов.

Решению задач восстановления отечественного флота в относительно короткие сроки способствовало создание ряда ДЭУ на основе дизелей общего применения типа Д50 и Д100 для китобойных судов, производственных рефрижераторов промыслового флота, грузопассажирских, сухогрузных, ледокольно-транспортных судов и др. Эти ДЭУ отличались относительно малой удельной массой, большой надежностью благодаря нескольким главным агрегатам, наличием изолированного центрального поста управления (ЦПУ) в машинном отделении с дистанционным управлением ГЭУ, а также дистанционным управлением всей энергетической установкой из рулевой рубки.

В 1959 г. вступил в строй первый в мире атомный ледокол «Ленин», спроектированный ЦКБ «Айсберг» (ЦКБ-15). В состав ГЭУ входило следующее основное оборудование: четыре главных ТГ, состоящих каждый из турбины с редуктором, от которого приводились два двухъякорных генератора постоянного тока мощностью 2x1920 кВт напряжением 2x600 В при частоте вращения 595 об/мин; на каждой турбине у одного из двух генераторов оба якоря были электрически соединены для параллельной работы и имели уравнительные обмотки и общую коробку выводов; три двухъякорных ГЭД постоянного тока; средний ГЭД мощностью 2x7200 кВт напряжением 2x1200 В при частоте вращения 150/195 об/мин; два бортовых ГЭД мощностью 2x3600 кВт напряжением 2x1200 В при частоте вращения 150/215 об/мин; возбудители, щиты, пульт управления, дистанционный пост управления и другое оборудование.

Многолетняя эксплуатация атомного ледокола «Ленин» подтвердила перспективность использования АЭУ на ледоколах. Был накоплен ценный опыт и определены пути дальнейшего развития ледокольного флота. Для растущих грузоперевозок Северным морским путем необходимо было пополнить флот ледоколами с более мощными атомными установками.

ЦКБ «Айсберг» выполнило проектирование атомных ледоколов второго поколения с АЭУ мощностью 55,2 МВт, превосходящих ледокол «Ленин» по мощности в 1,7 раза, по энерговооруженности и удельной тяге в 1,5 раза. На ледоколах нового поколения принято иное распределение мощности между гребными винтами, существенно изменены состав и компоновка энергетического оборудования.

Трехвальная ГЭУ переменно-постоянного тока стала первой отечественной установкой, выполненной по схеме генератор переменного тока — кремниевый выпрямитель — ГЭД. Такое построение ГЭУ обеспечило создание двухтурбинной установки с уменьшенными массогабаритными характеристиками и повышенными технико-экономическими показателями по сравнению с установками на постоянном токе. Применение генераторов переменного тока позволило создать паровую турбину с оптимальными энергетическими показателями, соединить генераторы с турбиной непосредственно, без редуктора, разместить два турбогенераторных агрегата в одном машинном отделении.

В состав ГЭУ входит следующее основное электрооборудование: два ТГ мощностью по 27 570 кВт при частоте вращения 3500 об/мин; шесть выпрямительных установок; три двухъякорных ГЭД постоянного тока мощностью по 2x8800 кВт; шесть нереверсивных тиристорных возбудителей ГЭД; три щита электродвижения, пульт электродвижения и три дистанционных поста управления.

Каждый ТГ состоит из турбины и соединенных с ней по одной оси трех синхронных генераторов мощностью по 9 МВт напряжением 780 В частотой 116,7 Гц. Генератор имеет одну обмотку возбуждения и две статорные обмотки.

Цепи главного тока всех трех ГЭД одинаковые и состоят из двух электрически не связанных между собой контуров. Носовые якоря ГЭД получают питание от правого турбогенератора, а кормовые от левого. Такое построение схемы обеспечивает работу каждой главной турбины одновременно на все три ГЭД. В случае выхода из строя одной турбины все три гребных винта будут иметь вращающий момент, что особенно важно в ледовых условиях для обеспечения сохранности лопастей винтов.

Передача электроэнергии от генераторов к ГЭД осуществлена при помощи шинопроводов. Применение шинопровода постоянного тока протяженностью 550 м осуществлено в проекте отечественного судостроения впервые.

Регулирование мощности и ограничения тока главной цепи в различных режимах производится воздействием на возбуждение генераторов и ГЭД с помощью обратных связей по току и напряжению.

Ледокол «Арктика» вступил в строй в 1974 г. и в автономном плавании достиг Северного полюса.

В 1985 и 1989 гг. закончилось строительство еще двух ледоколов по модернизированному проекту — «Россия» и «Советский Союз».

На судах зарубежной постройки ГЭУ начали развиваться с 1911 г. К концу второй мировой войны флот зарубежных стран насчитывал сотни судов с турбо- и дизель-электрическими установками. В основном в этот период суда строились с ГЭУ постоянного тока, в которых генераторы и ГЭД, как правило, соединялись по схеме генератор — двигатель.

Применялось в основном попеременно-последовательное соединение якорей генераторов и ГЭД. При нескольких ГЭД на судне в цепи главного тока использовались контуры по числу ГЭД или их якорей. На судах американской и канадской постройки традиционно применяется параллельное включение генераторов, причем при нескольких ГЭД на судне параллельно соединялись группы генераторов для каждого ГЭД. Например, трехвальная паротурбоэлектрическая ГЭУ канадского ледокола («Lous St. Laurent» 1969 г.) включает три ГЭД и три паровые турбины, каждая из которых через редуктор приводит во вращение три двухъякорных генератора (мощностью 3x2,2 МВт каждый). В схеме применено параллельное соединение каждых трех генераторов разных турбин, работающих на один ГЭД. При работе в средних и легких льдах используются два агрегата, в свободной воде — один, при этом обеспечиваются скорости судна 17 и 14,5 узла соответственно.

Особенностью ГЭУ ледокола финской постройки типа «Ермак» является применение среднеоборотных дизелей (СОД). ГЭУ состоит из девяти синхронных дизель-генераторов мощностью по 3,4 МВт напряжением 800 В с частотой вращения 380 об/мин и трех ГЭД [3 x (2x4,5 МВт)] напряжением 1,2 кВ с частотой вращения 105/180 об/мин.

Цепь главного тока обеспечивает включение любого из трех ДГ контура среднего ГЭД в контуры бортовых ГЭД; ДГ контуров бортовых ГЭД могут быть включены только в контур среднего.

В ГЭУ переменно-постоянного тока вместо генераторов постоянного тока применяют генераторы переменного тока в сочетании с неуправляемыми выпрямителями.

Первая установка была применена в 1965 г. на буксирах-толкачах типа («Clermont») (США), предназначенных для транспортировки барж с ракетами в системе каналов на р. Миссисипи. ГЭУ состоит из газовой турбины, приводящей во вращение два синхронных генератора мощностью по 334 кВт напряжением 445 В частотой 60 Гц; два ГЭД (работающих через понижающие редукторы с передаточным отношением 5,15:1, каждый на свой винт) мощностью 315 кВт напряжением 600 В частотой вращения 1200 об/мин; два неуправляемых выпрямителя.

Для ГЭД постоянного тока предельное значение напряжения на якорь всеми странами принято 1200 В. По данным фирм «Siemens» (ФРГ), «Stromberg») (Финляндия) максимальная мощность электродвигателя постоянного тока при указанном напряжении равна 10–15 МВт. В связи с ограниченной мощностью ГЭД постоянного тока и ростом мощности ГЭУ дальнейшее развитие происходило путем замены ГЭД постоянного тока на ГЭД переменного тока и выпрямителей на преобразователи частоты.

В ГЭУ переменного тока при больших мощностях нашли применение наряду с дизелями паровые и газовые турбины. В большинстве случаев применяются синхронные ГЭД. Однако в процессе развития указанных ГЭУ в качестве

ГЭД применялись практически все типы электрических машин переменного тока (кроме коллекторных).

Получили большое распространение ГЭУ с использованием преобразователей частоты и (или) винта регулируемого шага (ВРШ). На всех ГЭУ большинства судов применены синхронные ГЭД. Например, на канадском судне «Canberra» ГЭУ состоит из шести ТГ переменного тока мощностью по 22 МВт, напряжение синхронных генераторов 3 кВ при частоте 60 Гц и три двухъякорных синхронных ГЭД [3 x (2х21 МВт)], 110 об/мин. Оборудование преобразователя частоты для ГЭУ этого судна, если его выстроить в один ряд, займет до 90 м.

Синхронные ГЭД могут работать во всем диапазоне нагрузок с cos? = 1,0, что позволяет наилучшим образом использовать генераторы и преобразователи. Они также имеют значительный воздушный зазор между ротором и статором и, несмотря на необходимость установки специальных возбудителей, в большей степени отвечают жестким условиям работы судового привода.

С целью более эффективного использования оборудования ГЭУ, упрощения его обслуживания, повышения экономии топлива и увеличения грузовместимости судна развитие ГЭУ и ЭЭС пошло по пути объединения источников питания ГЭУ и общесудовых потребителей в единые ЭЭС (ЕЭЭС).

Построение ЕЭЭС выполнено при использовании преобразователей энергии различного типа:

механических (ВРШ);

электрических (преобразователи частоты и управляемые выпрямители);

комбинации механических и электрических преобразователей.

Как пример из большого числа построенных в 70-х годах судов с ЕЭЭС и ГЭД постоянного тока можно привести паром «Deutshland», построенный в ФРГ в 1972 г. В состав ЕЭЭС судна входят девять бесщеточных синхронных ДГ мощностью по 2100 кВ?А (часовая мощность 2400 кВ?А); четыре силовых блока управляемых выпрямителей мощностью по 5300 кВ?А, 1000 В переменного тока, 4400 А выпрямленного тока; два двухъякорных ГЭД постоянного тока мощностью по 2x3860 кВт (1200 В; 195/210 об/мин); два носовых асинхронных двигателя с фазным ротором подруливающих устройств мощностью по 750 кВт, 980 об/мин; два трансформатора по 2000 кВ?А. Питание тиристорных выпрямителей осуществляется от двойной системы сборных шин, соединяемых выключателями, а двух якорей одного ГЭД — от разных секций шин. Питание шин общесудовых потребителей осуществляется от двух трансформаторов 1000/380 В.

При повреждении шин питания судовых потребителей 380 В производится автоматический запуск аварийного ДГ мощностью 570 кВ?А, обеспечивающего питание секции ответственных потребителей.

Примером ЕЭЭС с ГЭУ переменного тока может быть канадский ледокол «Henry Larsen», построенный в 1987 г. Его ЕЭЭС состоит из трех генераторов мощностью 5 МВт (4,16 кВ, 720 об/мин) с дизельным приводом. Генераторы включены на шины ЕЭЭС, от которых через понижающие трансформаторы и преобразователь частоты получают питание два ГЭД. Мощность трансформаторов 2x4 MB?А, выходное напряжение 1,2 кВ, мощность синхронных ГЭД 6 МВт при частоте вращения 145/180 об/мин. Система векторного регулирования ГЭД с прямым цифровым управлением отпиранием тиристоров и оптической потенциальной развязкой силовых цепей и управления выполнена на базе четырех быстродействующих 16-разрядных микропроцессоров.

Система преобразователь частоты — синхронный ГЭД имеет механические характеристики, аналогичные характеристикам ГЭУ постоянного тока, но обладает повышенными надежностью, КПД и быстродействием.

Системы с ВРШ появились в начале 60-х годов в ФРГ, Италии, а затем в Японии и США. ГЭД в таких установках работает при постоянной частоте вращения в одном направлении. В ГЭУ с ВРШ нашли широкое применение высокооборотные дизель- и газотурбогенераторы. Как правило, в ГЭУ с ВРШ при мощностях на винте более 2 МВт применяются синхронные ГЭД, позволяющие повысить КПД и коэффициент мощности системы в целом. Такими ЕЭЭС оборудованы многие рыбопромысловые суда, паромы, земснаряды, буровые суда и платформы. Недостатком системы является сложный пуск синхронных ГЭД, производимый при пониженной частоте аналогично системам с частотным управлением. В ЕЭЭС с ГЭД мощностью менее 2 МВт применялись высокооборотные асинхронные короткозамкнутые ГЭД, включаемые обычно по два на ВРШ через редукторную передачу. Пуск их производится поочередно: сначала переключением со звезды на треугольник запускается один электродвигатель ГЭД, а затем прямым включением второй. Провал напряжения при пуске ГЭД не превышает 15%. Подобными системами оборудовано большинство рыбопромысловых судов Италии, Испании, ФРГ, Японии.

Недостатком асинхронных ГЭД является значительное потребление ими реактивной мощности и малый воздушный зазор, создающий трудности при монтаже и эксплуатации в ледовых условиях, поэтому они не получили распространения на ледоколах.

Освоение природных ресурсов Мирового океана привело к созданию судов специального назначения с потребителями электроэнергии большой мощности. В 80-е годы Финляндией, Японией, Швецией, Великобританией, США, Италией, Нидерландами, Норвегией и Францией построено большое количество полупогружных добывающих буровых установок и специальных многоцелевых платформ; добычных и крановых судов; ледоколов; судов снабжения; судов обслуживания и обеспечения подводно-технических работ и др. Многие из этих судов и установок оборудованы электроприводами технологических механизмов и систем позиционирования судна. Наиболее характерный диапазон мощностей ЕЭЭС до 50 МВт, номинальное напряжение от 3,3 до 10,5 кВ, частота 50 или 60 Гц. Непосредственно от шин ГРЩ высокого напряжения получают питание электроприводы движения и позиционирования, а также судовые потребители большой мощности (приводы технических комплексов, пожарные насосы и др.). Для питания общесудовых потребителей низкого напряжения установлены понижающие трансформаторы и (или) электромашинные преобразователи.

За короткий срок (немногим более 100 лет) развитие ЭЭС и ГЭУ прошло путь от применения на кораблях генераторов постоянного тока мощностью 1–3 кВт до автоматизированных высоковольтных ЕЭЭС переменного тока на судах мощностью в несколько десятков мегаватт.

Перспективы дальнейшего развития ЭЭС можно прогнозировать по следующим основным направлениям:

применение высокого напряжения;

внедрение сверхпроводниковых электрических машин;

увеличение единой мощности генераторов и нагрузки;

совершенствование структур ЭЭС и электрооборудования;

применение регулируемых электроприводов различных типов;

широкое применение вычислительных комплексов автоматизированного управления ЭЭС и ГЭУ, технического диагностирования, защиты и контроля.

8.2.3. ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ

Для успешного выполнения боевых задач корабль должен знать свое местоположение в пространстве, обстановку вокруг себя и за горизонтом, иметь надежную связь с командным пунктом и надежные системы управления оружием.

Первым видом оружия на корабле явилась ствольная артиллерия, затем началось развитие минно-торпедного оружия, а после второй мировой войны — ракетного оружия. Развитие каждого из этих видов оружия потребовало привлечения новейших достижений электротехники и электроники, радиосвязи, радиоуправления, гироскопии, гидро- и радиолокации.

Минно-торпедное оружие. Применение торпедного оружия в России началось во второй половине XIX в. Создатель первой отечественной торпеды с электроприводом был И.Ф. Александровский. Но его работа не была поддержана, и для вооружения кораблей торпеды закупались в Англии.

Только после Октябрьской революции было принято решение о создании собственного морского оружия. Для руководства этими работами в составе Наркомата по военным и морским делам (1923–1926 гг.) был создан Научно-технический комитет.

К созданию современного оружия были привлечены такие организации, как Остехбюро (в последствии ЦНИИ «Гранит»), завод «Электроприбор» (впоследствии НПО «Электроприбор»), НИИгидроприбор.

В Остехбюро талантливый изобретатель В.И. Бекаури предложил применить для точного наведения торпеды на расстоянии в несколько километров звуковые волны, электрические сигналы от которых на торпеде обрабатывались электронным блоком, воздействующим на электрорули. В дальнейшем эти принципы были применены в радиодиапазоне, в том числе для управления безэкипажными подводными лодками, торпедными катерами, а также торпедами, сбрасываемыми с самолета.

К началу второй мировой войны на вооружении ВМФ находились отечественные торпеды различных калибров морского и авиационного базирования, а также ряд радиоуправляемых торпедных катеров.

Требования к точности и вероятности попадания торпеды в корабль по опыту войны ускорили принятие специальных мер, реализуемых с помощью сложных электротехнических систем: автоматизированных систем подготовки и производства пуска торпеды, автоматического расчета траектории хода с учетом данных разведки о положении атакуемого корабля, параметров его движения.

Первая отечественная торпеда с электронным самонаведением была принята на вооружение в 1950 г. (главный конструктор Н.Н. Шамарин). Это событие явилось историческим и позволило перейти к созданию противолодочного оружия. Такая торпеда была создана в НИИгидроприбор под руководством главного конструктора В.А. Поликарпова. Торпеда могла самонаводиться на подводные лодки на глубине до 200 м. Поиск эффективных технических средств поражения подводных лодок привел к созданию нового вида противолодочного оружия — неуправляемых и управляемых противолодочных ракет.

Первым комплексом такого оружия явился комплекс РПК-1 с неуправляемой баллистической ракетой. Он поступил на вооружение противолодочных авианесущих крейсеров «Москва» и «Ленинград». В 60-е годы для вооружения многоцелевых подводных лодок был создан комплекс РПК-2. В дальнейшем этот комплекс был усовершенствован для установки на надводные корабли, а электронная система управления торпедой на конечном участке включала в свой состав активно-пассивную гидроакустическую головку самонаведения. Комплекс разрабатывался под руководством главных конструкторов Л.В. Люльева, А.С. Абрамова, а сама торпеда — под руководством В.А. Левина.

В начале 70-х годов на вооружение больших противолодочных кораблей был принят ракетный комплекс РПК-3 с крылатой ракетой, несущей в своем составе малогабаритную самонаводящуюся торпеду. В последующем комплекс был оборудован радиолокационной головкой самонаведения, позволившей наводиться и на надводные корабли без отделения торпеды, что сделало комплекс универсальным. Этот комплекс создавался в КБ «Радуга» под руководством А.Я. Березняка и И.С. Селезнева, а также во ВНИИ «Альтаир» под руководством Г.Н. Волгина.

Для повышения эффективности применения торпедного оружия сразу после войны были созданы сложные радиоэлектронные системы управления стрельбой. Одной из первых появилась система «Ленинград», разработанная под руководством А.И. Буртова и принятая на вооружение в 1956 г. Система обеспечила скрытное применение торпедного оружия по данным целеуказания, выдаваемого с гидроакустической станции. В 1965 г. система была модернизирована с применением вычислительных средств, позволивших вычислять параметры траектории движения торпеды с точностью до первой производной. Затем появились комплексы «Брест» и «Спрут» (1967 г.) для вооружения первых атомных подводных лодок, а в 1971 г. был сдан комплекс «Аккорд» под руководством главного конструктора А.И. Буртова, который объединил задачи стрельбы торпедным оружием и боевого управления кораблем. Комплекс создавался при участии академика В.А. Трапезникова.

Для больших авианесущих кораблей был создан комплекс управления стрельбой «Пурга», а затем «Лахна» под руководством главных конструкторов А.А. Тулаева, М.И. Левианта, И.В. Симановского. Последний комплекс явился универсальным интегрированным комплексом, способным производить стрельбу торпедами, ракетами-торпедами и глубинными бомбами.

Гидроакустика. Гидроакустические колебания являются единственным носителем энергии, способным распространяться в водной среде на большие расстояния вплоть до десятков и даже сотен километров. В сочетании с электронными системами обработки и формирования гидросигналов это обстоятельство позволило создавать гидроэлектронные комплексы для решения таких важных задач, как обнаружение и классификация объектов в толще воды и на дне океана, гидроакустическая навигация и др.

В истории отечественной гидроакустики можно выделить следующие основные этапы:

1920–1930 гг. — начальные исследования и разработки, которые проводились в акустической лаборатории Государственного электротехнического института (руководитель академик Н.Н. Андреев) и Остехбюро (руководитель академик В.Ф. Миткевич).

1931 г. — коллегия Наркомата водного транспорта приняла решение о создании завода «Водтрансприбор» по выпуску гидроакустической техники.

1934 г. — под руководством В.Н. Тюлина создан первый отечественный эхолот.

1935 г. — начало серийного выпуска гидроакустических средств обнаружения и связи.

1940 г. — гидроакустическая продукция стала профильной для завода «Водтрансприбор». Созданы и серийно освоены шумопеленгаторы «Посейдон», «Меркурий», «Марс», гидролокатор «Тамир», прибор гидроакустической связи «Сириус», эхолот ЭМС-1 и другие системы.

1949 г. — создается первый в стране научно-исследовательский институт гидрологии и гидроакустики — ЦНИИморфизприбор.

1956–1965 гг. — первый десятилетний этап ускоренного развития гидроакустической отрасли, обусловленного таким внешним фактором, как создание первой отечественной баллистической ракеты морского базирования; первой отечественной атомной подводной лодки, несущей различные виды ракетного и торпедного оружия; новых надводных кораблей с ракетным оружием.

В этот период на вооружение ВМФ было принято 16 гидроакустических станций.

1966–1975 гг. — второй десятилетний этап ускоренного развития гидроакустической отрасли. В этот период было создано и принято на вооружение ВМФ 20 новых систем, в том числе первые отечественные многофункциональные гидроакустические станции «Рубин» и «Енисей» для подводных лодок, «Орион» для надводных кораблей, не имевшие аналогов в отечественной и мировой практике, гидроакустические навигационные средства обеспечения плавания подводных лодок в Арктике «Круг», «Торос» и др.

1976–1985 гг. — третий десятилетний этап ускоренного развития гидроакустической отрасли. В этот период на вооружение ВМФ было принято более 40 новых систем. Среди них многофункциональные гидроакустические станции для подводных лодок и надводных кораблей, гидроакустические навигационные средства. В этих системах были реализованы прогрессивные технологические решения: цифровая электронная обработка сигналов, методы автоматизированной гидроакустической классификации, способы гидроакустической связи с повышенной скрытностью.

На конец 80-х годов в области промышленной гидроакустики эффективно работали НИИ «Риф», Киевский НИИгидроприборов, ЦНИИморфизприбор, представляющий собой самую мощную в России исследовательскую и проектную организацию гидроакустического профиля. Были созданы научные школы по ряду направлений в гидроакустике:

1. Теория и пути практической реализации пассивных и активных систем освещения обстановки в океане (Е.И. Аладышкин, Р.Х. Бальян, В.А. Какалов, Я.С. Карлик и др.).

2. Теория и пути практической реализации гидроакустических навигационных систем (Г.Е. Смирнов, С.А. Смирнов, В.И. Бородин, Ю.А. Николаенко, А.В. Богородский и др.).

3. Теория проектирования и технология изготовления гидроакустических преобразователей, антенн и антенных обтекателей (Е.А. Корепин, В.Б. Жуков, М.Д. Смарышев и др.).

4. Пути создания многопроцессорных цифровых вычислительных систем реального времени с алгоритмическим и программным обеспечением (Ю.А. Корякин, А.Р. Лисе, В.Г. Гусев, А.В. Рыжиков).

Эти научные направления и промышленные технологии позволили вооружить подводные лодки и надводные корабли самым современным гидроакустическим оборудованием, что обеспечило возможность применять самое современное ракетное и торпедное оружие, имеющее большую дальность действия, достигающую десятков и сотен километров.

Корабельная навигационная техника. В 20-х годах перед нашей страной остро стал вопрос обеспечения флота системами управления стрельбой и навигационной техникой. Эта задача была поручена заводу «Электроприбор». В 30-е годы на этом заводе были разработаны первые отечественные гироскопические приборы для авиации и флота. Здесь под руководством академика А.Н. Крылова сложилась российская школа гироскопии, которая послужила основой для развития этой техники и создания института, который с 1966 г. именуется ЦНИИ-электроприбор.

С конца 40-х годов институт разрабатывал гироскопы с воздушной опорой сферического ротора.

Во второй половине 60-х годов начались работы по созданию прецизионного гироскопа с электростатическим подвесом сферического ротора. В начале 80-х годов этот гироскоп был освоен в производстве и по настоящее время остается наиболее точным среди отечественных гироскопов.

На основе гироскопов с воздушной опорой в совокупности с электронной и электрической частью были разработаны и серийно выпускались гировертикали «Сила-ГВ» (А.Н. Коган), «Сектор» (С.А. Батраков), гироазимуты «Сила-ГА» (В.И. Маслевский), «Сириус» (М.Н. Соловьев), гироазимутгоризонт «Минута» (Р.В. Запатрин). Эти системы стали основой морских навигационных комплексов первого поколения.

На базе обращенных гироскопов с воздушной опорой ротора ЦНИИэлектроприбор разработаны инерциальные системы полуаналитического типа «Стрелец» и «Сателлит» (Б.Д. Жарков), вошедшие соответственно в состав комплексов второго и третьего поколений.

Создание прецизионного гироскопа с электростатической опорой ротора (А.С. Афиногенов) позволило построить принципиально новую систему — инерциальный гироскопический корректор «Скандий» (В.З. Гусинский), ставший основным автономным средством электронных навигационных комплексов третьего поколения. Эта система на порядок превосходит по точности все отечественные системы аналогичного назначения и соответствуют высшему мировому уровню.

Работы над корабельными навигационными комплексами первого поколения были начаты в 50-е годы и должны были обеспечить создание атомного подводного флота для решения как навигационных задач движения, так и стрельбовых задач для ракетного и торпедного оружия. Навигационный комплекс «Сила-Н» (В.И. Маслевский), построенный по схеме электронного гирокомпаса и гироазимута, обеспечил маловозмущаемую при маневрировании выработку курса, а за счет использования квазигеографической системы координат — плавание в высоких широтах. Летом 1962 г. атомная подводная лодка «Ленинский комсомол» с комплексом «Сила-Н» совершила успешный поход к Северному полюсу и впервые в мире свободное маневрирование вблизи полюса. В 1963 г. второй поход к Северному полюсу обеспечил новый навигационный комплекс «Сигма» (В.И. Маслевский), который затем надолго стал основным навигационным комплексом ВМФ.

Навигационный комплекс второго поколения «Медведица» (В.Г. Пешехонов), построенный на базе инерциальной системы, полностью решил навигационные задачи атомных многоцелевых подводных лодок. В 1980 г. этот комплекс обеспечил первый зимний поход отечественной атомной подводной лодки к Северному полюсу.

В 1983 г. ВМФ был передан первый навигационный комплекс третьего поколения «Симфония» (В.Г. Пешехонов). Этот комплекс обеспечивает решение всех современных задач навигации на море, включая выработку исходных данных для ввода в бортовые вычислительные системы ракетных комплексов, и используется на атомных подводных лодках и научно-исследовательских кораблях. По точностным характеристикам и объему решаемых задач комплекс «Симфония» находится на уровне лучших мировых образцов.

Системы управления противокорабельными крылатыми ракетами (ПКР). Вторая мировая война показала недостатки применения в войне на море ствольной артиллерии — малые дальности стрельбы и большой расход снарядов. В связи с этим обстоятельством остро встал вопрос о создании ракетного оружия для борьбы с кораблями противника.

Одними из первых приступили к работам по созданию нового вида оружия — противокорабельных крылатых ракет в 1947 г. генеральные конструкторы А.Я. Березняк, В.Н. Челомей и М.Р. Бисноват. Системами управления ракет занимались НПО «Альтаир» и ЦНИИ «Гранит». Опыт создания корабельных электронных систем управления самолетами-снарядами в 30-х годах позволил этим организациям активно участвовать в работах по созданию нового оружия.

Первый такой комплекс создавался в 1947–1955 гг. — разработка ракеты на базе самолета-снаряда 15ХМ генерального конструктора М.Р. Бисновата. Комплекс («БСУ-Шторм») разрабатывался в ЦНИИ «Гранит» (главный конструктор Н.Н. Свиридов). В процессе работы были созданы радиолокационные станции для обнаружения надводных целей, слежения за ними, слежения за самолетом-снарядом по активному радиоответу, электронно-вычислительные комплексы управления полетом и стартовой установкой.

На базе полученного опыта в 1953–1957 гг. была создана крылатая ракета КСЩ (М.В. Орлов). Это была первая ракета, принятая на вооружение эсминцев.

Следующим шагом в развитии ПКР стало создание комплекса П-15 (А.Я. Березняк). Комплекс в 1960 г. был принят на вооружение ракетных катеров и получил большое распространение во многих странах Юго-восточного и Азиатского регионов. Эти ракеты в боевых условиях были успешно применены в египетско-израильском конфликте, после чего этим видом оружия заинтересовались развитые капиталистические страны, в первую очередь США.

В конце 60-х и начале 70-х годов стали появляться первые западные крылатые ракеты: «Гарпун» в США, «Экзосет» во Франции, «Отомат» в Италии. Но все эти ракеты были дозвуковые и могли поражать корабли только в пределах прямой видимости.

В то же время в России уже полным ходом шли работы по созданию противокорабельных комплексов с загоризонтным поражением цели, запуском ракет с подводных лодок, в том числе и из-под воды.

Огромный вклад в создание ПКР морского базирования внес генеральный конструктор В.Н. Челомей (НПО «Машиностроение»).

1956–1964 гг. — первая разработка ПКР с загоризонтным поражением цели генерального конструктора В.Н. Челомея (П6) имела электронную систему управления, разработанную в ЦНИИ «Гранит». Работу возглавляли:

по системе управления в целом — Н.А. Чарин и М.В. Яцковский;

по бортовой системе управления — И.Ю. Кривцов;

по корабельной системе управления — В.Н. Яковлев;

по аппаратуре контроля ракеты — В.П. Лапин.

Этой работой было положено начало новому, важнейшему в ЦНИИ «Гранит» направлению по созданию принципиально нового оружия для надводных кораблей и подводных лодок ВМФ нашей страны. Основное преимущество этого комплекса — поражение кораблей за пределами горизонта, где нельзя ожидать противодействия.

Параллельно с комплексом П-6 был создан комплекс П-35 для установки на надводные корабли и береговые комплексы. Система управления разрабатывалась в НПО «Альтаир» под руководством главных конструкторов К.А. Петрова, И.П. Хазанова, А.С. Миронова и B.C. Краснова.

1958–1968 гг. — разработка ракетного комплекса «Аметист» (В.Н. Челомей) — первого ракетного комплекса с подводным стартом и полностью автономной бортовой системой управления ракетой. Корабельная и бортовая электронные системы управления были созданы в ЦНИИ «Гранит» (Б.А. Митрофанов, С.Т. Зайцев, A.M. Камаевский, Б.П. Михеев, О.Ф. Евстигнеева).

Развитием этого направления явился комплекс ракетного оружия П-120, в котором дальность была увеличена примерно в 1,5 раза по сравнению с ПКР «Аметист» и усилена помехозащищенность бортовой системы самонаведения. Система управления разрабатывалась в НПО «Альтаир» (М.П. Петелин и М.Е. Краснов) и принята на вооружение в 1972 г.

1963–1974 гг. — создан комплекс со сверхзвуковой противокорабельной ракетой «Базальт», установленный на подводных лодках и надводных кораблях.

Система управления ракетой обеспечила существенное увеличение дальности стрельбы и избирательное поражение цели с учетом селекции целей на фоне активных и пассивных радиопомех. В институте «Гранит» разработкой руководили В.Н. Яковлев, А.В. Чижов, Е.Я. Кац, С.И. Червяков, Г.А. Васильев, Б.М. Голдин.

Значительным шагом в развитии ПКР для катеров и надводных кораблей стал комплекс «Москит» (А.Я. Березняк, И.С. Селезнев, С.А. Климов). Комплекс вошел в строй в 1982 г. и установлен на ракетных катерах и кораблях.

В 1969–1983 гг. был создан комплекс ракетного оружия «Гранит» для вооружения подводных лодок третьего поколения и надводных кораблей (В.Н. Челомей). Этот ракетный комплекс и сегодня не имеет аналогов за рубежом. Основная задача комплекса — борьба с авианосными соединениями на море и в океане. Последний корабль («Петр Великий») с комплексом «Гранит» вошел в состав ВМФ в 1996 г.

Главными конструкторами электронной системы управления комплекса, созданной в ЦНИИ «Гранит», были В.Б. Голованов и Н.М. Мозжухин, главными конструкторами бортовой аппаратуры и ее составных частей — A.M. Камаевский, Ю.Ф. Подоплекин, В.А. Николыдев, B.C. Богданов, главными конструкторами корабельной системы управления — Б.Н. Степанов, Б.П. Михеев, главным конструктором аппаратуры контроля ракеты — Б.М. Гольдин.

В 1981 г. была начата разработка нового комплекса для ракеты средней дальности под руководством генерального конструктора Г.А. Ефремова. Главный конструктор комплекса в целом В.Н. Яковлев.

В этом комплексе впервые в мировой практике в бортовой аппаратуре реализован сложный широкополосный сигнал с когерентной обработкой, что позволило практически отстроиться от активных радиопомех любого вида и существенно увеличить эффективность защиты от пассивных (дипольные облака, уголковые отражатели) и береговой черты.

1986 г., — начата разработка ракеты оперативного назначения и комплекса системы управления (Генеральный конструктор ГА. Ефремов). Главный конструктор комплекса системы управления В.А. Николыдев, научное руководство осуществлял Ю.Ф. Подоплекин, главные конструкторы подсистем А.С. Подвальных, Е.Г Грошёв, Л.Ю. Григорьев.

Таким образом, усилиями Генеральных конструкторов А.Я. Березняка, В.Н. Челомея, ГА. Ефремова, И.С. Селезнева в России были созданы современные комплексы ПКР, способные поражать корабли противника из подводного и надводного положений, на больших расстояниях (далеко за радиогоризонтом), со сверхзвуковой скоростью, в автономном режиме и практически при любом организованном радио- и огневом противодействии. Эти пионерские работы в России позволили опередить развитие зарубежной техники минимум на 10–15 лет.


8.3. АВТОТРАКТОРНОЕ ЭЛЕКТРИЧЕСКОЕ И ЭЛЕКТРОННОЕ ОБОРУДОВАНИЕ

Рождение автомобиля связывают с именами Г. Даймлера и К. Бенца. К. Бенц построил свой трехколесный автомобиль в 1886 г., Г. Даймлер — четырехколесный на год позже.

Из электроприборов автомобиль К. Бенца имел только электрозажигание. Один из первых русских автомобилей Е.А. Яковлева и П.А. Фрезе, появившийся на всероссийской выставке 1896 г., также имел электрозажигание от сухих гальванических элементов.

Производство отечественного автотракторного электрооборудования было впервые освоено на Московском электрозаводе, из которого выделился завод автотракторного электрооборудования (АТЭ) в начале 1930 г.

Теоретические основы отечественного электрооборудования автомобилей и тракторов [8.24–8.29] создались трудами B.C. Кулебакина (1891–1970 гг.), Б.П. Апарова (1899–1953 гг.), А.Н. Ларионова (1890–1963 гг.), Ю.М. Галкина (1903–1984 гг.).

8.3.1. СИСТЕМЫ ЗАЖИГАНИЯ

Низковольтная магнитоэлектрическая машина, названная впоследствии «магнето низкого напряжения», была впервые применена для зажигания двигателей внутреннего сгорания (ДВС) в 1875 г. От магнето осуществлялось зажигание на отрыв — внутри цилиндра ДВС помещались два электрода, которые механическим путем раздвигались. В дальнейшем система была дополнена индукционной катушкой зажигания (бобиной), получавшей питание от магнето низкого напряжения, и зажигание стало осуществляться электрической искрой высокого напряжения. В первоначальных конструкциях магнето обмотка якоря совершала качательное движение в поле постоянного магнита, затем движение стало вращательным.

Распределение энергии зажигания по цилиндрам первоначально осуществлялось на стороне низкого напряжения. В частности, на первых моделях автомобиля «Форд» устанавливалось по числу цилиндров четыре катушки зажигания, четыре электромагнитных прерывателя и магнето низкого напряжения.

Однако после 1910 г. система с магнето низкого напряжения была вытеснена системой с магнето высокого напряжения. В то же время был осуществлен переход на распределение высокою напряжения по свечам.

Магнето высокого напряжения было изобретено в 1900 г. М. Будевиллем и усовершенствовано в 1901 г. Г. Хонольдом в фирме «Бош» (Германия).

Выпуск отечественных автомобильных магнето был освоен с использованием конструкции магнето фирмы «Сцентилла» (Чехословакия).

В своем окончательно сформированном виде магнето отечественных автомобилей представляло собой однофазную электрическую машину переменного тока с двух- или многополюсным ротором, несущим на себе постоянные магниты с полюсными наконечниками и вращающимся между выступами магнитопровода трансформатора высокого напряжения, ток в первичной обмотке которого коммутировался прерывательным механизмом. При разрыве тока во вторичной обмотке наводилось высокое напряжение (10–17 кВ), подводящееся через распределительный механизм к свечам. Регулировка момента искрообразования (опережения зажигания) производилась либо вручную, либо центробежным автоматом.

Совершенствование конструкции магнето шло в основном в направлении применения постоянных магнитов с большим запасом магнитной энергии.

Недостатком магнето является малое вторичное напряжение при низких частотах вращения и, в частности, при пуске. Поэтому батарейная система зажигания в 20–30-х годах нашего века стала вытеснять магнето сначала в США, потом в Европе.

На легковых автомобилях «Форд-А» и грузовых «Форд-АА», выпуск которых был начат в 1927–1928 гг., уже было установлено батарейное зажигание.

Зажигание от магнето применялось на первых отечественных грузовых автомобилях завода АМО (ЗИЛ) «АМО-Ф-15», выпуск которых начался в 1924 г.

Магнето дожило до наших дней в виде магдино — совокупности электрического генератора и магнето, которое устанавливается на мопеды, мотоциклы легкого класса и применяется в комплекте с вынесенным трансформатором высокого напряжения и полупроводниковым коммутатором.

В батарейном зажигании электрический ток, получаемый от аккумуляторной батареи, превращается в высокое напряжение индукционной катушкой (катушкой зажигания — бобиной). Основными элементами этой системы являются выключатель зажигания, прерыватель-распределитель и катушка зажигания. Число витков вторичной обмотки катушки зажигания в 50–250 раз больше, чем первичной. Поэтому при размыкании тока в первичной обмотке прерывателем исчезающий магнитный поток наводит во вторичной обмотке высокое напряжение, поступающее через бегущий контакт распределителя на свечи.

Первоначально регулировка момента зажигания осуществлялась вручную («Форд-А», «Форд-АА», Г A3-А, ГАЗ-АА и др.), затем появился центробежный регулятор опережения зажигания, изменяющий момент зажигания по скорости (Ml, ЗИС-5, ЗИС-101), а затем и вакуумный регулятор, осуществляющий регулировку по нагрузке (М20 «Победа», ГАЗ-51, ЗИС-150). В окончательном виде прерыватель-распределитель современных автомобилей содержит оба этих регулятора.

Катушка зажигания классической батарейной системы зажигания имеет разомкнутый магнитопровод, т.е. обмотки располагаются на стержневом сердечнике, набранном из листов электротехнической стали.

С изобретением в 1948 г. транзистора, появилась возможность устранить существенный недостаток контактной батарейной системы зажигания — повышенный износ контактов прерывателя. Первоначально возникли контактно-транзисторные системы («Дженерал моторс» — 1962 г., отечественные — 1966 г.), где ток в катушке зажигания коммутировался транзистором, базовая цепь которого управлялась контактами прерывателя. Применение контактно-транзисторной системы позволило увеличить запас энергии в катушке, что благотворно сказалось на зажигании.

С появлением контактно-транзисторного зажигания на автомобилях возникло новое изделие — электронный коммутатор, включающий в себя силовой коммутирующий транзистор, схему его управления и защиты.

Благодаря простоте и дешевизне контактно-транзисторная система более четверти века обеспечивала нормальное зажигание восьмицилиндровых бензиновых двигателей грузовых автомобилей ЗИЛ и ГАЗ.

Однако развитие электроники позволило перейти на бесконтактные электронные системы зажигания (США — 1964 г., СССР — 1973 г.).

В таких системах механический контактный прерыватель заменен датчиком, управляющим электронным коммутатором, — магнитоэлектрическим («Искра») или датчиком Холль («Бош», зажигание ВАЗ-2108).

Применение электронной системы зажигания с регулируемым временем накопления энергии, впервые установленной на автомобилях ВАЗ-2108, позволило избежать снижения вторичного напряжения с ростом частоты вращения ДВС.

Развитие электронной промышленности привело к появлению после 1967 г. на автомобилях интегральных микросхем. В 1973 г. фирма «Дженерал электрик» использовала в системе зажигания интегральную схему на монокристалле кремния.

Электронные системы позволили увеличить энергию воспламенения на свечах, но их развитие обеспечило и решение глобальных задач, связанных с экономией топлива и снижением токсичности отработанных газов. При этом был осуществлен переход на электронное управление углом опережения зажигания.

Аналоговая система управления углом опережения зажигания была установлена на автомобиле «Крайслер» в 1975 г. Однако аналоговые системы не нашли широкого распространения. В 1976 г. фирма «Дженерал моторc» применила цифровую систему управления углом опережения зажигания МИСАР. Центральным узлом системы являлся микропроцессор. Микропроцессор по заданной программе управлял блоком высокого напряжения, содержащим электронный коммутатор, катушку зажигания и переключатель, выполняющий функции распределителя. На отечественных автомобилях микропроцессорные системы появились в конце 80-х годов.

Электронные коммутаторы позволили повысить ток в первичной обмотке катушки зажигания и перейти на конструкцию с замкнутым магнитопроводом.

В рассмотренных выше системах накопления энергии, используемой затем для воспламенения смеси, осуществлялось в магнитном поле катушки зажигания. Однако в основном для двухтактных двигателей мопедов, мотоциклов легкого класса и т.п. нашли применение системы зажигания с накоплением энергии в конденсаторе. Конденсаторная система дополнительно содержит преобразователь напряжения бортовой сети в высокое для заряда конденсатора либо конденсатор заряжается от специальной обмотки генератора с повышенным напряжением. Коммутация в цепи конденсатор — первичная обмотка катушки зажигания осуществляется тиристором.

Первоначально искровые свечи зажигания имели разборную и неразборную конструкции, причем в отечественном производстве предпочтение было отдано разборной свече, у которой изолятор вместе с центральным электродом прижимался ниппелем, ввернутым в верхнюю часть корпуса свечи. Это позволяло заменять изолятор или очищать центральный электрод без извлечения корпуса свечи из головки блока цилиндров. Изолятор изготавливался из керамики или слюды, но слюда применялась только для гоночных двигателей.

До 1930 г. основным типом американских свечей были свечи с дюймовой резьбой в Европе — с метрической. В дальнейшем дюймовые свечи были вытеснены метрическими.

В настоящее время конструкция свечи стабилизировалась и применяется только в неразборном варианте. Свеча состоит из металлического корпуса, одного или нескольких боковых электродов, изолятора с центральным электродом и контактной головкой. Первоначально изоляторы автомобильных свечей изготавливались в основном из стеатита, сейчас из уралита, боркорунда, хилумина, синоксаля и т.п.

В настоящее время все большее распространение находят свечи с расширенным температурным диапазоном. Теплоотдача таких свечей увеличена за счет выполнения центрального электрода комбинированным.

Определенную специфику имеют провода, соединяющие распределительный механизм со свечами: подведение к свечам высокого напряжения (20–30 кВ) при малых значениях тока и излучении радиопомех. Обычно помехоподавление осуществляется резисторами, устанавливаемыми в свечах, распределителе или отдельно, а также экранированием всей системы. Однако помехоподавляющие свойства могут обеспечиваться и конструкцией самого провода. Провода такого типа бывают с распределенным активным сопротивлением (резистивный провод) и с распределенным активно-индуктивно-емкостным сопротивлением (реактивный провод).

Развитие электроники на современном этапе ведет к объединению систем управления зажиганием и топливоподачей двигателя, а также коробкой перемены передач и сцеплением.

8.3.2. СИСТЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ

Тип системы электроснабжения в значительной мере зависит от наличия на подвижном объекте аккумуляторной батареи, т.е. в конечном итоге от наличия электростартерного пуска.

Если электропуск отсутствует, то используется система электроснабжения потребителей переменным током. Такая система длительное время была характерна для тракторов и до настоящего времени сохраняется на мопедах и легких мотоциклах. В системе переменного тока генератор представляет собой синхронную электрическую машину с возбуждением от постоянных магнитов. Эти магниты могут располагаться на маховике двигателя (трактор «Фордзон», мотогенераторы), однако генератор может иметь и традиционную конструкцию с ротором в виде звездочки из постоянных магнитов или конструкцию с полюсными наконечниками, между которыми зажат магнит. Регулятор напряжения в такой системе отсутствует и поддержание стабильности напряжения достигается параметрическим способом. Попытки повысить эту стабильность введением противополярного регулирования центробежным автоматом (генератор ГТ1-А) не увенчались успехом.

Система электропитания с генератором постоянного тока начала усиленно развиваться на автомобилях после 1912 г., когда она впервые была применена на автомобилях «Кадиллак».

Первоначально возникли две системы электроснабжения: генераторы с регулированием напряжения с помощью третьей щетки и генераторы с регулированием напряжения вибрационным регулятором напряжения. До 1920 г. преимущественное распространение получил трехщеточный генератор, особенно в США, Англии и Франции. Производители автомобилей Германии и Австрии ориентировались на вибрационный регулятор. В период с 1920 по 1930 г. трехщеточный генератор благодаря проникновению американских машин на европейский рынок практически вытеснил систему с вибрационным регулятором. Однако с 1930 г. начался обратный процесс, так как преимущества трехщеточного генератора (простота и дешевизна) не компенсировались его недостатками, которые начали сказываться при повышении количества и мощности электропотребителей. Дискретный принцип регулирования напряжения, заложенный в вибрационном регуляторе, дожил до наших дней.

Первые отечественные трехщеточные генераторы повторяли по конструкции генераторы «Авто Лайт» (США) и устанавливались на автомобилях ГАЗ-А, ГАЗ-АА, ЗИС-5 (серия ГБФ). В 1937–1938 гг. заводом АТЭ была проведена модернизация генераторов легковых автомобилей с выпуском новых серий — ГМ (ГАЗ-MI) и ГЛ (ЗИС-101). На первые автомобили «Москвич», выпуск которых начался в 1947 г., устанавливался трехщеточный генератор Г28. Особенностью этих генераторов, как и всех генераторов выпускавшихся до середины 50-х годов, было соединение с корпусом автомобиля положительного вывода. В 1957 г. стандартом предписывалось соединение с корпусом отрицательного вывода, и в

дальнейшем все генераторы выпускались только с таким соединением.

Генератор Г28 был последним трехщеточным генератором, выпущенным отечественной промышленностью, после него был осуществлен переход на систему с вибрационным регулятором напряжения (реле-регулятором). Аналогичный переход был закончен в США в 1937–1938 гг.

На отечественные тракторы генераторы постоянного тока устанавливались только с реле-регулятором. Сначала генераторы приобретались у фирмы «Бош» (трактор «Интернационал» — СТЗ-30), затем было освоено собственное производство генераторов серий ГБТ, ГАУ с пристроенным реле-регулятором.

Рост требуемой от генератора мощности, а также развитие электроники привели к коренным изменениям в конструкции генераторной установки.

Во-первых, изменение коснулось номинального напряжения бортовой сети и соответственно генераторной установки. Из-за чрезмерного возрастания тока номинальное напряжение бортовой сети 6 В, распространенное в США, Англии и СССР, начиная с 1945 г. уступает место системе номинальным напряжением 12 В. В настоящее время генераторные установки автомобилей выпускаются на номинальное напряжение 14 В, а дизелей — на 28 В.

Во-вторых, развитие электроники позволило заменить генераторы постоянного тока вентильными генераторами и электронными регуляторами напряжения.

Вентильный автомобильный генератор представляет собой трехфазную синхронную электрическую машину с вращающейся системой возбуждения и неподвижным якорем (статором), обмотка которого питает потребителей через выпрямитель. В России генератор такого типа впервые появился на автобусе ЗИС-155 в 1954 г., причем селеновый выпрямитель располагался вне генератора. В США генераторы аналогичного устройства устанавливались на армейских автомобилях во время второй мировой войны.

С 1960 г., когда на автомобилях «Крайслер» появились генераторы со встроенным выпрямителем на кремниевых диодах, применение вентильных генераторов начало расширяться, и в настоящее время на автомобили устанавливаются только генераторы такого типа. Производство отечественного генератора Г250 со встроенным кремниевым выпрямителем, заменившего на автомобилях генераторы постоянного тока, было освоено на Куйбышевском заводе автотракторного электрооборудования в 1967 г.

Современные генераторные установки имеют дополнительный выпрямитель обмотки возбуждения и дополнительное плечо силового выпрямителя, соединенное с нулевой точкой обмотки статора, позволяющее увеличить мощность генератора за счет мощности высших гармонических составляющих, содержащихся в фазном напряжении.

Принцип работы электронного регулятора напряжения аналогичен вибрационному. Переход от вибрационного к чисто электронному регулятору на отечественных автомобилях и тракторах осуществлялся через промежуточную конструкцию контактно-транзисторного регулятора (РР362, 1967 г.), в котором управление транзистором осуществлялось вибрационным реле и был сохранен дополнительный резистор. Большинство зарубежных фирм миновало этот этап, а электронные регуляторы в основном развивались в сторону удешевления технологии их изготовления: сначала они выполнялись на навесных элементах, затем по гибридной технологии (впервые такой генератор использовала фирма «Дженерал моторc» в 1966 г., в России регуляторы такого типа Я112, Я120 широко распространены), и наконец вся схема выполнялась на монокристалле кремния. При выполнении регулятора на монокристалле или полевых транзисторах силовые диоды выпрямителя заменяются стабилитронами для защиты схемы от перенапряжений. В регуляторах стала применяться широкоимпульсная модуляция.

Со второй половины 90-х годов на отечественных автомобилях стали устанавливаться генераторы компактной конструкции с двумя вентиляторами во внутренней полости. Последние оснащаются приводом на повышенное передаточное отношение и имеют высокие коэффициенты использования.

Для тяжелых условий эксплуатации предназначены бесщеточные генераторы. На автомобилях довольно широко применяются генераторы с клювообразным ротором, у которых одна полюсная половина несет на себе другую, приваренную к ней по клювам немагнитным материалом (фирма США «Делько Реми» и германская «Бош»).

В России на тракторах используются исключительно индукторные генераторы. Впервые индукторный генератор был применен в 1966 г. для двигателей воздушного охлаждения (генератор Г302), массовый генератор Г304 начал выпускаться с 1968 г. С 1985 г. тракторные генераторы переведены на смешанное магнитоэлектромагнитное возбуждение (генератор 46.3701).

На некоторых типах автомобилей находят применение двухуровневые системы напряжения (ЗИЛ-4331, ЗИЛ-133ГЛ, ЗИЛ-5310). Второй уровень напряжения достигается трансформацией и выпрямлением переменного напряжения обмотки статора.

8.3.3. СИСТЕМЫ ПУСКА

В систему пуска традиционно включают аккумуляторную батарею, электростартер, аппаратуру управления пуском и устройства, облегчающие пуск ДВС.

Применение аккумуляторной батареи на автомобиле в широких масштабах началось после 1911 г. с введением электропуска. Аккумулятор заменил на автомобилях сухие гальванические элементы. На автомобилях устанавливается свинцовая аккумуляторная батарея.

Батарея без долива воды за весь срок службы впервые была установлена на автомобиле «Понтиак» в 1971 г. Необслуживаемая батарея 6СТ-55АЗН отечественного производства устанавливается на автомобилях ВАЗ-2108.

Можно отметить, что почти за 70 лет эксплуатации легковых автомобилей заметного роста емкости их аккумуляторных батарей не произошло.

Альтернативой кислотной батареи является щелочная. На заре развития автомобиля у нее было много сторонников, особенно во Франции, но высокое внутреннее сопротивление этой батареи в то время не позволило ее применить на автомобилях. Серийное производство таких батарей появилось только в последнее время.

Первый электростартерный пуск появился на автомобилях «Кадиллак» в 1912 г. Он осуществлялся от стартер-генератора фирмы «Делько». В 1916 г. на автомобиле «Паккард» стартер и генератор были разделены, и в дальнейшем стартер сформировался в виде отдельной электрической машины, состоящей из электродвигателя постоянного тока последовательного или смешанного возбуждения, механизмов привода и управления. В последнее время электромагнитное возбуждение заменяется возбуждением от постоянных магнитов. В современных стартерах перемещение шестерни выполняется электромагнитным тяговым реле, расположенным на корпусе стартера или встроенным внутрь его. Отсоединение вала якоря после пуска от ДВС осуществляется роликовой муфтой свободного хода или храповым механизмом.

В последние годы стартеры традиционной конструкции замещаются стартерами со встроенным промежуточным редуктором (планетарным или классическим).

8.3.4. СИСТЕМЫ ОСВЕЩЕНИЯ И СВЕТОВОЙ СИГНАЛИЗАЦИИ

Впервые головной электрический свет на автомобиле появился в 1898 г.

Изобретение в 1913 г. газонаполненной электрической лампы со спиральной нитью, обладающей высокой габаритной яркостью, открыло дорогу применению фар с электрическим источником света. Но только с 1925 г. практически все автомобили стали выпускаться с электрическим освещением.

Головные фары автомобиля должны хорошо освещать дорогу на возможно большем расстоянии, но не ослеплять встречного водителя. Первая задача решена применением прожекторного способа образования светового луча — помещением нити накала лампы в фокус параболоидного отражателя. Решение второй задачи прошло множество этапов, пока в 1924 г. в Европе не была изобретена фара с двухнитевой лампой, существующая с некоторыми усовершенствованиями и поныне. Нить дальнего света лампы европейской фары помещена в фокус отражателя, а ближнего света выдвинута вперед и чуть выше световой оси. При переходе на ближний свет лучи падают только перед автомобилем. Под нитью расположен экран, не позволяющий лучам с нижней части отражателя попадать в глаза водителя встречного автомобиля. В США двухнитевая лампа появилась чуть позже, чем в Европе, в ней экран отсутствует, а нить ближнего света расположена выше и левее нити дальнего света. С 1939 г. в США лампа заменена лампой-фарой.

До 1968 г. в. СССР применялась американская система фар, позднее — европейская.

С начала 60-х годов в Европе сначала в дополнительных фарах (противотуманных, прожекторах) появились галогенные однонитевые лампы HI, H3. Фирма «Сев-Маршал» (Франция) утверждает, что она первая применила фары с галогенной лампой на автомобильных гонках 1962 г. С середины 60-х годов галогенные лампы стали применяться в четырехфарных системах. С 1971 г. фирмы «Филипс» и «Осрам» начали выпуск фар с двухнитевой лампой Н4. Отечественные унифицированные фары ФГ152 для грузовых автомобилей (лампа H1) и легковых 11.3743 (лампа Н3) освоены производством в 70-х годах. В последнее время в фарах появился дневной свет.

Наряду с прожекторами в фарах применяется проекторный способ получения светораспределения (эллипсоидный отражатель). Применяются также гомофокальные и бифокальные фары. Ряд японских фирм применяют в светосигнальных приборах вместо ламп светодиоды.

8.3.5. КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Первоначально на автомобилях использовался только амперметр («Форд-АА», ГАЗ-АА, ЗИС-5). Затем появился измеритель уровня топлива (ГАЗ-М-1, ЗИС- 101). Рост измерительной аппаратуры стал наблюдаться на отечественных автомобилях только в послевоенное время («Победа» М20 и др.).

По конструкции контрольно-измерительные приборы существенно отличаются от используемых в промышленности, хотя используют те же принципы действия.

На автомобилях наиболее распространены реостатные, терморезистивные и биметаллические датчики. Для измерения давления используются мембраны. В приемниках сигналов от датчиков применяются магнитоэлектрическая, электромагнитная и импульсная системы. Наиболее распространены магнитоэлектрические логомеры, содержащие две соосные встречно включенные обмотки, в цепь одной из которых включен резистор датчика, и одну обмотку, расположенную перпендикулярно. Специфика автомобильных приборов — невысокая точность, стоимость и т.п. — накладывает отпечаток на их конструкцию. Например, вместо возвратных пружин в указателях часто используются противовесы или постоянные магниты. В спидометрах использован принцип заторможенного асинхронного двигателя.

Приборы обычно выпускаются объединенными в щиток или комбинацию приборов. Развитие электроники обусловливает переход к электронным приборным панелям с цифровой или аналоговой информацией, для которой используют катодно-люминесцентные индикаторы, жидкие кристаллы, светодиоды и т.д.

С применением бортового компьютера связан переход от контрольно-измерительных приборов к информационным системам, способным расширить информацию о состоянии узлов и агрегатов автомобиля, условиях движения автомобиля с выводом ее на дисплей и дублированием голосом.

8.3.6. ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ И КОММУТАЦИОННАЯ АППАРАТУРА

Первым из электропотребителей, появившимся на автомобилях в 1908 г., был электросигнал, питающийся от сухих батарей. Сигналы, где колебания звукоизлучающей мембраны вызывались вращающимся храповиком, задевающим укрепленный на мембране зуб, существовали недолго и были заменены вибрационными, принцип работы которых сохранился до наших дней — это электромагнит, якорь которого связан со звукоизлучающей мембраной.

Первые автомобили «Форд» были оборудованы сигналами переменного тока, где колебания мембраны создавались электромагнитом, питающимся от первичной обмотки магнето. Сигналы такого типа некоторое время применялись на мотоциклах.

В 1930 г. автомобили повышенной комфортабельности из вспомогательного оборудования кроме сигнала имели лишь прикуриватель, телефон для переговоров с водителем, горелку для отопления и двигатель последовательного возбуждения стеклоочистки лобового стекла. Затем число элементов вспомогательного оборудования начало интенсивно расти. Этот процесс продолжается и поныне.

Конструкция электрического вспомогательного оборудования (стеклоочистителей, насосов, стеклоомывателей, вентиляторов, отопителей и т.п.) связана с приводными электродвигателями. В настоящее время наиболее распространены электродвигатели с возбуждением от постоянных магнитов.

На автомобилях «Форд-А» «Форд-АА» и соответственно ГАЗ-А и ГАЗ-АА из коммутационной аппаратуры использовались лишь выключатель зажигания, переключатель освещения, выключатель стоп-сигнала и выключатель стартера, расположенный непосредственно на нем. В автомобиле ГАЗ-М-1 добавилось реле сигнала, а переключатель света был разделен на ручной и ножной, ЗИС-101 был дополнительно оснащен тяговым реле стартера и кнопкой управления этим реле, включателем вентилятора отопителя, включателем сигнала заднего хода, ручным и дверным включателем плафона, а замок зажигания подключал к цепи питания указатель уровня топлива и кнопку стартера.

В настоящее время число элементов коммутационной аппаратуры достаточно велико и растет с ростом числа потребителей.

Коммутационная аппаратура: включатели, переключатели, кнопки, реле, контакторы — по конструкции идентична общепромышленным.

Защита цепей на первых автомобилях «Форд» и отечественных автомобилях вообще не производилась. На машине ГАЗ-М-1 плавкий предохранитель устанавливался один на цепь освещения. В настоящее время практически все цепи автомобиля защищены предохранителями, причем на японских автомобилях защита стоит даже на разрядной цепи аккумуляторной батареи.

8.3.7. ЭЛЕКТРОННОЕ ОБОРУДОВАНИЕ

Применение на автомобилях электроники началось в 30-х годах с ламповых радиоприемников. Однако все же развитие автоэлектроники связывают с транзистором, изобретенным в 1948 г., и особенно с появлением интегральных схем в 1958 г. Эра применения полупроводников началась с выпрямительных диодов генератора на автомобилях «Крайслер» (1960 г.). После этого автотракторное электрооборудование и электроника тесно переплелись — нет ни одной системы электрооборудования, где бы не применялись полупроводниковые элементы.

Новый этап развития электроники, продолжающийся и в настоящее время, наступил с применением в 1977 г. фирмой «Дженерал моторc» (изготовитель «Делько Реми») микропроцессора (система MISAR), а также с появлением ранее не применявшихся на автомобиле датчиков.

Возникли или перешли на новый качественный уровень следующие системы:

система управления двигателем (впрыскивание топлива, экономайзеры принудительного холостого хода и т.п.);

системы, повышающие безопасность движения (антиблокировочные устройства тормозов, управление подвеской и т.п.);

системы, облегчающие вождение автомобиля (автоматическое управление трансмиссией, система управления скоростью движения);

система комфорта;

навигационные системы.

Кроме перечисленных выше систем на автомобилях находит применение мультиплексная система связи, передающая несколько сигналов по одному информационному проводу и позволяющая упростить бортовую цепь автомобиля. 

8.3.8. ТЯГОВЫЕ ЭЛЕКРОПРИВОДЫ БОЛЬШЕГРУЗНЫХ КАРЬЕРНЫХ АВТОСАМОСВАЛОВ БЕЛАЗ

Разработку и выпуск тягового электрооборудования для самосвалов БелАЗ осуществляет АЭК «Динамо».

Первые комплекты тягового электропривода для карьерных автосамосвалов БелАЗ были разработаны в 1976 г. При этом тяговый электропривод включал в себя тяговый генератор постоянного тока ГПА-600 (мощностью 630 кВт, частотой вращения 1500 об/мин), два тяговых электродвигателя ДК-717 мощностью 300 кВт каждый (в тяговом режиме они подключены параллельно к зажимам тягового генератора). Для возбуждения тягового генератора использовался генератор постоянного тока небольшой мощности независимого возбуждения. Система автоматического регулирования его возбуждения базировалась на использовании магнитного усилителя и электромагнитных датчиков постоянного тока. В силовой цепи использовались электропневматические контакторы.

На базе тягового электропривода автосамосвала грузоподъемностью 75 т в последующем был создан автосамосвал БелАЗ грузоподъемностью 110 т. При этом для обеспечения эффективного электрического торможения при движении автосамосвала с грузом вниз были разработаны специальные блоки вентилируемых тормозных резисторов УВТР 2x600.

В 1982 г. было начато производство автосамосвалов БелАЗ грузоподъемностью 180 т, на которых силовая цепь тягового электропривода состояла из тягового синхронного генератора мощностью 1400 кВт, неуправляемого выпрямителя, двух тяговых электродвигателей последовательного возбуждения, подключаемых параллельно к зажимам неуправляемого выпрямителя. В силовой цепи самосвала использовались линейные и тормозные контакторы с электропневматическим приводом, блоки обдуваемых тормозных резисторов и другая аппаратура. Система автоматического регулирования была выполнена с использованием магнитополупроводниковых элементов. Регулирование возбуждения главного генератора осуществлялось от вспомогательного синхронного генератора через трехфазный полупроводниковый выпрямитель.

В 1992 г. был создан опытный образец автосамосвала БелАЗ грузоподъемностью 280 т с колесной формулой 4x4, т.е. все колеса автосамосвала имеют тяговые электродвигатели. При этом каждая пара электродвигателей соединена последовательно и подключена к зажимам своего силового выпрямителя. Автосамосвал прошел цикл испытаний в объединении «Якут-уголь», но промышленный выпуск указанной модификации не осуществлялся.

В 1990–1992 гг. были разработаны и прошли карьерные испытания дизель-троллейвозы грузоподъемностью 120 т. Отличительной особенностью указанных машин являлась возможность их работы на выездной траншее от контактной сети постоянного тока номинальным напряжением 750 В (использовалась передвижная подстанция), а при работе на подъездных путях к экскаватору и в отвале питание машины осуществлялось от дизель-генераторной установки.

Автосамосвалы грузоподъемностью 75, 110 и 180 т в настоящее время выпускаются серийно, причем их тяговые электроприводы постоянно модернизируются. В период 1985–1990 гг. были разработаны и производятся электроприводы нового поколения, их основными отличительными качествами являются:

переход на переменно-постоянный ток (синхронный — генератор неуправляемые выпрямители — тяговые электродвигатели постоянного тока);

выполнение силовой цепи по схеме электрического дифференциала, предусматривающей последовательное соединение тяговых электродвигателей с силовым выпрямителем и тем самым обеспечение равенства токов и моментов тяговых электродвигателей;

отсутствие вращающегося возбудителя главного генератора, система его возбуждения — статическая от специальной обмотки, расположенной на статоре генератора;

система автоматического регулирования унифицирована для всех моделей самосвалов и выполнена на базе микроэлектронных компонентов, предусматривает широкие функции диагностики электрооборудования.

Необходимо отметить зарубежные разработки тяговых электроприводов большегрузных карьерных автосамосвалов. Это, например, тяговый электропривод автосамосвалов японской фирмы «Комацу» с колесной формулой 4x2 и грузоподъемностью 120 т, которые широко используются в карьерах России и других стран СНГ. Тяговый электропривод указанных самосвалов (электрооборудование разработано и поставляется фирмой «Toe электрик») выполнен на переменно-постоянном токе с параллельным подключением двух тяговых электродвигателей постоянного тока с последовательным возбуждением к неуправляемому силовому выпрямителю. Система автоматического регулирования выполнена на микросхемах малой и средней степени интеграции, в электроприводе самосвала используются электромагнитные силовые контакторы тягового и тормозного режимов, а также блок вентилируемых тормозных резисторов, т.е. тяговый электропривод самосвала «Комацу» весьма близок к электроприводам первого поколения автосамосвалов БелАЗ.

Силовая цепь по схеме электрического дифференциала реализована на американских самосвалах «Юклид» грузоподъемностью 134 т с колесной формулой 4x2, также используемых в карьерах стран СНГ. Разработчиком и изготовителем электрооборудования для самосвала «Юклид» является американская фирма «Дженерал электрик». Электропривод самосвала «Юклид» также выполнен на переменно-постоянном токе с неуправляемым выпрямителем тягового синхронного генератора и статической системой возбуждения от специальной обмотки, расположенной на статоре тягового генератора. Отличительной особенностью тягового электропривода самосвала «Юклид» по сравнению с отечественными электроприводами нового поколения является использование тяговых электродвигателей с независимым возбуждением.

В разработку и внедрение тяговых электроприводов для большегрузных карьерных автосамосвалов БелАЗ наибольший вклад внесли следующие отечественные ученые и инженеры, а также организаторы производства и науки: З.Л. Сироткин, СИ. Каган, А.П. Пролыгин, Ю.И. Фельдман, Ю.М. Андреев, Я.А. Брискман, А.Д. Машихин, М.П. Аскинази, В.В. Селиверстов, Г.И. Дорогуш, B.C. Краснов и др. [8.30–8.33].


8.4. АВИАКОСМИЧЕСКАЯ ЭЛЕКТРОТЕХНИКА

8.4.1. АВИАЦИОННОЕ ЭЛЕКТРООБОРУДОВАНИЕ

Электроэнергия является одним из основных видов энергии, используемой на борту летательных аппаратов. Потребителями электрической энергии являются практически все виды авиационного оборудования. Развитие системы электрооборудования происходило одновременно с развитием самой авиации.

По мере появления новых типов летательных аппаратов, изменения технических требований менялся качественный и количественный состав систем электрооборудования, совершенствовались его характеристики [8.34–8.36].

Практическое применение электрическая энергия нашла в системах зажигания топливно-воздушной смеси в авиационных двигателях. Большая роль в создании теории и практики систем зажигания принадлежит B.C. Кулебакину. Им построена теория рабочих процессов в магнето высокого напряжения. В развитии теории систем зажигания большая заслуга также принадлежит А.Н. Ларионову.

Источники электрической энергии на борту летательных аппаратов появились практически одновременно с созданием самих летательных аппаратов. Так, на самолетах «Илья Муромец» разработки И.И. Сикорского использовался источник электроэнергии мощностью 500 Вт.

В период первой мировой войны электроэнергия использовалась на самолетах в устройствах радиосвязи, освещения, как внутреннего, так и наружного. В качестве источника электроэнергии использовался генератор переменного тока мощностью 200 Вт с приводом от ветряного двигателя или вала авиационного двигателя.

В середине 20-х годов для питания радиоустройств применялся генератор постоянного тока напряжением до 12 В. В 1933–1934 гг. напряжение было повышено до 24 В с одновременным увеличением мощности генератора до 1 кВт. Привод от ветряного двигателя был заменен приводом от авиационного двигателя. Для обеспечения заданных требований по надежности генератор постоянного тока работал параллельно с аккумуляторной батареей.

Важным этапом в развитии электрооборудования самолета явилось создание в 1939 г. в СССР пикирующего бомбардировщика конструктора В.Н. Петлякова. На этом самолете были впервые применены различные виды электроприводов, обслуживающие различные органы управления самолетом, в том числе посадочные щитки, стабилизатор, управление радиаторами, триммерами, шасси и др. В качестве приводов использовались дистанционно управляемые системы. Аналогичные разработки за рубежом начали проводиться только через 3 года.

Внедрение на самолетах нового вида оборудования потребовало применения мощных источников электрической энергии. Следует отметить особую заслугу в создании генераторов переменного тока А.Н. Ларионова, под руководством которого была выполнена разработка генератора переменного тока для самолета «Максим Горький».

До конца 40-х и начала 50-х годов основным источником питания являлись коллекторные генераторы постоянного тока, установленные через редуктор на авиационных двигателях. Как правило, число генераторов соответствовало числу авиационных двигателей. Генераторы включались на параллельную работу между собой и с аккумуляторной батареей.

В конце 40-х — начале 50-х годов была проведена разработка стартер-генераторов. Использован принцип обратимости электрической машины, а также то обстоятельство, что электрическая машина устанавливалась непосредственно на авиационном двигателе. При этом в режиме запуска электрическая машина работала как стартер. После запуска электрическая машина переводилась в режим генератора. Таким образом был осуществлен автономный запуск двигателей самолета, что значительно улучшило условия его эксплуатации.

Значительный рост потребителей электроэнергии обусловил и увеличение установленной мощности источников энергии. На некоторых типах летательных аппаратов использовалось восемь генераторов мощностью 12 кВт каждый.

Впоследствии коллекторные генераторы были заменены на бесколлекторные. В развитии оборудования летательных аппаратов наметилась устойчивая тенденция к использованию электрической энергии переменного тока. В этой связи в энергетическую систему потребовалось включить преобразователи постоянного тока в переменный.

Дальнейший рост потребления электроэнергии начал сдерживаться значительным увеличением массы как самих источников электроэнергии, так и систем ее распределения.

Эффективным способом уменьшения массы электрооборудования, как известно, является переход на более высокий уровень напряжения. Вместе с тем повышение уровня напряжения сдерживается наличием коллектора, ухудшением условий коммутации, особенно на больших высотах полета.

Таким образом, назрела необходимость перевода электроэнергетической системы самолета с постоянного тока на переменный как основной вид электроэнергии. Этому переходу предшествовало применение генераторов переменного тока, в основном однофазных, для питания мощных радиолокационных установок.

В конце 40-х и начале 50-х годов во всем мире и в нашей стране велись интенсивные работы по разработке и внедрению электроэнергетических систем переменного тока. Однако внедрение переменного тока на борту летательного аппарата натолкнулось на целый ряд трудностей, основной из которых является осуществление параллельной работы генераторов переменного тока. Известно, что параллельная работа электрических генераторов постоянного тока может быть реализована при различных частотах их вращения. Условием параллельной работы генераторов переменного тока является их синфазная работа, что не может быть обеспечено в реальных условиях полета.

Первой попыткой обойти это противоречие было создание принципиально новой системы параллельной работы синхронных генераторов, установленных непосредственно на авиадвигателях и снабженных комбинированной муфтой. Эта разработка была выполнена в 1954 г. коллективом под руководством А.Ф. Федосеева и внедрена на самолетах-заправщиках генерального конструктора В.М. Мясищева.

Комбинированная муфта представляла собой сочетание фрикционной пары и обгонного устройства. В зависимости от режима работы энергосистемы в действие приводилась либо фрикционная, либо обгонная муфта, и, таким образом, независимо от частот вращения авиационных двигателей условия параллельной работы генераторов не нарушались. В системе также была предусмотрена автоматическая регулировка частоты вращения авиационного двигателя, обеспечивающая малые скольжения роторов генераторов одного относительно другого.

Следующим этапом внедрения переменного тока на самолетах было использование в качестве промежуточного звена между генератором и двигателем привода постоянной скорости, назначение которого состояло в преобразовании переменной частоты вращения авиационного двигателя в постоянную частоту вращения генератора.

Постепенно к середине 70-х годов сложилась типовая структура системы электроснабжения многомоторного самолета. Система включает синхронный генератор, установленный на гидропривод, трансформаторно-выпрямительные устройства для питания потребителей постоянного тока, управляемые выпрямительные блоки для подзарядки аккумуляторов, а также аппаратуру управления, защиты и регулирования.

На протяжении всей истории развития авиационной электротехники велись интенсивные работы по снижению массы электрооборудования. На ранних стадиях в электрических генераторах постоянного и переменного тока использовались воздушные системы охлаждения. В конце 60-х годов были разработаны синхронные генераторы с жидкостной циркуляционной системой охлаждения. При этом было достигнуто снижение удельной массы с 1 до 0,7 кг/кВт. Применение систем с непосредственным жидкостным охлаждением дало снижение удельной массы до 0,3 кг/кВт.

Одновременно происходило непрерывное совершенствование аппаратуры регулирования, защиты и управления. На смену вибрационным регуляторам напряжения пришли угольные регуляторы.

Достижения смежных отраслей промышленности, в частности электронной, использовались при разработке новых поколений аппаратуры, входящей в состав различных систем самолетного электротехнического оборудования. Начиная с середины 60-х годов получили широкое внедрение в электротехнические комплексы изделия, выполненные на базе полупроводниковой технологии. Во всем мире, в том числе и в нашей стране, велись и ведутся поиски путей решения проблемы построения систем электроснабжения самолета, в которых генераторы устанавливаются непосредственно на авиационные двигатели, а стабилизация частоты осуществляется полупроводниковыми преобразователями частоты.

В 1977 г. группой ученых и специалистов различных отраслей промышленности были проведены исследования для определения возможных направлений дальнейшего развития методов генерирования электроэнергии и оценки возможностей использования новых физических явлений и принципов получения электрической энергии для питания бортовых систем летательных аппаратов. Была предложена следующая классификация авиационных электротехнических комплексов:

АЭК постоянного тока;

АЭК переменного тока нестабильной частоты;

АЭК переменного тока стабильной частоты;

АЭК с источниками электроэнергии нетрадиционного типа.

В частности, предполагалось до конца 2000 г. в качестве основной применять систему переменного тока с гидроприводом. Последние десятилетия подтвердили этот прогноз.

Большое внимание было уделено снижению массы элементов энергосистемы. В этой части достигнут немалый прогресс. За счет интеграции генератора в конструкцию гидропривода удалось существенно снизить удельную массу всего агрегата до — 1 кг/кВт. Под интеграцией имеется в виду объединение элементов генератора и привода — подшипников, силовых элементов конструкции, системы охлаждения и т.д.

Промышленностью проводятся работы по созданию высокоскоростных электрических машин (до 24 000 об/мин). В связи с наметившейся тенденцией использования криогенных топлив открывается перспектива использования этого вида топлива в качестве хладагента. Цикл работ по этой проблеме проведен кафедрой электрических машин Московского авиационного института (МАИ).

Выполнен большой объем работ по созданию специальной коммутационной аппаратуры. Выпускаются аппараты для коммутации тока от 0,1 до 1000 А. К настоящему времени заводами поставляется более 100 типов реле и контакторов, в том числе герметичных.

Важным этапом в развитии самолетных электрических систем являлось создание пикирующего бомбардировщика ПЕ-2. На этом самолете впервые в истории отечественной авиации широкое применение получил электропривод.

Еще большее применение электропривод получил на самолете, конструкции А.Н. Туполева (ТУ-4), где впервые была реализована синхронно следящая система для управления стрелковым оружием и применен электропривод шасси повышенной надежности. Этот тип привода по своим характеристикам превосходил зарубежные образцы. В его состав входили два электрических двигателя, соединенных через дифференциальный редуктор с выходным валом. В нем удачно использовано свойство дифференциала при отказе одного из двигателей изменять частоту вращения электромеханизма при неизменном моменте вращения.

Электропривод обслуживал практически все основные самолетные системы. В середине 50-х и начале 60-х годов были созданы электромеханизмы для управления поворотом закрылков, стабилизатором, триммерами. Большое количество электромеханизмов используется в топливных и гидравлических системах: механизмы закрытия и перекрытия топливных кранов, приводы топливных насосов. Электропривод широко используется в радиотехнических системах в качестве привода антенн, а также в системах вооружения и специальных системах.

Электропривод получил большое развитие в связи с появлением транспортной и военно-транспортной авиации. Для механизации погрузочно-разгрузочных работ на этих самолетах используются электролебедки.

Появление на борту летательных аппаратов большого числа энергоемких потребителей электрической энергии повлекло за собой значительный рост установленной мощности. Так, например, на борту самолета АН-22 установлено четыре генератора мощностью 120 кВ?А каждый, на самолете ТУ-144 — четыре генератора переменного тока мощностью 60 кВ?А каждый, на самолете ИЛ-96–300 — четыре генератора мощностью 60 кВ?А каждый и на самолете ТУ-204 — два генератора мощностью 90 кВ?А каждый.

Следует отметить, что общая тенденция — объединение, интеграция различных систем в единый комплекс — имеет место и в электрических системах. В последние 10–15 лет получили развитие смешанные электрогидравлические и электропневматические устройства, в которых силовые функции выполняет гидравлика, а управление — электричество. Основным элементом электромеханизма является электродвигатель.

Уже в середине 50-х годов сложилась типовая структура электромеханизма. В состав электромеханизма входят электродвигатели, муфты сцепления-торможения, редуктор, фрикционная муфта с шариковым регулятором и концевые выключатели. В начале 70-х годов были проведены разработки электропривода с волновой передачей, в которой за счет увеличения поверхности сцепления удается значительно повысить механическую нагрузку на выходном валу при меньшем числе ступеней передачи. Так, например, в системе механизации крыльев самолета с изменяемой геометрией использован волновой редуктор с передаточным числом 1:100 и моментом на выходном валу 50 кН?м.

В связи с тем, что электропривод, как правило, обслуживает системы, к которым предъявляются требования высокой надежности, собственные показатели надежности электропривода также должны быть достаточно высокими.

Одной из причин широкого применения на самолете системы электроснабжения переменного тока являлось использование бесконтактных асинхронных двигателей. Вместе с тем асинхронный электродвигатель имеет существенный недостаток — малый пусковой момент.

За последнее десятилетие много внимания уделялось разработке бесконтактных вентильных двигателей, в которых используется магнитоэлектрическая машина с самарий-кобальтовыми магнитами, имеющими высокую удельную энергию. Этот новый класс электрических машин получил развитие благодаря появлению малогабаритных управляемых полупроводниковых приборов.

Важным этапом в развитии электрооборудования для авиации явилось создание в 1957 г. сверхзвукового стратегического бомбардировщика М-50 конструкции В.Н. Мясищева. На этом самолете впервые в мире была реализована электрическая дистанционная система управления всеми органами управления самолета, впоследствии получившая название «электрическая проводка». С учетом важности выполняемых функций, а следовательно, для обеспечения высоких требований по надежности, в системе был использован принцип троирования. В этих системах в широком масштабе были применены полупроводниковые приборы в устройствах управления.

Для управления сектором газа авиационных двигателей на самолетах серии СУ была применена дистанционная система, в которой использовалось специальное логическое устройство, определяющее неисправность в системе и производящее автоматическое переключение на резервные каналы.

За последние десятилетия наметилась тенденция к широкому применению в системах электрооборудования различных средств вычислительной техники, в том числе бортовых вычислительных машин (БЦВМ), при решении самых разнообразных задач управления и регулирования. Как показали исследования, применение БЦВМ в задачах регулирования режимов в электротехнических системах позволяет значительно повысить качество электроэнергии: в несколько раз сокращается длительность переходного процесса, уменьшается значение перерегулирования, появляется возможность организации более рациональных структур систем, устойчивых к отказам и внешним воздействиям, и существенного уменьшения их массы.

Примером может служить применение на самолете мультиплексных систем управления потребителями электроэнергии.

В середине 70-х годов в связи с появлением на борту летательного аппарата новых типов радиоэлектронного оборудования возникла необходимость генерирования электрической энергии большей мощности — от нескольких мегаватт до сотен мегаватт.

В опытно-конструкторских организациях и научных центрах были проведены исследования различных источников получения такой энергии (электромеханические генераторы; накопители электрической энергии; МГД-генераторы).

В качестве электромеханического генератора был использован синхронный бесконтактный генератор с электромагнитным возбуждением, воздушным охлаждением и кратковременным режимом работы (до 100 с). Благодаря тепловой инерции генератора температура элементов за время работы не достигала предельных значений, что позволяло снизить его удельную массу до 0,2 кг/кВт.

Под руководством Д.А. Бута на кафедре электрических машин в МАИ проведены теоретические исследования возможностей использования в качестве мощного источника электроэнергии МГД-генераторов и различных видов накопителей электроэнергии.

В конце 70-х годов за рубежом и в нашей стране рассматривалась концепция единой электроэнергетической системы, суть которой заключалась в следующем.

На существующих типах самолетов используются в основном два вида энергии — электрическая и гидравлическая. Обе системы соизмеримы как по количеству генерируемой энергии, так и по протяженности систем распределения. Очевидно, что наличие на летательном аппарате двух различных систем, имеющих во многом одинаковое назначение, вызывает определенные трудности в эксплуатации, организации структур, усложняет проведение мероприятий по их модернизации. Появление всережимных самолетов обусловило применение специальных устройств в виде демпферов, гидравлических агрегатов, управляемых по заданным законам электроавтоматикой. Появились смешанные системы управления, получившие название электрогидравлических систем.

Вместе с тем гидравлические системы, выполняющие, как правило, функции приводов органов управления самолетом, в принципе могут быть заменены соответствующими электрическими приводами.

Сравнение основных параметров гидропривода и электропривода показывает, что электропривод уступает гидроприводу по удельной массе и быстродействию.

Существенное преимущество электрическая система по отношению к гидравлической имеет в эксплуатационных затратах, органичном сочетании электроавтоматики и собственно привода.

Перспектива использования полностью электрической системы связана с применением нового типа высокоскоростного электропривода на базе вентильного двигателя с постоянными магнитами высокой энергии.

8.4.2. ЭЛЕКТРОТЕХНИЧЕСКИЕ СИСТЕМЫ КОСМИЧЕСКИХ АППАРАТОВ (КА)

Энергетические установки КА. Темпы освоения космического пространства в значительной степени определяются развитием автономных источников электропитания разнообразных космических аппаратов и в перспективе стационарных станций на поверхностях Луны, Марса и других планет [8.37–8.43].

Уровень требуемой электрической мощности непрерывно повышается и в ближайшее десятилетие может достигнуть нескольких мегаватт при длительности работы свыше 20 лет.

Жесткие специфические требования к космическим источникам питания: высокие удельные массогабаритные параметры, высокая надежность в условиях отсутствия (либо ограниченного) обслуживания, длительный ресурс работы, устойчивость к воздействию окружающей среды (вакуум, невесомость, радиационное излучение, температурные перепады), механическим стартовым и посадочным перегрузкам и другим факторам — накладывают жесткие ограничения на выбор первичного источника энергии.

В настоящее время в качестве таких источников используются солнечная, атомная (реакторы и радиоизотопные источники) и химическая энергия, преобразуемая безмашинным (прямым) способом в электрическую на основе фотоэлектрических, термоэлектрических, термоэмиссионных и электрохимических процессов, где одним из основных факторов оптимальности является КПД преобразования. В перспективе для достижения более высоких мощностей рассматриваются такие динамические системы, в которых солнечная энергия преобразуется в теплоту, используемую затем в паротурбинном и газотурбинном циклах для вращения турбоэлектрогенераторов.

На рис. 8.1 представлены ориентировочные области оптимального применения различных типов энергосистем в космических задачах в зависимости от уровня требуемой электрической мощности и ресурса работы.

Ядерные установки обеспечивают высокие мощности, но опасность аварийного радиационного загрязнения, уровень радиопомех и относительно большая стоимость в ряде случаев ограничивают возможность их широкого использования в космосе.

Радиоизотопные системы с термоэлектрическими преобразователями имеют относительно большой срок службы, но обладают невысоким КПД, что ухудшает их удельные массогабаритные характеристики. Такие системы также потенциально радиационно опасны.

Электрохимические генераторы (ЭХГ) представляют собой конструкцию из топливных элементов и системы автоматики, обеспечивающей стабильность температуры и давления подводимых реагентов водород-кислород и удаление воды после реакции [8.49, 8.50].

Рис. 8.1. Области оптимального использования различных типов автономных источников тока  
1 — аккумуляторные батареи; 2 — солнечные батареи; 3 — электрохимические генераторы; 4 — ядерные реакторы; 5 — радио изотопные источники

Теоретически КПД ЭХГ приближается к 100%. В США и России разработаны варианты таких космических генераторов на водороде и кислороде со щелочными и кислотными электролитами. В частности, энергообеспечение программы высадки человека на Луну осуществлялось на базе ЭХГ. В последующем при создании космических кораблей многоразового использования типа «Шатл» (США) и «Буран» (Россия) были созданы ЭХГ с более высокими удельными энергетическими параметрами, способные генерировать электрическую мощность до 40 кВт при удельной мощности порядка 70 Вт/кг. Достигнутый срок службы составлял более 5 тыс. ч.

Первый наш искусственный спутник Земли, запущенный в 1957 г., обеспечивался электроэнергией от химических источников тока — аккумуляторов серебряно-цинковой системы, разработанных во Всесоюзном научно-исследовательском институте источников тока (ВНИИТ), возглавляемом Н.С. Лидоренко.

Однако наиболее широкое применение в космических программах России, США и других стран в настоящее время получили системы на основе солнечных батарей (СБ) с фотоэлектрическим способом прямого преобразования в сочетании с энергоемкими аккумуляторами, допускающими значительное число разрядно-зарядных циклов. Это связано с возможностью использования неиссякаемого солнечного излучения, в то время как в остальных системах источник первичной энергии в том или ином виде должен транспортироваться с Земли и в конечном счете расходуется полностью. Такая система энергопитания была впервые реализована в СССР (1969 г.) на третьем искусственном спутнике Земли. В дальнейшем такие крупнейшие космические проекты, как автоматические межпланетные станции к Венере, Марсу, комете Галлея, аппараты «Луноход», действующие на поверхности Луны, долговременные орбитальные станции «Салют» и «Мир», группы аппаратов космической связи и метрологии общим количеством более двух тысяч, обеспечивались энергопитанием от солнечных батарей в сочетании с соответствующими аккумуляторами.

Широкое внедрение СБ в космическую автономную энергетику потребовало решения ряда серьезных научно-технических проблем [8.44–8.48].

Помимо чисто физической проблемы создания эффективного полупроводникового материала для солнечных элементов (СЭ) необходимо было разработать новые конструкционные материалы, такие как сверхтонкие стеклянные покрытия, оптически прозрачные полимерные материалы, материалы для несущей подложки, а также технологии их соединения.

Сложность решения проблемы обусловливалась весьма жесткими условиями длительной эксплуатации в открытом космосе. Кроме устойчивости к механическим воздействиям (ударным и вибрационным) на стадии запуска СБ должны были сохранять электрофизические параметры в условиях глубокого вакуума, при мощном радиационном облучении и резком термоциклировании. Впоследствии возникли проблемы с электризацией и наведенными потенциалами, экранизацией электромагнитного воздействия мощных батарей на аппаратуру космического корабля, а также защитой их от собственной атмосферы корабля (газов двигателей). Ряд требований носил противоречивый характер. Так, например, для достижения высокого КПД преобразования требовался кремний с низким удельным сопротивлением (порядка 10 Ом/см), в то время как для обеспечения радиационной стойкости оптимальным был высокоомный кремний (порядка 100 Ом/см); для защиты фотоэлементов и обеспечения минимальной массы требовалось сверхтонкое стеклянное оптически прозрачное покрытие, а для радиационной защиты — более толстое стекло, содержащее примеси тяжелых металлов.

Важнейшими этапами в развитии солнечной энергетики в последние годы являлись [8.41]:

1. Создание кремниевых СЭ, прозрачных в инфракрасной области спектра, что обеспечило понижение равновесной рабочей температуры СБ при их работе в космическом пространстве на 15–20 °С и соответственно повышение удельной мощности на 10%. Дополнительным преимуществом явилось снижение диапазона термоциклических нагрузок, которым подвергаются батареи при работе в космосе, что повысило их надежность и ресурс.

Прозрачные в инфракрасной области спектра СЭ на специальных каркасах успешно использовались на космических аппаратах серии «Космос». Полученная при этом весьма существенная для эксплуатации равновесная рабочая температура СЭ на уровне 48–52°С явилась значительным достижением в мировой практике.

2. Создание СЭ с двусторонней чувствительностью с целью использования отраженного от Земли излучения, особенно на низких орбитах.

Используя специальную полупроводниковую структуру (n+—p—p+) с нанесением на фронтальную и тыльную поверхности симметричных гребенчатых контактов, удалось получить высокую эффективность преобразования светового излучения, поступающего одновременно или попеременно на обе поверхности. По равновесной температуре преимущества двусторонних прозрачных для инфракрасного излучения элементов также сохраняются.

Эксплуатация таких элементов на низкоорбитальных станциях «Салют-2» и «Салют-5» (высота орбиты 350 км) показала, что имеется дополнительный прирост тока СБ на 17–20%. Двусторонняя СБ на аппарате «Космос-1870», выведенном на орбиту в 1987 г., дала средний прирост на 12%.

При толщине двустороннего СЭ менее 150мкм возможно получение практически одинаковой чувствительности СЭ с обеих сторон. Учитывая среднее значение отраженного от Земли прямого солнечного излучения 28–34%, можно ожидать такого же уровня мощности солнечных панелей низкоорбитальных аппаратов, как у действующих на орбитах до 1500 км.

Указанные разработки были выполнены в России значительно раньше зарубежных и имеют широкие перспективы применения для космических аппаратов нового поколения.

3. Разработка СЭ и батарей на основе арсенида галлия, основные преимущества которых по сравнению с кремниевыми: большой начальный КПД (20%), вдвое меньшие потери при возрастании рабочей температуры, существенно большая радиационная стойкость и работоспособность

при температуре 150 °С. В совокупности эти факторы делают арсенид-галлиевые солнечные панели предпочтительными для использования на КА для широкого класса орбит, особенно для аппаратов с большим сроком активного существования. Преимущества арсенид-галлиевых панелей во многих случаях преобладают над их недостатками: большими по сравнению с кремнием удельной массе и начальной стоимостью. Привлекателен конечный выигрыш, который может получить потребитель по основным характеристикам, используя арсенид-галлиевые панели в течение длительного срока на аппаратах различного назначения.

Впервые в мире солнечная панель из арсенид-галлия площадью 1 м была разработана в Государственном научно-производственном предприятии «Квант» (ГНПП «Квант») в 1967 г. и применена на КА при полете к планете Венера и обеспечила при температуре 120 °С заряд блока химических батарей спускаемого на поверхность планеты аппарата непосредственно перед началом спуска. В дальнейшем на все автоматические станции, направляемые к Венере, стали устанавливать панели из арсенида галлия. Существенным этапом в развитии работ по арсенид-галлиевым солнечным панелям явилась разработка панели для автоматических самоходных аппаратов, действующих на поверхности Луны, «Луноход-1» и «Луноход-2» (1972 г.). Работая в экстремальных условиях на лунной поверхности при рабочих температурах до 150 °С в течение многих лунных суток, данная панель полностью удовлетворяла по энергетике программу исследований, при этом был получен наивысший результат того времени по удельной мощности 1000 Вт/м2 при температуре 140–150 °С. Наиболее крупной разработкой в области арсенид-галлиевых панелей является СБ для орбитальной станции «Мир». За 8 лет летных испытаний арсенид-галлиевые панели, имевшие начальную выходную мощность 10 кВт, обнаружили высокую стабильность характеристик (суммарная средняя деградация не более 3,5% в год) в сложнейших условиях эксплуатации: при наличии существенных затенений, воздействии двигателей многочисленных стыкуемых аппаратов и собственной воздушной атмосферы станции.

4. Разработка тонкопленочной технологии СЭ на основе аморфного кремния, которые относятся к новому поколению панелей СБ для энергоснабжения космических аппаратов, действующих на различных орбитах. Основная цель — создание ультралегких панелей с максимальным отношением вырабатываемой мощности к массе, существенно превышающим достигнутые на сегодня или планируемые результаты на других типах СБ. Такие ультралегкие панели СБ можно будет применять для широкого класса орбит, в особенности в случаях, когда определяющей является стоимость запуска космического аппарата, в частности для геостационарных орбит. Другой важнейшей особенностью данного направления является возможность создания солнечных панелей рулонного типа, обладающих максимальной плотностью упаковки и наибольшим отношением вырабатываемой мощности к объему, занимаемому солнечными панелями. Эта особенность позволяет считать предполагаемый тип солнечных панелей перспективным также для низкоорбитальных полетов.

Наконец, в силу принципиальных особенностей технологии, в которой активная структура осаждается непосредственно на подложку из газовой фазы, открываются возможности организации полностью автоматизированного цикла, что, в свою очередь, приведет к снижению стоимости рулонных аморфнокремниевых батарей по сравнению с монокристаллическими аналогами.

Наибольших успехов в этой области добилась фирма ЕСД («Energy Conversion Di-vices»), США, создавшая два завода по производству аморфных СБ (в первую очередь для наземного использования).

ГНПП «Квант» и фирма ЕСД учредили в 1990 г. совместное предприятие «Совлакс», особенностью продукции которого является использование впервые в мировой практике двух-, трехпереходных каскадных структур СЭ, что создает предпосылки для получения максимального КПД и стабильности характеристик.

К числу перспективных направлений исследований по созданию новых СЭ следует отнести также работы по использованию в качестве фотоэлектрического материала фосфида индия. СЭ на этой основе работоспособны при температуре до 120°С и обладают приблизительно на 15.% большей радиационной стойкостью, чем арсенид-галлиевые. Возникающие под действием радиации дефекты в объеме этого материала, снижающие значения генерируемого СЭ тока, относительно легко ликвидируются в процессе эксплуатации естественным образом под действием солнечной радиации при температуре 80–100 °С. В то время как организовать отжиг кремниевых или арсенид-галлиевых батарей, для чего требуются температуры 450 и 250 °С соответственно, в процессе эксплуатации практически невозможно.

Таким образом, основными тенденциями в совершенствовании СЭ в настоящее время являются:

1) переход на тонкопленочные структуры на базе аморфного кремния, фосфида индия, гетероструктур на основе диселенидов индия и меди, поликристаллических пленок теллурида кадмия и др., чем достигается существенное улучшение массогабаритных параметров и повышение радиационной стойкости;

2) построение каскадных композиций, что позволяет избирательно и эффективно преобразовывать все участки солнечного спектра излучения, обеспечивая высокий результирующий КПД.

В частности, американская фирма «Spectrolab Inc.» разработала и установила на спутниках СБ мощностью 10 кВт, построенную на СЭ, с КПД 21,6%. Эти элементы имеют двухслойную структуру. Наружный слой состоит из фосфата галлия с индием, он преобразует коротковолновую часть спектра. Внутренний слой из арсенида галлия использует длинноволновую часть. Подложка элемента изготовлена из германия. К числу ведущих зарубежных фирм в области разработки новых солнечных элементов помимо упомянутой фирмы следует отнести «Sharp» (Япония), «Telefunken» (Германия).

Определенный интерес представляют разработки СБ с использованием концентраторов (параболических зеркал, линз Френеля, фоконов), увеличивающих степень концентрации в десятки раз. При этом достигается более эффективное использование фотоэлектрического материала. Однако возникают трудности с компоновкой батарей и с массогабаритными удельными характеристиками. Кроме того, при больших концентрациях во избежание перегрева элементов необходимо предусматривать эффективной отвод теплоты с помощью специальных устройств.

Крупномасштабное внедрение СБ в сочетании с накопителями энергии, начавшееся в 70-е годы, потребовало разработки специальных серебряно-цинковых аккумуляторов, способных работать в буферном режиме в существенно жестких условиях эксплуатации. Для обеспечения работоспособности их в циклическом режиме от 30 сут до года и больше были созданы новые сепарационные материалы и электролиты со специальными добавками.

В 80-е годы при реализации программы спускаемых аппаратов «Венера» и «Союз» возникло дополнительное весьма жесткое требование — устойчивость буферных батарей при любой ориентации к удару. Решение этой задачи привело к существенному пересмотру всей конструкции буферных батарей и введению демпфирующих элементов.

Для обеспечения питания аппаратов типа «Союз» и серии «Космос» были созданы герметичные оснащенные специальными клапанами буферные батареи, способные функционировать в открытом космосе. Условия эксплуатации аппаратов типа «Марс» обусловили внесение в конструкцию батареи специальных газопоглощающих устройств, предотвращающих выделение водорода в окружающее пространство отсека.

Параллельно не прекращалось совершенствование серебряно-цинковых аккумуляторов одноразового использования с целью повышения их удельных энергетических параметров и доведения срока их службы до максимального в автономном режиме без восполнения энергией от СБ.

Вслед за первым искусственным спутником Земли такие аккумуляторы применялись на аппаратах «Восток», «Восход», первых «Союзах», «Лунниках» и типа «Зонд». Аналогичные аккумуляторы использовались на американских космических аппаратах «Джемени», «Аполлон». Для ряда задач потребовалось создание принципиально новых сухозаряженных СЦ-аккумуляторов (ряд аппаратов типа «Космос») с длительным сроком сохранности и относительно быстрым приведением в рабочее состояние.

Наиболее значительной работой в этом направлении явилось энергообеспечение космической системы «Энергия-Буран», где требовалась рекордная для космических задач емкость до 130–140 А?ч при удельной энергии до 150 Вт?ч/кг. Такие аккумуляторы были созданы в ГНПП «Квант» и полностью обеспечили выполнение программы. В настоящее время за счет увеличения коэффициента использования активных масс, применения новых высокодисперсных серебряно-цинковых структур, составов электролитов и сепарационных материалов ведутся исследования по доведению ресурса батарей до 1,5–2 лет при удельных параметрах 120–130 Вт?ч/кг.

Для длительных космических программ продолжают использоваться герметичные никель-кадмиевые аккумуляторы, имеющие более низкие удельные энергетические параметры (порядка 30 Вт?ч/кг), но обеспечивающие большой срок службы (несколько лет) при числе циклов заряд-разряд до 10 тыс. Меньшей цикличностью (до 2000) обладают серебряно-кадмиевые аккумуляторы при удельной энергоемкости порядка

60 Вт?ч/кг. Такие аккумуляторы применялись в долгосрочных российских космических программах «Венера», «Марс», «Молния», «Салют», а также американских «Маринер», «Пионер», «Эксплорер» и др.

Более широкие перспективы открываются при переходе на новые электрохимические системы, такие как никель-водород и никель-металлгидрид, где ожидается доведение ресурса до 7–10 лет. Никель-водородные аккумуляторы прошли успешные летные испытания на аппаратах «Радуга» и «Горизонт» со сроком службы до 5 лет [8.41, 8.51, 8.52].

Головной организацией по разработке космической солнечной фотоэнергетики в России является ГНПП «Квант», сотрудники которого Н.С. Лидоренко, А.П. Ландсман, М.Б. Каган, В.А. Летин, Г.З. Казакевич и др. внесли существенный вклад в становление и развитие этого направления.

В создании научных основ фотопреобразования значительная роль принадлежит Ж.И. Алферову, B.C. Вавилову, В.К. Субашеву и другим сотрудникам Физико-технического института им. А.Ф. Иоффе, Физического института им. П.Н. Лебедева, Института химической физики и ряда смежных организаций.

Среди многочисленных зарубежных фирм, занятых разработкой систем энергопитания космических аппаратов на базе СБ, следует отметить: «Boing», «Lolar Space Systems», «Fokker Space and Systems», «The Aerospace Corporation», «TWR» (США); «Mitsubishi Corporation Spacecraft» (Япония) и др.

Крупным шагом в освоении космического пространства является создание международной космической станции «Альфа». На первом этапе будет осуществлен запуск функционального грузового блока и сервисного модуля с энергопитанием от солнечных панелей площадью около 60 (8 кВт) и 75 м (10 кВт) соответственно. В дальнейшем на научно-энергетической платформе размеры СБ составят 320 м (43 кВт).

При всех достоинствах СБ, как источников энергопитания в космосе (высокая надежность, отсутствие движущихся частей, простота теплоотвода, радиационная безопасность), нельзя не отметить ряд недостатков. Имея большую площадь, СБ являются источником дополнительного аэродинамического торможения, существенного на низких орбитах, и обусловливают инерционность космического аппарата, снижая его маневренность.

Наряду с основными энергетическими блоками в космической технике находят широкое применение также одноразовые химические источники тока: литиевые, ртутно-цинковые и тепловые для энергопитания различных вспомогательных устройств и систем непродолжительного действия [8.41, 8.51–8.53].

Рассматривая систему электрообеспечения космических аппаратов, следует упомянуть также весьма важное функциональное звено, обеспечивающее эффективное использование электроэнергии на борту. Это экономичные электронные регуляторы и стабилизаторы, позволяющие оптимально согласовывать выходные характеристики СБ, аккумуляторов и нагрузки; производить восстановительные циклы аккумуляторных батарей, а также осуществлять диагностику всех составных частей системы энергопитания. В частности, НПО «Полюс» (Томск) при участии ГНПП «Квант» разработаны соответствующие электротехнические устройства мощностью от сотен ватт до десятков киловатт, обеспечивающие требуемое преобразование электроэнергии с КПД более 92%.

Работы по одному из новейших направлений энергетики — ядерной энергетике для применения в космическом пространстве были начаты почти одновременно в СССР и США в конце 50-х — начале 60-х годов еще на начальном этапе исследования и освоения космического пространства. В нашей стране непосредственным побудительным мотивом разработки космических ядерных энергетических установок (ЯЭУ) послужила необходимость обеспечить КА систем военной разведки достаточно мощными и ресурсоспособными (с выходной электрической мощностью порядка нескольких киловатт и ресурсом работы не менее нескольких месяцев) бортовыми энергетическими установками. При выборе источников энергопитания для КА энергоемкость и компактность ядерных (реакторных) источников энергии сыграли определяющую роль. Проведенные в последующие годы научно-исследовательские и опытно-конструкторские работы по реакторным ЯЭУ космического назначения позволили более точно сформулировать преимущества наиболее перспективных типов ЯЭУ в сравнении с солнечными энергетическими установками: лучшие массогабаритные характеристики; отсутствие зависимости генерируемой мощности от положения КА по отношению к Солнцу; возможность работы на форсированных режимах при электрической мощности в 2–2,5 раза больше номинальной при слабой зависимости массы ЯЭУ от уровня форсирования, что имеет первостепенное значение при выборе источников энергоснабжения для космических средств межорбитальной транспортировки полезной нагрузки.

На начальной стадии разработки космических ЯЭУ рассматривались реакторные ЯЭУ как с динамическими (паро- и газотурбинными), так и с безмашинными (термоэлектрическими, термоэмиссионными) системами преобразования тепловой энергии, генерируемой в ядерном реакторе ЯЭУ, в электрическую энергию. В конечном итоге для конкретных условий использования КА была реализована схема ЯЭУ с термоэлектрическим преобразованием. Первые орбитальные испытания разработанной в нашей стране космической ЯЭУ такого типа массой около 1000 кг с быстрым реактором и термоэлектрическим генератором электрической мощностью около 3 кВт были проведены в конце 60-х годов. ЯЭУ этого типа затем использовались в качестве бортового источника энергии на спутниках серии «Космос» (получивших на Западе обозначение RORSAT). Всего за два десятилетия на орбиту было запущено свыше 30 ЯЭУ трех модификаций.

Важнейшим этапом последующего развития отечественной космической ядерной энергетики была разработка ЯЭУ типа «Топаз» с термоэмиссионным реактором-преобразователем (РП), открывшая возможность кардинального повышения электрической мощности и ресурса ядерных бортовых источников энергии. Создание космических ЯЭУ на основе термоэмиссионного РП, объединяющего функции ядерного реактора и генератора электрической энергии в пределах единой конструкции, представляло собой несравненно более сложную научно-техническую задачу, чем реализация электрической системы с раздельными реактором и генератором.

Итогом работ, выполненных по программе создания термоэмиссионной ЯЭУ «Топаз» первого поколения, были орбитальные испытания двух летных образцов ЯЭУ. Испытанная в космическом пространстве ЯЭУ «Топаз» с РП на промежуточных нейтронах имела полезную электрическую мощность около 6 кВт при напряжении постоянного тока на зажимах РП 32 В, длину 4,7 м при максимальном диаметре 1,3 м, массу (без пусковых аккумуляторных батарей) 1200 кг. Первый в мире космический запуск термоэмиссионной ЯЭУ состоялся в феврале 1987 г. («Космос 1818»), второй в июле 1987 г. («Космос 1867»). В этих орбитальных испытаниях был достигнут годовой ресурс работы реакторной ЯЭУ в условиях космического пространства — мировой рекорд, не превзойденный до настоящего времени. Единственная зарубежная реакторная ЯЭУ, запущенная в космическое пространство в 1965 г. (ЯЭУ SNAP-10A с термоэлектрическим преобразованием энергии, США), отработала на орбите 43 сут при существенно меньшей, чем у ЯЭУ «Топаз», номинальной электрической мощности (около 500 Вт). Если суммарная мощность электроэнергии ЯЭУ SNAP-10A за время функционирования на орбите составила около 500 кВт, то первая и вторая ЯЭУ «Топаз» выработали около 20 и 50 тыс. кВт соответственно, т.е. в 40–100 раз больше.

Эти итоги свидетельствуют о том, что космическая ядерная энергетика оформилась в России как самостоятельная отрасль атомной энергетики. В стране создана кооперация предприятий и соответствующая организационная и промышленная инфраструктура, обеспечивающие весь цикл изготовления, отработки, испытаний и запуска ЯЭУ в составе КА. Успехи, достигнутые этой кооперацией в.области создания космических ЯЭУ, до настоящего времени не превзойдены специалистами других стран; по оценкам иностранных специалистов опережение Россией других стран, работающих в этой области (США, Франция), составляет около 10 лет. Свидетельством этого признания является получение русскими учеными Г.М. Грязновым и В.Я. Пупко в 1994 г. на ежегодной конференции по космической ядерной энергетике в г. Альбукерке (США) памятного знака «За феноменальные достижения в области космической ядерной энергетики».

В последние годы усилия российских разработчиков были ориентированы главным образом на разработку проектов термоэмиссионных ЯЭУ типа «Топаз» второго поколения. В процессе выполнения программы работ по космическим термоэмиссионным ЯЭУ этого типа выявились такие возможности разработанной схемы термоэмиссионных ЯЭУ, которые позволяют рассматривать ЯЭУ типа «Топаз» второго поколения как базу для последующего развития ЯЭУ космического назначения, отвечающих перспективным энергетическим потребностям космической техники.

Перечень возможных применений ЯЭУ на КА ближайшего будущего включает целый ряд задач, основными из которых являются развитие глобальной спутниковой связи, экологический мониторинг, космическое производство материалов, межорбитальная транспортировка грузов, полеты к кометам и астероидам и т.д. В качестве примера использования ЯЭУ в составе КА подобного назначения и обеспечиваемых ими возможностей может быть приведена прорабатываемая в настоящее время глобальная спутниковая система связи и вещания «Космическая звезда». Эта система предполагает размещение на геостационарной орбите орбитальных групп из нескольких информационных КА, оснащенных рядом ретрансляторов с энергопотреблением 15–30 кВт. Термоэмиссионная ЯЭУ «Топаз старт» как бортовой источник энергии в этой системе, превышающий по мощности возможности солнечных батарей, в сочетании с перспективными решениями в построении радиотехнического комплекса космического сегмента позволяют создать систему, которая обеспечит в глобальных масштабах максимальные услуги для потребителя. Система предусматривает предоставление услуг фиксированной и подвижной системы связи, экологического мониторинга среды, информации о стихийных бедствиях и крупных авариях, контроль за посевами и лесными массивами, телевизионного (в том числе высокой четкости) и звукового вещания. Она позволит осуществлять контроль и наблюдение за протяженными топливопроводами, перемещающимися транспортными средствами, перевозками грузов; обмен компьютерными программами на региональном и континентальном уровнях, а также передачу любых видов информации в реальном масштабе времени. Возможна организация связи в глобальной зоне по принципу «каждый с каждым» независимо от места нахождения абонента как без выхода, так и с выходом в наземные сети общего пользования. Ожидается, что затраты на разработку системы окупятся за 2–2,5 года, при этом тарифы на предполагаемые услуги не превышают принятых тарифов эксплуатируемых в мире систем.

Другим примером являются транспортные космические задачи, которые могут решаться с помощью ЯЭУ и электрореактивных двигательных установок (ЭРДУ). Такие задачи включают межорбитальную транспортировку КА; траление и удаление выработавших свой ресурс или аварийных КА и их фрагментов с рабочих орбит; исследование малых космических тел (комет и астероидов) в режиме длительного сопровождения этих тел автоматическими К А; полеты к Луне с переходом на орбиту спутника Луны и зондированием ее поверхности. При межорбитальной транспортировке грузов наиболее перспективным представляется совместное использование термоэмиссионных ЯЭУ второго поколения и ЭРДУ с высоким удельным импульсом, позволяющим во много раз снизить необходимые запасы топлива для целей самовыведения КА с низкой опорной на высокую рабочую орбиту.

Приведенные примеры показывают, что термоэмиссионные ЯЭУ имеют значительные перспективы применения в космической технике будущего и достаточно высокий коммерческий потенциал.

Аппараты оперативного наблюдения и дистанционного зондирования Земли. Головной организацией в СССР, а затем в России по разработке и изготовлению электротехнических систем искусственных спутников Земли, созданию, обеспечению пусков и эксплуатации КА для оперативного метеорологического, экологического и гелиогеофизического мониторинга, изучения природных ресурсов Земли и контроля чрезвычайных ситуаций является Научно-производственное предприятие Всероссийский НИИ электромеханики (НПП «ВНИИЭМ»). Он основан в сентябре 1941 г. академиком А.Г. Иосифьяном. В годы войны основной продукцией являлись источники электропитания для различных радиостанций, передвижных электростанций и др. В конце 40-х годов институт разрабатывает и выпускает бортовое оборудование для первых отечественных ракет (электрические машины, коммутационную аппаратуру, электрические преобразователи), что определило его дальнейшие работы по космической технике [8.54–8.57].

Первая межконтинентальная баллистическая ракета Р-7, созданная под руководством СП. Королева, с помощью которой запускались первые спутники и станция «Восток», была оснащена электрооборудованием, созданным во ВНИИЭМ. Эта работа была достойно отмечена, и свой первый орден — Трудового Красного Знамени — институт получил в 1961 г. после полета Ю.А. Гагарина, а главный конструктор А.Г. Иосифьян был удостоен звания Героя Социалистического Труда.

Первый запуск в 1963 г. созданной в институте космической электротехнической лаборатории «Омега» («Космос-14») определил направление деятельности на многие годы.

Институт под руководством его директоров А.Г. Иосифьяна, Н.Н. Шереметьевского, В.И. Адасько, С.А. Стомы последовательно наращивает потенциал головной организации по созданию среднеорбитальных космических аппаратов серий «Метеор», «Метеор-Природа», «Ресурс-О» и высокоорбитального, геостационарного КА «Электро», электромеханических устройств для КА других организаций. Одновременно институт участвует в реализации крупных государственных космических программ и международных проектов (орбитальные станции «Салют», «Алмаз», «Мир», «Альфа», ракеты тяжелого класса «Протон» и др.).

Для обеспечения функционирования космических аппаратов в НПП «ВНИИЭМ» разработаны изделия и системы с уникальными характеристиками:

1) силовой гироскоп — гиродин. Двенадцать гиродинов установлены на орбитальной станции «Мир»; быстроходный ротор массой 40 кг вращается с 10 000 об/мин в магнитных подшипниках, что обеспечивает срок службы в вакууме десятки тысяч часов в настоящее время; наработка составляет более 65 тыс. ч;

2) двухкоординатный электропривод сканирующего зеркала, применяется для телевизионной аппаратуры искусственных спутников Земли и обеспечивает получение качественных изображений облачного покрова, земной и водной поверхностей; управление движением сканирующего зеркала обеспечивается с погрешностью, значение которой близко к разрешающей способности интерферометрического измерителя перемещений;

3) шаровой двигатель-маховик с магнитным подвесом, разработанный для космической станции «Алмаз», используется в качестве электромеханического исполнительного органа системы, ее ориентации и стабилизации;

4) бесщеточные двигатели постоянного тока, работающие в течение десятков тысяч часов в агрессивных средах и вакууме; они установлены в системах терморегулирования, жизнеобеспечения и других системах КА и космических кораблей; на станции «Мир» работает более 100 таких двигателей.

Кроме названного оборудования в НПП «ВНИИЭМ» созданы и другие уникальные приборы, в частности: приводы систем ориентации солнечных батарей, построители местной вертикали, электрореактивные двигатели малой тяги, статические преобразователи повышенной частоты систем электропитания, бортовые криогенные системы радиационного типа, электроприводы информационно-измерительной аппаратуры КА и др.

Одним из важнейших направлений деятельности НПП «ВНИИЭМ», которое развивается с 60-х годов, является создание автоматических КА оперативного наблюдения и дистанционного зондирования Земли.

Работа велась по трем основным направлениям:

создание государственной метеорологической космической системы с использование КА «Метеор», «Метеор-2» (главный конструктор А.Г. Иосифьян) и «Метеор-3» (главный конструктор В.И. Адасько);

создание космических комплексов для оперативного природно-ресурсного и экологического наблюдения «Метеор-Природа» и «Ресурс-О» (главный конструктор Ю.В. Трифонов);

создание высокоорбитальных геостационарных К А «Электро-1» (главный конструктор Ю.В. Трифонов);

создание единой оперативной системы глобального экологического и геогелиофизического мониторинга из космоса, космические аппараты нижнего и верхнего ярусов которой функционируют соответственно на солнечно- и геосинхронных орбитах на основе средне- и высокоорбитальных многоцелевых космических платформ (главный конструктор Ю.В. Трифонов).

В 80–90-е годы в институте были созданы новые космические аппараты оперативного наблюдения и дистанционного зондирования Земли — геостационарный метеорологический КА «Электро-1» и среднеорбитальные КА на солнечно-синхронных орбитах «Метеор-Природа» № 3–4 и 2–4 и «Ресурс-01» № 1–4, а также комплексы уникального электрооборудования для КА.

31 октября и 4 ноября 1994 г. с космодрома Байконур были осуществлены запуски космических аппаратов «Электро-1» №1 и «Ресурс-01» № 3. Начался очередной этап развертывания российской двухъярусной системы оперативного обзорного наблюдения «Планета-О» в интересах народного хозяйства, обороны страны и международного сотрудничества.

Метеорологический геостационарный космический аппарат «Электро-1» № 1, получивший международное наименование GOMS, выведен ракетой-носителем «Протон» с разгонным блоком в точку 90° восточной долготы и с помощью бортовой корректирующей двигательной установки переведен в заданный рабочий диапазон 76±0,5° восточной долготы. Космический аппарат природоресурсного и экологического мониторинга «Ресурс-01» № 3 выведен ракетой-носителем «Зенит» на солнечно-синхронную, широтно-стабилизированную по высоте и местному времени орбиту в диапазон высот 663–690 км.

Накопленный четырехлетний опыт летных испытаний и эксплуатации космических систем GOMS и «Ресурс-О» с КА «Электро-1» № 1 и «Ресурс-01» № 3 показал, что бортовые и наземные комплексы и КА в целом спроектированы, разработаны, изготовлены и отрабатываются с учетом самых современных требований по надежности и длительности гарантированного ресурса; космические системы уже в ходе летно-космических испытаний способны обеспечить потребности многочисленных отечественных и зарубежных потребителей оперативной гидрометеорологической и природоресурсной информацией.

Первый российский геостационарный (высота орбиты 36 тыс. км) гидрометеорологический космический аппарат «Электро» вошел в систему гидрометеоспутников наряду с космическими аппаратами США, Японии, Европейского космического агентства. Каждые 2–3 ч от этого КА получается и рассылается через Всемирную метеорологическую службу информация о состоянии погоды на большей части восточного полушария, каждый час — гелиогеофизическая информация о радиационной и магнитной обстановке в космосе. Информация оперативного наблюдения и контроля состояния окружающей среды с космического аппарата «Ресурс-01», находящегося на солнечно-синхронной орбите со средней высотой 675 км, широко применяется в регионах России, а также принимается и обрабатывается в Швеции в интересах многих фирм и организаций Европы.

10 июля 1998 г. ракетой-носителем «Зенит» в новый высотный диапазон 818–846 км был выведен четвертый КА серии «Ресурс-01». Кроме традиционного природоресурсного комплекса в его составе имеется аппаратура для проведения радиационно-метрических, гелиогеофизических, а также метеорологических измерений.

В области международного сотрудничества НПП «ВНИИЭМ» имеет установившиеся научно-технические связи со многими организациями, в том числе с фирмами CNES (Франция), INEN (Италия), «ОНВ system» (Германия), «Technion» (Израиль), «Suparco» (Пакистан) по установке научной аппаратуры и ее сопровождению со служебными системами на космических аппаратах «Ресурс-01».

Хронология запусков КА, разработанных ВНИИЭМ

2 КА «Омега» — 1963 г.

36 КА «Метеор» — 1964–1978 гг.

22 КА «Метеор-2» — 1975–1993 гг.

7 КА «Метеор-3» — 1984–1994 гг.

7 КА «Метеор-Природа» — 1974–1983 гг.

4 КА «Ресурс-01» — 1985–1998 гг.

1 КА ГОМС «Электро» — 1994 г.

НПП «ВНИИЭМ» является участником создания космических комплексов «Восток», «Союз», «Молния», «Салют», «Алмаз», «Мир», «Альфа». Институт постоянно работает по заказам и в тесном взаимодействии с Российским космическим агентством, войсковыми частями космического назначения, гидрометеослужбой страны, ведущими фирмами России: Ракетно-космической корпорацией «Энергия» им. СП. Королева и ЦНИИмашиностроения Российского космического агентства, НПО им. СА. Лавочкина, ОКБ Московского энергетического института, Институтом космических исследований Российской Академии наук, НПО «Квант», КБ «Салют», Российским НИИ космического приборостроения, НИИ точных приборов, НПО «Геофизика», Московским НИИрадиосвязи, Институтом прикладной геофизики им. акад. Е.К. Федорова, НПО «Планета», Научно-исследовательским центром природных ресурсов, ВНИИ телевидения, Оптико-механическим объединением, Центральным специализированным конструкторским бюро, НПО «Полет» и др.

НПП «ВНИИЭМ» является участником Федеральной космической программы России в части опытно-конструкторской разработки образцов космической техники научного и народнохозяйственного назначения и традиционным участником международных проектов: «Болгария 1300» (с Болгарской Народной Республикой в 1981, 1983 гг.), «Метеор-3-ТОМС» (совместно с США в 1991 г.), «Ресурс-01» № 3 и 4 (совместно со Швецией с 1994 г.), «Ресурс-01» № 4 (совместно с Германией, Израилем, Англией, Австрией, Францией, Италией и др. с 1998 г.). Перспективны К А «Метеор-3М», «Ресурс-01» № 5 и «Электро» №2 — пуски 1999–2001 гг.

В настоящее время НПП «ВНИИЭМ» приступил к разработке серии универсальных малогабаритных космических платформ для дистанционного зондирования Земли, гелиогеофизических исследований, обеспечения службы спасения, а также обслуживания и обмена информацией в интересах государственных и коммерческих организаций. Пуски возможны с 2000 г.

СПИСОК ЛИТЕРАТУРЫ

8.1. Раков В.А. Локомотивы железных дорог Советского Союза. М.: Трансжелдориздат, 1955.

8.2. Раков В.А. Локомотивы и мотор-вагонный подвижной состав железных дорог Советского Союза. 1956–1965. М.: Транспорт, 1966.

8.3. Раков В.А. Локомотивы и мотор-вагонный подвижной состав железных дорог Советского Союза. 1966–1975. М.: Транспорт, 1979.

8.4. Раков В.А. Локомотивы и мотор-вагонный подвижной состав железных дорог Советского Союза. 1976–1985. М.: Транспорт, 1990.

8.5. Раков В.А. Локомотивы отечественных железных дорог 1845–1955. М.: Транспорт, 1995.

8.6. Раков В.А. Электровозы переменного тока. М.: Машгиз, 1961.

8.7. Магистральные электровозы. Электрические аппараты. Полупроводниковые преобразователи, системы управления/ В.И. Бочаров, Н.М. Васько, А.Г. Вольвич и др. М.: Энергоатомиздат, 1994.

8.8. Теория электрической тяги / В.Е. Розенфельд, И.П. Исаев, Н.Н. Сидоров, М.И. Озеров. М.: Транспорт, 1995.

8.9. Преобразовательные устройства электропоездов с асинхронными тяговыми двигателями/ A.M. Солодунов, Ю.М. Иньков, Г.Н. Коваливкер и др. Рига: Зинатне, 1991.

8.10. Проектирование систем управления электроподвижным составом / Н.А. Ротанов, Д.Д. Захарченко, А.В. Плакс и др.; Под ред. Н.А. Ротанова. М.: Транспорт, 1986.

8.11. Электроподвижной состав с асинхронными тяговыми двигателями / Н.А. Ротанов, А.С. Курбасов, Ю.Г. Быков и др.; Под ред. Н.А. Ротанова. М.: Транспорт, 1991.

8.12. Бочаров В.И. Вехи творчества в электровозостроении. Ростов: Изд-во Ростовского университета, 1993.

8.13. Большая энциклопедия транспорта. В 8 т./ Под общей ред. В.П. Калявина. Т. 4. Железнодорожный транспорт. СПб.: «Элмор», 1994.

8.14. История отечественного судостроения. Т. III, IV и V. СПб.: Судостроение, 1996.

8.15. Гребные электрические установки: Справочник. Л.: Судостроение, 1985.

8.16. Электрооборудование судов: Учебник для вузов / Д.В. Вилесов, В.Л. Галка, Ю.Н. Киреев и др. СПб.: Судостроение. 1996.

8.17. 300 лет российскому флоту // Судостроение. 1996. № 10.

8.18. Архангельский Е.Б. Электрификация русского флота// Судостроение. 1989. № 9.

8.19. Гилерович Ю.М. Электроэнергетические системы и электрооборудование судов и установок, используемые на континентальном шельфе // Судостроение за рубежом. 1988. № 12.

8.20. Гилерович Ю.М., Чернух Е.А. Гребные электрические установки ледоколов береговой охраны США и Канады // Судостроение за рубежом. 1990. № 9.

8.21. Китаенко Г.И. Состояние и некоторые вопросы развития судовой электротехники // Судостроение. 1978. № 1.

8.22. Каганович А.Н. Развитие электроэнергетических систем кораблей русского Флота (1869–1917 гг.) // Судовая электротехника и связь. 1973. Вып. 2.

8.23. Жоллифф Джеймс В. Дилемма использования электрического оборудования, работающего на токе частотой 400 Гц: Пер. с англ. // The Naval Engineers Journal. 1981. №10.

8.24. Карпов В.А. Современное электрическое оборудование автомашин// Электричество, 1931. №2. С. 69–76.

8.25. Гольдберг С.Я. Современное автомобильное электрическое оборудование // Электричество. 1939. № 3. С. 5–14.

8.26. Девяткин К.А. Приборы зажигания и электрооборудование колесных и гусеничных машин. М.: Воениздат, 1932.

8.27. Галкин Ю.М. Автотракторное электрооборудование. М.: Машгиз, 1948.

8.28. Schuiz М. Development sistem avtoelectrical eqipment// Popular Mechanics, 1965. Vol. 162. №4. P. 192–194.

8.29. Справочник по электрооборудованию автомобилей. M.: Машиностроение, 1994.

8.30. Электрические трансмиссии пневмоколесных транспортных средств / И.С. Ефремов, А.П. Пролыгин, Ю.М. Андреев, А.Б. Миндлин. М.: Энергия, 1976.

8.31. Электрические машины в тяговом автономном электроприводе / Ю.М. Андреев, С.К. Исаакян, А.Д. Машихин и др. М.: Энергия, 1979.

8.32. Фельдман Ю.И., Машихин А.Д., Скибинский В.А. Автоматизированные электроприводы для городского электротранспорта, большегрузных автосамосвалов и краново-подъемных механизмов // Электротехника. 1993.

8.33. Автоматизированные тяговые электроприводы для большегрузных карьерных автосамосвалов // Электротехника, 1993.

8.34. Основы электрооборудования самолетов и автомашин / Под ред. А.Н. Ларионова. М.: Госэнергоиздат, 1955.

8.35. Лазарев И.А. Синтез структуры систем электроснабжения летательных аппаратов. М.: Машиностроение, 1976.

8.36. Лазарев И.А., Розанов А.В., Яньшев Ю.А. Концепция единой энергетической системы транспортных средств и возможные пути ее реализации // Известия АН СССР. Энергетика и транспорт. 1983. № 1.С. 124–133.

8.37. Морозовский В.Г., Синдеев И.М., Рунов К.А. Системы электроснабжения летательных аппаратов. М.: Машиностроение, 1973.

8.38. Сизов И.И., Шабловский В.К. Бортовые источники электрического питания. М.: Воениздат, 1973.

8.39. Панченко Е.И., Коровкин А.С. Космическая электроэнергетика. М.: Знание, 1967.

8.40. Куландин А.А., Тимашев СВ., Иванов В.П. Энергетические системы космических аппаратов. 2 изд. М.: Машиностроение, 1977.

8.41. Бортовые энергосистемы космических аппаратов на основе солнечных и химических батарей. Ч. I и II: Учебное пособие/ Н.В. Белан, К.В. Безручко, В.Б. Елисеев и др. Харьков: ХАИ, 1992 (ХАИ).

8.42. Прямое преобразование энергии. Вопросы космической энергетики: Пер. с англ. М.: Мир, 1975.

8.43. Коутс Т., Микин Дж. Современные проблемы полупроводниковой фотоэнергетики. М.: Мир, 1988.

8.44. Колтун М.М. Солнечные элементы. М.: Наука, 1987.

8.45. Фаренбух А., Бьюб Р. Солнечные элементы: Пер. с англ. М.: Энергоатомиздат, 1987.

8.46. Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. М.: Наука, 1984.

8.47. Раушенбах Г. Справочник по проектированию солнечных батарей: Пер. с англ. М.: Энергоатомиздат, 1983.

8.48. Солнечные элементы и батареи / А.А. Полисан, К.А. Щуров, И.С. Оршанский и др. // Итоги науки и техники. Сер. Генераторы прямого преобразования тепловой и химической энергии в электрическую. 1989.Т. 9.

8.49. Лидоренко Н.С., Мучник Г.Ф. Электрохимические генераторы. М.: Энергоатомиздат, 1982.

8.50. Тейшев Е.А. Применение топливных элементов для энергопитания космических кораблей. М.: Информстандартэлектро, 1967.

8.51. Калайда Т.Н. Химические источники электрической энергии для летательных аппаратов. Л.: ЛВИКА им. Можайского, 1965.

8.52. Багоцкий B.C., Скундин A.M. Химические источники тока. М.: Энергоиздат, 1981.

8.53. Кедринский И.А., Дмитрием ко В.Е., Грудянов И.И. Литиевые источники тока. М.: Энергоатомиздат, 1992.

8.54. Иосифьян А.Г. Электротехника в космосе. Сер. Космонавтика, астрономия. М.: Знание, 1979.

8.55. Иосифьян А.Г., Шереметьевский Н.Н., Трифонов Ю.В. Советские космические аппараты для дистанционного зондирования типа «Метеор»// Электротехника. 1982. №6. С. 29–34.

8.56. Космические аппараты оперативного метеорологического и природно-ресурсного назначения. Проблемы. Технические решения. Международная интеграция/ В.И. Адасько, А.Г. Иосифьян, Ю.В. Трифонов, Н.Н. Шереметьевский // Электротехника. 1991. №9. С. 32–38.

8.57. Stoma S.A., Trifonov Y.V. Geostationary Space System «Electro» (GOMS): Preconditions for Creation and Structure // Space Bulletin. 1995. Vol. 2. №3. P. 2–4.


Глава 9.
СВЕТОТЕХНИКА

9.1. ВВЕДЕНИЕ

В настоящее время понятие «светотехника» включает в себя целый ряд разделов науки и техники, к которым относятся:

генерация излучения в оптическом диапазоне спектра — источники излучения;

физические процессы при распространении излучения в различных средах;

возникновение зрительного ощущения при попадании излучения в глаз человека;

взаимодействие излучения с различными средами и использование его в различных тепловых, химических, энергетических, медицинских и других установках;

фотометрия;

конструирование световых приборов различного назначения, т.е. создание приборов для перераспределения энергии излучения в пространстве;

светотехнические установки для внутреннего, наружного, архитектурного и специального освещения.

Такие разделы светотехники, как источники излучения, световые приборы и светотехнические установки имеют прямое отношение к электротехнике. Сегодня в мире на освещение тратится до 20% всей вырабатываемой электроэнергии (в России 14%). Поэтому сочетание вопросов светового дизайна и экономии электроэнергии на освещение весьма актуально.

В настоящей главе представлена история развития источников излучения, световых приборов, светотехнических установок и светотехнического образования.


9.2. ИСТОЧНИКИ ИЗЛУЧЕНИЯ

Развитие и совершенствование источников излучения (ИИ) определялось определенными целями, а именно:

повышением энергетической эффективности (светоотдачи, равной отношению светового потока, измеряемого в люменах, к затраченной энергетической мощности);

увеличением срока службы (времени, за которое начальный световой поток уменьшается на 30%);

улучшением цветовых характеристик излучения (цветовой температуры, индекса цветопередачи и т.д.);

выделением специальных спектров излучения для медицины, растениеводства, животноводства и т.д.;

конструированием ламп специального назначения для фотографии, областей тонкой технологии, проектирования и др.

Светоотдача в каждой стране является одним из показателей уровня научно-технического развития. Обеспечение необходимой освещенности при меньших затратах электроэнергии сказывается весьма заметно на экономике страны.

Первые электрические лампы накаливания А.Н. Лодыгина, усовершенствованные и выпускаемые серийно в Америке Т. Эдисоном (1879 г.) имели светоотдачу 2–3,5 лм/Вт.

Стремление повысить светоотдачу ламп накаливания привело к появлению сначала ламп с металлизированной угольной (1890–1900 гг.), затем с осмиевой (1898 г.) и танталовой (1902 г.) нитями. В 1906–1909 гг. была разработана технология изготовления вольфрамовых проволок для изготовления электродов. В 1913 г. появилась газонаполненная лампа И. Ленгмюра с вольфрамовой нитью. С целью повышения светоотдачи и увеличения срока службы меняли конструкцию электродов, наполняли колбу газом, не вступающим во взаимодействие с материалом электрода, что уменьшало интенсивность испарения материала электрода и должно было привести к увеличению срока службы (главная причина выхода из строя ламп накаливания — перегорание электрода). Причем возможность увеличения рабочей температуры электрода за счет газового наполнения не только компенсировало потери теплоты через газ, но и увеличивало светоотдачу.

В 1936 г. появились газонаполненные лампы накаливания с биспиральным катодом — лампы с криптоном, а затем и с ксеноновым наполнением. В 50-е годы появились галогенные лампы накаливания. Особенностью этих ламп является то, что галогениды (соединения йода, брома, хлора, фтора) дают устойчивое соединение с вольфрамом лишь в определенном диапазоне температур, что позволяет возвращать испаренный вольфрам на электрод, тем самым увеличивая срок службы лампы и светоотдачу. Светоотдача в них достигала 30 лм/Вт, а срок службы 1000 ч.

Развитие разрядных ламп шло значительно медленнее. Лишь через 70 лет после открытия дуги В.В. Петровым был создан первый источник света дугового разряда П.Н. Яблочковым, представляющий собой открытую угольную дугу. Угольные дуги, имеющие заметно большую, чем лампы накаливания, светоотдачу (70–90 лм/Вт) нашли применение в прожекторных и проекционных установках.

Изобретение в 1901 г. ртутной разрядной лампы низкого давления по существу определило возможность получения серьезных результатов в технике освещения, однако на пути были серьезные препятствия, связанные с тем, что наибольшая доля мощности излучения в ртутном разряде приходится на ультрафиолетовую область. Поэтому главным препятствием в ртутных разрядных ИИ было преобразование излучения из ультрафиолетовой области в видимую. Эту задачу решил С.И. Вавилов с учениками [9.2], который в 1927 г. открыл закон, связывающий квантовый выход люминесценции с длиной волны возбуждающего излучения [9.3]. Под его руководством учениками (В.В. Левшиным, В.А. Фабрикантом, М.А. Константиновым-Шлезингером, Ф.А. Бутаевым, В.И. Долгополовым) были установлены основные процессы люминесценции, созданы люминофоры и люминофорные смеси. В 1941 г. появились первые люминесцентные лампы серийного изготовления. Люминесцентные лампы, используемые в настоящее время имеют световую отдачу 60–100 лм/Вт.

В настоящее время существует большое количество ртутных ламп, имеющих различное целевое назначение. В зависимости от давления наполняющего газа различают ртутные лампы низкого давления (p = 0,0013 ? 0,13 кПа), высокого давления (p = 0,03 ? 0,3 МПа), сверхвысокого давления (p > 0,3 МПа).

Рис. 9.1. Общий вид основных типов ртутных люминесцентных ламп низкого давления 

Ртутные лампы низкого давления являются весьма эффективными с точки зрения ультрафиолетового излучения с длинами волн 185 и 254 нм. На эти волны при низких давлениях приходится до 80% излучаемой разрядом мощности. Эти спектральные волны могут быть перемещены либо в эритемную, либо в видимую область излучения с помощью люминофора, наносимого на внутреннюю поверхность колбы лампы. Существуют различные типы люминесцентных ламп (ЛЛ):

с самокалящимися электродами, в которых зажигание разряда происходит при предварительном накале катодов;

высоковольтные мгновенного зажигания с самокалящимися электродами без предварительного накала;

высоковольтные тлеющего разряда с холодными электродами;

компактные (КЛЛ), которые можно прямо вкручивать в патрон вместо ламп накаливания;

высокочастотные КЛЛ (ВЧКЛЛ);

безэлектродные КЛЛ.

На рис 9.1 показаны некоторые типы люминесцентных ламп.

КЛЛ имеют по сравнению с обычными лампами накаливания в 10 раз больший срок службы и потребляют при равных световых потоках в 5 раз меньше электроэнергии [9.4]. В настоящее время они используются с электромагнитными или электронными аппаратами. Большими преимуществами, по сравнению с КЛЛ обладают ВЧКЛЛ. Эти преимущества связаны с увеличением светоотдачи с ростом частоты питания и уменьшением вредного влияния частотных колебаний светового потока на глаз человека.

На срок службы ЛЛ заметное влияние оказывают электроды, во-первых, из-за распыления их материала, которое приводит к потеменению горелки и уменьшению светового потока, и, во-вторых, из-за увеличения при эксплуатации лампы работы выхода электронов, приводящей к увеличению напряжения зажигания и ускорению выхода лампы из строя. Поэтому проводились работы по созданию безэлектродных КЛЛ [9.5, 9.6], в которых поддержание разряда в парах ртути в смеси с инертными газами осуществляется электромагнитным полем, создаваемым генераторами вне горелки. Общий вид безэлектродной КЛЛ с соленоидальным индуктором показан на рис. 9.2. Разработано немало разновидностей конструкций безэлектродных ламп (кольцеобразной формы, с передачей электромагнитной энергии с помощью антенны и др.).

Безэлектродные ИИ бывают низкого и высокого давления. В.каждом диапазоне давления они делятся на ИИ повышенной частоты (с рабочей частотой до 3 МГц), высокой частоты (с рабочими частотами от 3 до 300 МГц) и сверхвысокочастотные (с частотой, превышающей 300 МГц). С увеличением частоты возможности увеличения светоотдачи растут. Если при частотах меньше 3 МГц светоотдача не превышает 52 лм/Вт, то при частотах больше 300 МГц светоотдача уже превышает 100 лм/Вт.

Рис. 9.2. Общий вид (в разрезе) безэлектродной КЛЛ с солеиоидальным индуктором
1 — цоколь Е-27; 2 — блок автогенератора; 3 — наполнение, ртуть и инертный газ; 4 — соленоидальный редуктор; 5 — люминофорный слой; 6 — цилиндрическая полость в колбе; 7 — стеклянная колба 

Возможности широкого применения ИИ определяются кроме чисто светотехнических факторов также экономическими (стоимостью ИИ, генератора колебаний) и опасностью воздействия ВЧ-излучения на человека.

При решении многих научно-технических проблем требуется создание световых импульсов большой интенсивности. Это привело к созданию импульсных ИИ. Соотношения между параметрами (мощностью, яркостью, световым потоком) ИИ непрерывного действия и импульсных приведены в табл. 9.1 [9.7].

Кратковременные световые вспышки могут быть получены различными методами: при химической реакции (лампы с металлической фольгой, сгорающей в атмосфере кислорода или фтора), кратковременном возбуждении люминофора электронным пучком, кратковременном электрическом разряде в газе или в парах металла. Наибольшее распространение получили импульсные разрядные источники излучения.

Таблица 9.1. Сравнительная таблица наиболее мощных и ярких импульсных и непрерывного действия ИИ
Тип лампы Наибольшая мощность, кВт Наибольшая яркость, Мкд/м2 Наибольший световой поток, клм
Непрерывные ИС
Накаливания (прожекторные) 20 30 600
Трубчатые ксеноновые с водяным охлаждением 500 1000 22 000
Шаровые ксеноновые сверхвысокого давления 30 6000 1300
Открытые дуги высокой интенсивности 100 1400 4500
Импульсные ИС
Трубчатые ксеноновые кварцевые 200 000 10 000 10 000 000
Шаровые ксеноновые 10 000 100 000 200 000

В последние годы появилась информация о новых безэлектродных микроволновых серных лампах [9.8]. Анализ характеристик серной лампы и сравнение ее с другими, серийно выпускаемыми ИИ был сделан Г.Н. Рохлиным [9.9]. Схематически общий вид серной лампы показан на рис. 9.3. Светящее тело в виде шаровой кварцевой колбы имеет малые размеры (диаметр около 3 см). Колба наполнена инертным газом и определенным количеством серы. Исследования показали, что разряд в шаровой колбе практически не взаимодействует со стенками и срок службы лампы определяется постепенным разрушением наружных стенок колбы за счет пылинок в охлаждаемой струе воздуха. В настоящее время срок службы лампы составляет несколько десятков тысяч часов, световая отдача — 130–150 лм/Вт, световая отдача с учетом потерь в генераторе микроволновой энергии — 90–100 лм/Вт. Спектр излучения серной лампы близок к солнечному. На рис. 9.4 показаны спектральное распределение энергии излучения серной лампы, солнечный спектр и кривая относительной спектральной чувствительности глаза. Из сопоставления кривых можно сделать вывод об очень хорошей эффективности серной лампы для человеческого глаза. Изменяя состав наполнения колбы, можно получать хорошие спектры излучения в различных участках оптического диапазона спектра (видимой, ультрафиолетовой, инфракрасной). Серные лампы выпускаются мощностью 6, 5 и 1 кВт. Ведутся разработки серных ламп на меньшие мощности. Очевидно, что серные лампы в будущем найдут широкое применение в технике излучения. В России разработкой серных ламп занимается лаборатория под руководством Э.Д. Шлиффера.

Рис. 9.3. Микроволновая серная безэлектродная лампа фирмы «Fusio Lighting»а — схема лампы;
1 — шаровая колба; 2 — отражатель, 3, 3' — место подачи микроволновой энергии; 4 — блок вращения колбы; 5 — трубка для охлаждающего воздуха; б — общий вид светового прибора

Твердотельные полупроводниковые излучатели света — светодиоды (СД) на основе карбида кремния были открыты в 20-х годах О.В. Лосевым. Эти работы были продолжены Ж.И. Алферовым [9.10], который исследовал СД на основе арсенидов галлия — алюминия. Работы С. Накамуры [9.11] позволили использовать многослойные гетероструктуры для создания голубых и зеленых СД.

На рис. 9.5 изображена типичная конструкция СД. Площадь кристалла СД имеет размер (0,25x0,25) ? (0,5x0,5) мм. Фокусировка излучения в необходимом телесном угле обеспечивается линзой 5.

Рис. 9.4. Спектральное распределение энергии для микроволновой лампы
1 — лампа; 2 — солнечный спектр; 3 — кривая относительной спектральной чувствительности глаза
Рис. 9.5. Типичная конструкция СД
1 — полупроводниковый кристалл; 2 — кристаллодержатель; 3 — выводы; 4 — контактные проволоки; 5 — пластмассовый колпачок (линза)

Достижения науки за последние три десятилетия позволили получить красные, зеленые и голубые СД и наладить их промышленное производство. В настоящее время серийно выпускаются СД из трех материалов на одном кристаллодержателе, позволяющие получать разные цвета, в том числе и белый. Сила света у ряда СД превышает 10 кд. Срок службы 100 тыс. ч. Допустимые температуры эксплуатации от -40 до + 100 °С. Если учесть, что СД по светоотдаче уже превышают лампы накаливания, а на обслуживание требуют мало затрат, то можно прогнозировать им большое будущее в светотехнике. Сегодня СД начинают применяться в индикаторных устройствах, возможно создание полноцветных светодиодных табло, бегущих строк, рекламных панелей большой площади, плоских телевизионных экранов. Уже вводятся в эксплуатацию светофоры на СД.

Рис. 9.6. Двухэлектродная модификация ИИ
Рис. 9.7. Трехэлектродная модификация ИИ

Достаточно новыми источниками излучения (ИИ) являются источники, основанные на автоэлектронной эмиссии. Если электроны, появившиеся за счет автоэлектронной эмиссии (эмиссии, обеспеченной снижением потенциального барьера катода электрическим полем), направить на люминесцирующее вещество, то можно получить источник излучения со спектром, зависящим от состава люминофора. Одна из проблем, возникающая при создании такого источника, это необходимость иметь у катода напряженность электрического поля 106-107 В/см. Были предложены и сконструированы экспериментальные образцы ИИ на основе автоэлектронной эмиссии (АЭ). Главным элементом разрабатываемых ИИ является многоострийный автоэмиссионный катод. Кривизна острия составляет 10-5 см. В зависимости от расстояния между катодом и анодом рабочее напряжение может составлять от нескольких десятков вольт (при расстоянии десятые или сотые доли миллиметра) до нескольких киловольт (при расстоянии несколько сантиметров). На рис. 9.6 и 9.7 показаны принципиальные конструкции ИИ двух- и трехэлектродной модификаций: 7 — катод; 2 — стеклянная колба; 3 — люминофор; 4 — анод; 5 — сетка; 6 — преобразователь напряжения. Геометрия ИИ на основе АЭ может быть различной в зависимости от назначения. Экспериментальные образцы имели срок службы 10 тыс. ч.

В табл. 9.2 приведены некоторые характеристики ИИ.

Таблица 9.2
Тип ИИ Мощность, Вт Световой поток, лм Световая отдача, лм/Вт Срок службы, ч
Вакуумные и газонаполненные лампы накаливания общего назначения 15—1000 85—19500 5—19,5 1000
Галогенные лампы накаливания общего назначения 1000—20 000 22 000—440 000 22 2000—3000
Разрядные люминесцентные лампы 15—80 600—5400 40—65 10 000—15 000
Ртутные лампы высокого давления 80—2000 3400—120 000 40—60 10 000—15 000
Ртутные лампы сверхвысокого давления 120—1000 4200—53 000 35—53 100—800
Металлогалогенные лампы 250—3500 19 000—350 000 75—1000 2000—10 000
Натриевые лампы низкого давления 85—140 6000—11000 70—80 20 000
Натриевые лампы высокого давления 250—400 25 000—47 000 100—115 10 000—15 000
Ксеноновые лампы 2000—50 000 (35,7?2088)1000 18—40 100—800

9.3. ПРИБОРЫ ДЛЯ ПЕРЕРАСПРЕДЕЛЕНИЯ ЭНЕРГИИ ИЗЛУЧЕНИЯ В ПРОСТРАНСТВЕ

Одной из основных задач техники освещения и облучения является перераспределение энергии излучения источника в заданном направлении пространства. Эту цель выполняет целая группа приборов, называемая световыми приборами (СП). Они служат для концентрации потока излучения в объеме и на поверхности. С их помощью можно изменять физические свойства излучения, например спектральный состав или поляризацию. По своему функциональному назначению и конструктивному исполнению СП делятся на две большие группы: светооптические приборы и светильники. Приборы первой группы имеют светооптическую систему, включающую источник излучения и оптическую систему (отражающую, преломляющую). Они перераспределяют и концентрируют поток в пределах небольших телесных углов. К ним относятся прожекторы (военные, авиационные посадочные, киносъемочные, театральные, общего назначения для освещения промышленных и общественных объектов), фары (автомобильные, самолетные, транспортные и т.д.), маяки (морские, авиационные и т.д.), светосигнальные приборы (светофоры), различные проекционные аппараты. Светильники — приборы, включающие источник излучения и осветительную арматуру. Они предназначены для перераспределения потока излучения внутри значительных телесных углов и освещения объектов, находящихся на небольших расстояниях от прибора. К ним относятся светильники для освещения помещений (производственных, общественных, жилых, салонов транспортных средств и т.д.), открытых пространств (улиц, дорог, карьеров, туннелей, архитектурных сооружений и т.д.), объектов, находящихся под водой, под землей, в космосе.

В различных светотехнических установках России в 90-х годах XX в. использовалось более 1,5 млрд. различных СП. Отечественной светотехнической промышленностью выпускалось ежегодно более 85 млн. СП, номенклатура которых составляла около 4 тыс. исполнений.

Первые светооптические приборы прожекторного класса появились в XVIII в. В 1763 г. в Англии для использования в морских маяках были созданы прожекторы с пластинчатыми отражателями. Несколько позже (1779 г.) в России также был построен первый прожектор. Его создал выдающийся русский изобретатель И.П. Кулибин (1735–1818 гг.). Этот прожектор имел пластинчатый отражатель, в котором зеркальные пластины выложены по параболоидному остову.

В конце XVIII в. во Франции стали применять уже сплошные металлические отражатели параболоидной формы. Дальнейшее совершенствование светооптической системы прожекторов связано с работами французского ученого О. Френеля (1788–1827 гг.). Для концентрации светового потока он предложил использовать ступенчатую линзу, которая в дальнейшем названа его именем. В настоящее время линзы О. Френеля являются одним из основных видов оптических систем СП прожекторного и проекторного типов. Дальнейшее развитие светооптических приборов было связано с военной техникой. В 1875 г. французский военный инженер полковник М. Манжен предложил использовать в военных прожекторах стеклянные отражатели. Они имели лицевую и тыльную концентрические сфероидные поверхности с различными радиусами кривизны и по оптическому действию были аналогичны стеклянным параболоидным отражателям. Последние в то время не могли изготавливаться с достаточной оптической точностью.

Большой вклад в развитие мирового прожекторостроения внес русский ученый В.Н. Чиколев (1845–1898 гг.). В статье, опубликованной в 1877 г., он первым высказал мысль о разработке полевых военных прожекторов. Он же в 1871 г. изобрел дифференциальный регулятор для дуговых ламп, которые применялись в прожекторах. В.Н. Чиколев предложил метод испытания на оптическую точность стеклянных параболоидных отражателей при помощи фотографирования сетки. Этот метод получил распространение во всем мире.

В.Н. Чиколев был не только практиком, но и теоретиком. Он сформулировал основные положения метода расчета светооптических приборов, названного методом элементарных отображений. В начале XX в. этот метод был признан во всем мире, а идеи русского ученого позднее были развиты французским исследователем К. Рибьером и американским Ф. Бенфордом.

Первая мировая война поставила много новых вопросов перед разработчиками СП. В то же время Октябрьская революция в России всколыхнула творческую активность народа. Начинает развиваться электроламповая промышленность, принят план ГОЭЛРО, происходит становление светотехнической подотрасли. Стране нужны новые СП с новыми источниками света и для различных областей применения.

Основные направления научно-исследовательских работ в 20–40-е годы были связаны с разработкой методов расчета СП в основном для освещения промышленных предприятий. Русскими учеными Н.Г. Болдыревым и Н.Н. Ермолинским были разработаны способы расчета СП с лампами накаливания (ЛН) с диффузными отражателями и рассеивателями. Для расчета СП с зеркальными отражателями Н.Г. Болдыревым и В.Д. Комиссаровым было найдено общее дифференциальное уравнение зеркальной поверхности. Оно устанавливало зависимость между текущим радиус-вектором зеркальной поверхности и углами, координирующими падающие и отраженные лучи. Над разработкой методов расчета СП с ЛН и призматических СП работала целая плеяда ученых и инженеров, среди них А.А. Гершун, Б.Ф. Федоров и др.

Параллельно с теоретическими исследованиями в 20–40-е годы шло становление и быстрое развитие промышленности по изготовлению СП. Большая заслуга в этом принадлежит Л.Д. Белькинду (1897–1969 гг.). В 1925–1926 гг. им совместно с П.М. Тиходеевым и Б.Ф. Федоровым разрабатываются конструкции первой серии промышленных светильников. С 1929 г. они начали серийно выпускаться. В 1934 г. вышла книга Л.Д. Белькинда «Электрические осветительные приборы ближнего действия (электрические светильники)».

В предвоенные годы разработка новой военной техники потребовала решения новых теоретических проблем в различных областях инженерных дисциплин, в том числе и в светотехнике. Необходимо было создавать светооптические приборы для сигнализации, авиационной и аэродромной техники, прожекторов дальнего действия, позволяющих визуально обнаруживать удаленные объекты, при различных метеорологических условиях. Для создания больших уровней освещенностей на больших расстояниях необходим был источник излучения повышенной яркости. В качестве такого источника стали использовать угольную дугу высокой интенсивности. Фундаментальные работы по изучению процессов горения дуг высокой интенсивности в 30–40-е годы были проведены Н.А. Карякиным (1902–1985 гг.) в ВЭИ. Результаты экспериментальных исследований легли в основу созданной Н.А. Карякиным теории дуги высокой интенсивности, которая была защищена им как докторская диссертация в 1941 г. Н.А. Карякин написал монографию «Угольная дуга высокой интенсивности», которая и до настоящего времени не потеряла своей ценности. Однако основная творческая деятельность Н.А. Карякина связана была со светооптическими приборами. Блестящий математик с инженерной интуицией, он разработал теорию энергетического расчета этих приборов, которая известна в мире и актуальна до настоящего времени. Сам Н.А. Карякин утверждал, что его работа — это развитие метода элементарных отображений В.Н. Чиколева. Н.А. Карякин построил физически и математически стройную теорию элементарных отображений, позволяющую рассчитать как форму и габариты светооптического прибора, так и структуру и энергетику создаваемого им пучка излучения. Его теория позволяет учитывать как аберрационные, так и дисперсионные явления. Разработка этой теории приходится на 40–50-е годы, когда отсутствовали ЭВМ. Она являлась единственно возможным путем энергетического расчета СП и отличалась аналитической простотой и физической наглядностью. Эта теория прошла проверку в трудных условиях военного времени 1941–1945 гг. В прожекторной лаборатории ВЭИ, руководимой Н.А. Карякиным, были проведены расчеты зенитных прожекторов с угольной дугой высокой интенсивности. Он участвовал в организации производства этих прожекторов, которые превосходили по дальности действия лучшие мировые образцы. За эти работы Н.А. Карякин был удостоен Государственной премии СССР и награжден орденом Ленина.

Н.А. Карякин является одним из основоположников отечественной авиационной светотехники. В 30–40-х годах им в соавторстве с В.В. Кузнецовым и Ю.В. Фридом была опубликована серия статей под общим названием «Световые авиамаяки», в которой изложены методы расчета СП для авиационных трасс и взлетно-посадочных полос. В этот же период он переводит и дополняет труды французского ученого А. Рокара, посвященные вопросам влияния атмосферы на формирование структуры светового поля прожектора и видимости удаленных объектов в прожекторном пучке.

Вопросам структуры светового поля, переноса световой энергии от СП через среду к приемнику излучения и влияния среды на структуру светового пучка посвящены работы А.А. Гершуна (1903–1952 гг.). В годы Великой Отечественной войны им была создана теория светомаскировки, разработаны методы маскировочного освещения и приборы для его контроля, схемы маскировочных светильников.

В дореволюционной России практически не была развита светотехническая промышленность. До 1929 г. в стране работала единственная арматурная фабрика, которая выпускала до 13 тыс. СП в год. В 1929 г. был создан завод «Электросвет» им. Н.Н. Яблочкова, а в 1930 г. Л.Д. Белькинд стал его техническим директором. С введением в строй этого завода, начавшего выпуск первой серии рациональных промышленных светильников, их производство в стране увеличилось в шесть раз. В 1927 г. на Московском электрозаводе был организован прожекторный отдел, на основе которого в 1932 г. был создан Московский прожекторный завод. На нем в предвоенные годы был налажен серийный выпуск прожекторов.

После Великой Отечественной войны светотехника становится одной из важных отраслей народного хозяйства СССР. В первые послевоенные годы вышли фундаментальные монографии и учебные пособия по светотехнике, которые стали известны во всем мире [9.14–9.19].

В 50–70-е годы вводятся в строй новые промышленные предприятия в разных регионах СССР: Рижский и Ардатовский светотехнические заводы, Тернопольский завод «Электроарматура», завод «Светотехника» (г. Лихославль) и завод «Эстопласт» (г. Таллинн).

В этот период заметно увеличился выпуск и номенклатура прожекторов общего назначения, применяемых для освещения; светосигнальных, аэродромных, корабельных, самолетных, киносъемочных, театральных, телевизионных, подводных СП. Выполняются комплексы научно-исследовательских и опытно-конструкторских работ, направленные на конструктивное совершенствование СП, унифицирование их элементов, обеспечение наибольшего срока службы, надежности работы, наименьшей трудоемкости при их производстве, минимальной стоимости монтажа и эксплуатации.

Появление широкого ассортимента новых источников излучения — газоразрядных ламп низкого и высокого давления — потребовало разработки новых методов расчета СП. Продолжал развиваться и совершенствоваться метод элементарных отображений, который трудами Н.А. Карякина, В.В. Трембача и др. превратился в стройную теорию, которая с успехом применяется как для расчета светооптических приборов (учитывает аберрационные и дисперсионные явления), так и светильников с зеркальными отражателями и призматическими рассеивателями. Основные положения этой теории приведены в [9.15,9.18].

Больших успехов достигли отечественные светотехники (Н.А. Карякин, М.М. Елин, В.В. Кузнецов, В.В. Новиков, И.И. Спивак, Ю.В. Фрид и др.) в области расчета приборов прожекторного типа. Разработаны методы расчета одинарных и усложненных оптических систем с источниками излучения, обладающими сложными светящими телами с неравномерной яркостью, а также с линзовыми рассеивателями различных профилей.

Были разработаны методы расчета светильников с линейными светящими элементами (люминесцентные, трубчатые ксеноновые, кварцевые галогенные лампы). Большая заслуга в этом принадлежит Ю.Б. Айзенбергу, А.С. Зусману, Н.В. Чернышовой, В.В. Трембачу, Б.Н. Глебову.

Использование новых мощных источников излучения выдвинуло проблему улучшения теплового режима светильников. Благодаря исследованиям тепловых процессов в СП, проведенным в довоенные годы. Н.Г. Болдыревым и И.Б. Левитиным, во ВНИСИ были созданы конструктивные схемы, выбраны, размеры, формы и материалы новых типов СП различного назначения.

Рис. 9.8. Сферы применения современных СП

Широкое внедрение вычислительной техники во все сферы народного хозяйства позволило сделать дальнейшие шаги в области расчета и разработки СП. Теоретические исследования Ю.Б. Айзенберга, А.А. Коробко, В.В. Трембача позволили использовать метод Монте-Карло, метод «прямого и обратного» лучей применяемый в геометрической оптике для энергетического расчета светооптических систем. Практической реализацией этих работ явилось создание ВНИСИ целой серии СП для тепличных хозяйств и животноводческих комплексов. Рассчитаны, сконструированы и внедрены для целей освещения и облучения световые комплексы в виде плоских и полых световодов (Ю.Б. Айзенберг, А.А. Коробко, В.М. Пятигорский).

В последние десятилетия бурно развивается транспортная, сигнальная, авиационная, железнодорожная, автомобильная, космическая, водная светотехника. На рис. 9.8 приведена классификация современных СП.


9.4. СВЕТОТЕХНИЧЕСКИЕ УСТАНОВКИ

Светотехнические установки (СТУ) представляют собой совокупность следующих элементов: источника, генерирующего излучение оптического диапазона спектра; прибора для перераспределения и трансформации этого излучения в пространстве; среды, в которой осуществляется перенос излучения, а нередко и его трансформация, и, наконец, приемника излучения, реакция которого во многом определяет эффективность всей установки. Основное назначение любой СТУ — создание оптимальных условий облучения (освещения) для получения максимальной реакции соответствующего приемника. Многообразие приемников не позволяет Создавать однотипные по своей структуре и назначению установки.

Осветительные установки (ОУ) — установки, использующие излучение видимого диапазона спектра и предназначенные для создания оптимальных условий жизни, работы, отдыха, творчества человека. Все другие установки, обеспечивающие оптимальные условия работы любых других приемников излучения оптического диапазона спектра, носят название облучательных установок (ОБУ).

В настоящее время любая сфера деятельности человека не обходится без освещения, поэтому так разнообразны типы ОУ, которые необходимо проектировать и рассчитывать инженерам-светотехникам. Среди них установки промышленного освещения, освещения общественных зданий и сооружений, подземных и наземных горных выработок, наружного освещения городов и населенных пунктов, освещения на транспорте, естественного и совмещенного освещения зданий и т.д.

Не менее разнообразна группа облучательных установок, которые используют как видимое, так и ультрафиолетовое и инфракрасное излучение. В зависимости от характера преобразования энергии излучения приемником ОБУ подразделяют на несколько групп: фотоэлектрические, фотохимического действия, теплового действия, фотолюминесценции, фотобиологического действия.

Если представить структуру всей светотехнической науки в виде пирамиды, то в ее основании находятся научные разработки источников излучения и приборов. Вершину этой пирамиды занимают СТУ. Наблюдается постоянная взаимосвязь всех ее частей. Именно установка формулирует требования к характеру излучения источника и основным параметрам прибора. Она же требует учитывать влияние среды как на перенос энергии излучения от источника к приемнику, так и на свойства и структуру пучка переносимого излучения. СТУ тесно связаны с другими науками — математикой, различными отделами физики и химии, физиологией, психологией.

Естественным источником излучения для всего живущего на Земле является Солнце. Оно служит не только источником жизни, но и формирует эту жизнь, наделяя ее системами регистрации излучения. С.И. Вавилов, который много сделал для становления и развития светотехники в нашей стране, в своей книге «Глаз и Солнце» очень убедительно доказал взаимосвязь этих двух субстанций. Первым искусственным источником излучения был факел. Поэтому осветительные установки древности выполнялись в виде равномерно размещенных факелов, свечей, лампад и т.д. Древние зодчие создавали конструкции зданий, выбирали места для их постройки с учетом естественного освещения. При этом учитывалось попадание света и во внутренние помещения.

Появление керосиновых и газовых фонарей расширило возможности осветительной техники, но ненамного. Свет газовых фонарей не был стабильным, огонь то разгорался, то погасал, постоянно вздрагивал, а это отрицательно сказывалось на зрительном восприятии. Революцией в технике освещения стало появление электрических источников света (см. гл. 3).

Вскоре после демонстрации первой электрической лампочки был издан первый учебник по электрическому освещению (1884 г.), написанный кронштадским морским электриком Е.П. Твертиновым, который выполнил и реализовал проект первой установки архитектурного освещения Московского Кремля. Позднее электрическое освещение Зимнего дворца выполнил Ф.А. Врублевский, который вместе с Г.Н. Буряковичем написал книгу «Электрическое освещение и как им надо пользоваться» (1898 г.).

Важнейшее значение для прогресса отечественной светотехники имело избрание в 1893 г. М.А. Шателена (1865–1953 гг.) профессором на первую в России кафедру электротехники Электротехнического института в Петербурге. Им была прочитана публичная лекция на тему «Электрическое освещение больших площадей». В 1901 г. он издал «Руководство к составлению проектов электрического освещения и электрического распределения энергии в жилых помещениях, на фабриках, заводах и других общественных зданиях», явившееся в то время почти единственным пособием такого рода.

Становление и расширение проектных работ в области ОУ приходится на 20-е годы и связано с принятием и началом осуществления плана ГОЭЛРО. К составлению этого плана был привлечен М.А. Шателен. В 1921 г. на VIII Всероссийском электротехническом съезде он сделал доклад «Современное положение и задачи осветительной техники», в котором сформулировал первостепенные задачи в области развития новой для страны отрасли народного хозяйства — светотехники. В решениях съезда было записано, что необходимо создавать и развивать метрологическую базу светотехники (величины и единицы для характеристики источников света, условий освещения, приборы для измерения); разработать нормы освещения для различных производств, характера зрительной работы и характера помещения; обследовать условия освещения действующих промышленных предприятий; организовать институт для работ в области осветительной техники.

М.А. Шателен опубликовал работы «Влияние освещения на безопасность труда» (1921 г.), «Установление эталона силы света в СССР» (1925 г.), «Роль светового хозяйства в общем энергетическом хозяйстве страны» (1930 г.). Он возглавил Комиссию по осветительной технике в Ленинградском отделении Центрального электротехнического совета, Ленинградское отделение Всесоюзной ассоциации лабораторий осветительной техники и Комиссию по светотехнике АН СССР. К участию в работе этих организаций он привлек ведущих специалистов, в числе которых были Л.Д. Белькинд, А.А. Гершун, Д.Н. Лазарев, С.О. Майзель, В.В. Мешков, М.В. Соколов, П.М. Тиходеев, А. А. Труханов. Вопрос об учреждении светотехнического института М.А. Шателен вновь выдвинул на I Всесоюзной светотехнической конференции в 1927 г. И только в 1951 г. его мечта сбылась. В этом году при его участии был организован Всесоюзный научно-исследовательский светотехнический институт (ВНИСИ).

До принятия и реализации норм и правил искусственного освещения на большинстве промышленных предприятий страны были очень низкие уровни освещенности. Так, на рабочих местах ткачих и прядильщиц фактическая освещенность не превышала 30 лк, хотя напряженная зрительная работа занимала до 80% рабочего времени. На IX Всесоюзном электротехническом съезде (1928 г.) были приняты новые «Правила искусственного освещения фабрик, заводов, мастерских и других рабочих и служебных помещений». Основным автором правил был П.М. Тиходеев. Разработанный документ был для того времени более прогрессивным, чем аналогичные зарубежные правила, которые не имели законодательной силы. В Правилах учитывались точность выполняемой работы и коэффициент отражения рабочей поверхности; регламентировались меры по ограничению слепящего действия, равномерность освещенности, соотношение освещенности от общего и местного освещения; предусматривалось устройство аварийного освещения. Принцип построения Правил, заложенный П.М. Тиходеевым, сохранился и до наших дней. В них регламентировалось значение минимальной (а не средней) горизонтальной освещенности, которое в то время составляло 100 лк.

В 30-е годы в Ленинграде и Москве были организованы лаборатории промышленного освещения. Они сыграли большую роль во внедрении новых Правил. В эти же годы начинают проводиться научно-исследовательские работы по совершенствованию промышленного освещения. Наиболее интересными являются работы В.В. Мешкова (1903–1980 гг.) по разработке мер ограничения ослепленности; Я.З. Нейштадта, Н.М. Данцига и др. по методам контроля зрительного утомления; серия фундаментальных работ по исследованию влияния освещения на видимость, проведенных В.Г. Самсоновой; исследования влияния освещенности на производительность труда, выполненные А.А. Трухановым, А.А. Волькенштейном, М.С. Дадиомовым и др. [9.23–9.27].

Большую роль во внедрении результатов научно-исследовательских работ в практику промышленного освещения сыграли всесоюзные светотехнические конференции (1927, 1928, 1931 гг.). С 1932 г. начал издаваться журнал «Светотехника».

Наиболее крупные специализированные организации по проектированию электротехнических установок были созданы в конце 20-х годов в городах Москве, Ленинграде и Харькове. В начале 30-х годов вместе с крупными электромонтажными конторами они были объединены в организацию под названием «Электропром». Специалистами этого объединения были созданы многочисленные вспомогательные и справочные материалы по разным вопросам проектирования освещения.

Период с 1930 по 1935 г. можно считать временем становления светотехнического проектирования. Именно в эти годы рождались и внедрялись инженерные методы светотехнических расчетов осветительных установок, которые во многом не потеряли своей актуальности и сегодня. Это способы расчета прожекторного освещения (Р.А. Сапожников, В.В. Мешков), кривые относительной освещенности (Р.А. Сапожников), пространственные изолюксы (А.А. Труханов), таблица И.С. Дубинкина телесных углов первичного использования, изолюксы на условной плоскости для несимметричных светильников и др. [9.36]. В это время выходит большое число монографий, посвященных технике освещения, в том числе большой справочник под редакцией Л.Д. Белькинда. Крупным событием явился выпуск в Ленинграде в середине 30-х годов первого ведомственного справочника по проектированию освещения. Он был составлен полностью на общественных началах под редакцией С.М. Демченко, Г.М. Кнорринга, Е.Д, Суворова. Именно эта работа явилась основой последующего известного справочника по проектированию электрического освещения Г.М. Кнорринга [9.35].

В «Электропроме» были созданы светотехнические отделы. Большой вклад в становление этих отделов внесли П.Ф. Надеждин, М.С Рябов и С.А. Клюев в Москве, С.М. Демченко и Е.Н. Яковлев в Ленинграде, Б.А. Гольдштейн в Харькове. Этот период ознаменовался началом развития двух школ проектирования ОУ — московской и ленинградской. В довоенные годы большую помощь «Электропрому» в светотехническом проектировании оказывали ведущие представители светотехнической науки Л.Д. Белькинд, С.О. Майзель, А.А. Гершун, П.М. Тиходеев, В.В. Мешков, М.В. Соколов, Н.Г. Болдырев, А.А. Труханов, Н.В. Горбачев, Е.С. Ратнер, Л.Н. Лазарев и др.

Сопоставляя методику проектирования тех лет с современной, необходимо отметить, что уже в то время все принципиальные вопросы прорабатывались с достаточной глубиной как в светотехнической, так и в электрической части.

Однако типизация проектных решений находилась в зачаточном состоянии.

Военное время приостановило развитие многих направлений светотехники. Однако в эти годы ученые и инженеры продолжали работать. А.А. Гершун занимается теоретическими и практическими задачами светомаскировки. Им были разработаны методы проектирования маскировочного освещения и приборы для его контроля, а также схемы маскировочных светильников [9.20].

Первое послевоенное обсуждение научных и производственных проблем техники освещения проводилось на научно-технической сессии (г. Москва, 1947 г.). В ней приняло участие около 500 светотехников, председателем сессии был М.А. Шателен. В 1954 г. состоялось совещание по проблемам промышленных и бытовых осветительных установок и состояния светотехнической промышленности в СССР, а в 1955 г. — Пленум светотехнической секции при центральном правлении Научно-технического общества электротехнической промышленности (НТОЭП) по вопросам проектирования осветительных установок (г. Ленинград). Начиная с 1955 г. советские светотехники активно участвуют в работе Международной комиссии по освещению (МКО). На XIII сессии МКО (1955 г., Швейцария) от нашей страны были представлены четыре доклада. На ней принято решение включить в международный светотехнический словарь термины на русском языке и поручить СССР руководить техническим комитетом по вопросам ночного и дневного видения. В 1957 г. в Москве проходила сессия Международной электротехнической комиссии (МЭК), в работе которой активное участие приняли советские светотехники.

К середине 50-х годов в нашей стране сформировались основные направления развития светотехники как научно-технической отрасли народного хозяйства. Одним из направлений была разработка СТУ, которые предназначались для решения следующих практических и теоретических задач: совершенствования норм искусственного и естественного освещения, методов проектирования осветительных установок, искусственного освещения промышленных зданий и сооружений, искусственного освещения общественных и жилых зданий, наружного освещения, проектирования и разработки специальных осветительных установок, облучательных установок различного назначения, строительной светотехники.

Нормы искусственного и естественного освещения являются важнейшим документом, который позволяет, с одной стороны, проектировать условия освещения, оптимальные для работы, творчества и отдыха человека, а с другой — рационально расходовать электроэнергию в соответствии с уровнем энерговооруженности страны. В 1941 г. Московским и Ленинградским институтами охраны труда был разработан новый вариант «Правил и норм искусственного освещения промышленных предприятий», внедрение которого было задержано войной. Он был положен в основу ГОСТ 3825–47 «Нормы искусственного освещения», утвержденного в 1947 г. Стандарт повторял структуру предыдущих документов, но позволял более точно учитывать условия зрительной работы по контрасту объекта различения с фоном. Были усилены требования правил ограничения ослепленности, введено дифференцированное нормирование освещенности для установок общего и комбинированного освещения. Максимальный уровень освещенности поэтому ГОСТ составлял 500 лк.

В начале 50-х годов появилась возможность резкого качественного улучшения осветительных установок в связи с начавшимся производством люминесцентных ламп. Был выполнен ряд исследований по установлению сравнительной гигиенической и производственной эффективности освещения люминесцентными лампами и лампами накаливания. В 1951 г. Министерством электростанций СССР совместно с Министерством здравоохранения СССР введены в действие «Правила и нормы освещения люминесцентными лампами», а в 1955 г. были утверждены Государственным комитетом при Совете Министров СССР по делам строительства «Строительные нормы и правила» (СНиП), в которые включены нормы искусственного освещения.

В середине 60-х годов работа над совершенствованием норм освещения объектов различного назначения проводилась по нескольким направлениям: разработке параметров количественной оценки качества освещения при решении различных зрительных задач; составлению отраслевых норм и разработке рациональных способов и приемов освещения в различных отраслях промышленности; разработке систем совмещенного естественного и искусственного освещения, а также систем компенсации световой и ультрафиолетовой недостаточности и др.

Были проведены исследования по определению эквивалентных параметров объектов различения в зависимости от осветительных условий, ограничению отраженной блескости, учету влияния зрительного поиска на работоспособность, вопросам влияния пульсации светового

потока газоразрядных ламп на зрительную работоспособность и состояние высшей нервной деятельности человека. Они легли в основу нового проекта норм.

Параллельно разрабатывались нормы естественного освещения помещений и требования к инсоляции зданий и помещений. Эти документы были приняты в 1971–1972 гг. [9.28]. На их основе разработаны и утверждены отраслевые нормы искусственного освещения для металлургической, машиностроительной, электротехнической, химической и других отраслей промышленности, строительных и монтажных работ, предприятий связи, железнодорожного транспорта и т.д. Эти нормы с небольшими дополнениями просуществовали до 1979 г.

Новые нормы [9.29] впервые в отечественной практике объединили нормативные материалы по естественному и искусственному освещению. В них включен целый ряд нововведений, дан раздел по искусственному ультрафиолетовому облучению, изменено построение норм, повышены нормы освещенности для некоторых помещений, введен новый принцип регламентации коэффициента запаса, даны рекомендации по выбору источников света с различными спектрами излучения, введены нормы наружного освещения городов, даны требования к освещению архитектурных объектов и т.д.

В 80-е годы были проведены комплексные исследования по разработке и проектированию оптимальных для работы человека условий световой среды промышленных и общественных зданий и сооружений. Они позволили усовершенствовать действующие СНиП и принять в 1995 г. их новую редакцию [9.30].

Разработка энергоэкономичных и эффективных ОУ требует решения целого комплекса проблем научного, инженерного и технического планов. В первую очередь необходимо изучить работу зрительного анализатора, получить эмпирические зависимости, позволяющие количественно оценить различные функции зрения (контрастную и цветовую чувствительность), остроту и быстроту различения, остроту глубинного зрения (описать установившиеся и неустановившиеся процессы зрительного восприятия). Немаловажное значение имеет разработка теории светового поля и на ее основе инженерных методов расчета распределения световых потоков, освещенностей и яркостей по поверхностям, различным образом ориентированным в пространстве, а также объемной плотности световой энергии. Особое место занимают вопросы исследования цветового зрения, метрики цветоощущения, математических моделей для оценки качества воспроизведения цвета. Существенными являются также вопросы рационального выбора источников света, осветительных приборов, размещения осветительных средств для получения наиболее оптимальных условий освещения.

Рис. 9.9. Различные типы ОУ
а — освещение прядильного цеха; б — местное освещение шлифовального станка; в — местное освещение конвейера на заводе низковольтной аппаратуры 

До Великой Отечественной войны у нас в стране и за рубежом были проведены многочисленные исследования и получены эмпирические зависимости, описывающие работу глаза с различными объектами. Эти данные обобщались,

уточнялись и вводились в практику проектирования ОУ на проводимых регулярно сессиях МКО. К сожалению, только в 50-х годах советские физиологи и светотехники смогли начать активную работу в этой международной организации.

В нашей стране изучение фундаментальных для светотехники вопросов физиологии зрения началось в Государственном оптическом институте (ГОИ, г. Ленинград) по инициативе и под руководством С.О. Майзеля (1882–1955 гг.), который разработал физическую теорию трансформации лучистой энергии в сетчатке глаза. В лабораториях физиологической оптики (Л.Н. Гассовский), колориметрии и цветового зрения (Н.Д. Нюберг, Г.Н. Раутиан, Л.И. Демкина), фотометрии (М.М. Гуревич, А.А. Гершун) были проведены исследования эффективности работы зрительной системы при зрительном утомлении, порогов цветоощущения, кривых спектральной чувствительности глаза, вопросов световой, цветовой и контрастной чувствительности органа зрения [9.31]. С.И. Вавилов со своими сотрудниками провел уникальные исследования квантовой природы зрительного восприятия [9.32]. Во Всесоюзном институте экспериментальной медицины Н.Т. и В.И. Федоровы организовали лабораторию по исследованию цветового зрения. Большой вклад в область физиологии зрения внес С.В. Кравков (1893–1951 гг.), особенно при изучении взаимодействия органов чувств [9.21, 9.22].

Рис. 9.10. Освещение Воскресенских ворот в г. Москве
Рис. 9.11. Области применения облучательных установок 

В послевоенные годы работы по физиологической оптике и колориметрии проводились в ряде крупных научно-исследовательских и учебных институтов нашей страны (Н.Д. Нюберг, Н.И. Пинегин, М.М. Гуревич, В.Е. Карташевская, Е.Н. Юстова, А.А. Волькенштейн, С.Г. Юров, В.В. Мешков, Е.С Ратнер, B.C. Хазанов, А.Б. Матвеев и др.). За последние десятилетия на основе накопленных многочисленных экспериментальных данных было разработано несколько моделей пороговой чувствительности глаза, которые базируются на понятии порога. Проблема порога для метрики ощущений была сформулирована в конце XIX в. Э. Вебером и Г. Фехнером в виде основного психофизического закона. В настоящее время разработаны высокопороговая модель Г. Блэкуэлла; модель, основанная на теории обнаружения сигнала (Дж. Свете, В. Таннер), низкопороговая модель двух состояний Р. Люса [9.33]. Создана и рекомендована МКО аналитическая модель для описания влияния параметров освещения на зрительную работоспособность. Разработаны равноконтрастные цветовые системы ощущений (Д. Мак-Адам, Д. Джадд, Г. Вышецки, Е. Адаме, А.Б. Матвеев) [9.33].

Продолжали совершенствоваться приемы проектирования ОУ. Были разработаны методы расчета ОУ с учетом многократных отражений [9.36], которые лежат в основе проектирования вариантов ОУ на ЭВМ. Большее внимание стали уделять вопросам качества освещения. Проведены исследования и получены методы расчета показателей, характеризующих влияние блеских источников на видимость, различимость, комфортность освещения (Л. Холлэдей, Ц. Ферри, Г. Рэнд, М.М. Епанешников, С. Гут и др.), а также методы оценки пульсации излучения и качества его спектрального состава [9.33, 9.36, 9.37].

Наряду с установками искусственного освещения развивалось проектирование ОУ совмещенного естественного и искусственного освещения, установок архитектурного освещения городов и памятников архитектуры. Работы в этом направлении координировались Госстроем СССР. Большой вклад в развитие архитектурной светотехники внесли Н.М. Гусев, Н.В. Волоцкой, Н.Н. Киреев, М.А. Островский, М.С. Дадиомов. На рис. 9.9 и 9.10 приведены различные типы ОУ.

Современные тенденции развития ОУ связаны с разработкой сети машинного проектирования, включающего базу данных и расчета светоцветовой среды проектируемого объекта с количественной и качественной сторон. В научном плане ведутся работы по созданию моделей комплексной оценки качества светоцветовой среды помещений промышленных предприятий, общественных зданий, зрелищных сооружений и т.д.

После второй мировой войны во многих странах и в нашей стране стали разрабатывать и серийно выпускать искусственные источники, генерирующие излучение в различных участках оптического диапазона спектра — ультрафиолетовом, видимом, инфракрасном. Это послужило одной из причин бурного развития в 50–70-е годы облучательных установок. Расчет и воплощение ОБУ базируются на методах, используемых в ОУ, однако требуют более детального изучения приемника и его реакции на излучение. На рис. 9.11 приведена схема областей применения ОБУ

СПИСОК ЛИТЕРАТУРЫ

9.1. Розенбергер Ф. История физики. Ч. I. M. — Л.: Гостехиздат, 1934.

9.2. Бутаева Ф.А., Рыбалов С.Л., Федоров В.В. СИ. Вавилов и развитие люминесцентных ламп // Светотехника. 1991. №3. С. 9–11.

9.3. Вавилов С.И. Полное собрание сочинений. В 4-х томах. М.: Изд-во АН СССР, 1952–1956.

9.4. Рохлин Г.Н. Разрядные источники света. М.: Энергоатомиздат, 1991.

9.5. Троицкий A.M., Юшков Д.Д. Определение параметров безэлектродного разряда // Светотехника. 1984. № 11. С. 6, 7.

9.6. Юшков Д.Д. Безэлектродные источники света // Светотехника. 1984. № 2. С. 23–26.

9.7. Импульсные источники света / Под ред. И.С. Маршака. М.: Энергия, 1978.

9.8. Dolan J.T., Ury M.G., Wood CH. A Novel Hign Effigacy Mikrowave Powered Light Source // Sixth Internation Symposium on the Science and Technoology of Light Sources Technical Universitety of Budapest, 2 September, 1992.

9.9. Рохлин Г.Н. О характеристиках новых безэлектродных микроволновых серных ламп // Светотехника. 1997. № 4. С. 19–23.

9.10. Юнович А.Э. Светодиоды на основе гетероструктур из нитрида галлия и его твердых растворов // Светотехника. 1996. № 5, 6. С 2–7.

9.11. Nakamura S. Circuits and Devices. May 1995. P. 19–23.

9.12. Тринчук Б.Ф. Светосигнальная аппаратура на светодиодах // Светотехника. 1997. №5. С. 6–11.

9.13. Гершун А.А. Избранные труды по фотометрии и светотехнике. М.: Гостехиздат, 1958.

9.14. Белькинд Л.Д. Электроосветительные приборы ближнего действия. М.: Госэнерго издат, 1945.

9.15. Карякин Н.А. Угольная дуга высокой интенсивности. М.: Госэнергоиздат, 1948; Прожекторы. М.: Госэнергоиздат, 1944; Световые приборы. М.: Высшая школа, 1966.

9.16. Справочная книга по светотехнике. М.: Госэнергоиздат, 1956.

9.17. Кузнецов В.В., Фрид Ю.В. Системы светового оборудования аэропортов. М.: Ред-издат Аэрофлота, 1954.

9.18. Трембач В.В. Светильники. М.: Госэнергоиздат, 1958; Световые приборы. М.: Высшая школа, 1966.

9.19. Зусман А.С. Электроосветительные приборы. М.: ЦИНТИЭП, 1962.

9.20. Гершун А.А. Принципы и приемы световой маскировки. М.: Госэнергоиздат, 1943.

9.21. Кравков С.В. Глаз и его работа. М.: Изд-во АН СССР, 1950.

9.22. Кравков С.В. Цветовое зрение. М.: Изд-во АН СССР, 1951.

9.23. Самсонова В.Г. Зависимость времени различения от угловых размеров центрального поля, его яркости и отношения яркостей // Проблемы физиологической оптики. 1944. Т. II.

9.24. Мешков В.В. Блескость и слепимость // Светотехника. 1934. № 2.

9.25. Мешков В.В., Брюлова А.Б. Действие блескости на различимость объектов // Проблемы физиологической оптики. 1940. Т. I.

9.26. Гершун А.А., Лазарев Д.Н. К вопросу о влиянии освещения на видимость // Светотехника. 1935. № 6.

9.27. Труханов А.А. Освещение промышленных предприятий // Труды ЛИОТ. 1935. Кн. 2.

9.28. СНиП II — А.9–71. Искусственное освещение. Нормы проектирования. СНиП II — А.8–72. Естественное освещение. Нормы проектирования.

9.29. СНиП И — 4–79. Естественное и искусственное освещение. Нормы проектирования.

9.30. СНиП 23–05–95. Естественное и искусственное освещение.

9.31. Самсонова В.Г. Некоторые этапы развития физиологии зрения в СССР за 50 лет // Светотехника. 1967. № 8.

9.32. Вавилов СИ. Микроструктура света. М.: Изд-во АН СССР, 1950.

9.33. Мешков В.В., Матвеев А.Б. Основы светотехники. Ч. 2. Физиологическая оптика и колориметрия. М.: Энергоатомиздат, 1989.

9.34. Сапожников Р.А. Теоретическая фотометрия. М.: Госэнергоиздат, 1960.

9.35. Кнорринг Г.М. Справочник для проектирования электрического освещения. Л.: Энергия, 1968.

9.36. Мешков В.В., Епанешников М.М. Осветительные установки. М.: Энергия, 1972.

9.37. Справочная книга по светотехнике / Под ред. Ю.Б. Айзенберга. М.: Энергоатомиздат, 1995.


Глава 10.
ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

10.1. ОБЩИЕ СВЕДЕНИЯ

Материалы в развитии цивилизации всегда играли очень важную роль. Известный американский ученый А. Хиппель высказал мнение, что историю цивилизации можно описать как смену используемых человечеством материалов. Их значение подчеркнул и чехословацкий ученый О. Гоудек, который утверждал, что уровень технического развития страны в большой мере зависит от материалов, которыми она располагает, причем структура и свойства материалов определяют сортамент продукции и технологию ее изготовления. Необходимым условием успешного развития любой технической отрасли является наличие хороших материалов. Электротехника здесь не является исключением. Она относится к исторически молодым отраслям, поэтому в ней трудно выделить периоды подавляющего господства отдельных материалов. В развитии материальной базы происходили определенные скачки, которые сделали возможным открытие новых электротехнических материалов. Сюда можно отнести начало нашего столетия, когда с использованием первого электроизоляционного материала макромолекулярного характера — бакелита в электротехнике началась эра пластических масс. Аналогичные скачки обусловили открытие во время второй мировой войны первых сегнетоэлектрических материалов, пригодных к широкому техническому применению, а после этого внедрение в технику ферритов и полупроводников [10.1, 10.2].

Электротехника предъявляет наиболее высокие требования к качеству используемых материалов. Термин «электротехнический материал» возник аналогично, например, термину «строительный материал» и в широком смысле означает любой материал, который используется в производстве электротехнических изделий. В этом смысле электротехническими материалами можно считать и материалы, которые используются также в других отраслях. В узком смысле это только материал, который имеет специальные свойства. Например, проводниковые материалы должны иметь как можно более высокую способность проводить электрический ток, т.е. они должны иметь как можно меньшее удельное электрическое сопротивление.

Материалы, при использовании которых основными являются другие, а не электрофизические свойства, и которые в электротехнических изделиях выполняют вспомогательные (хотя бы и очень важные) функции, называются вспомогательными или конструкционными материалами. Из конструкционных материалов изготавливается, например, защитный кожух, который защищает оборудование от неблагоприятных внешних воздействий или механического повреждения.

Электротехнические материалы можно систематизировать по различным признакам, в результате чего на практике эти признаки часто пересекаются. Наиболее часто критериями систематизации электротехнических материалов являются область их применения и химический состав. Реже в качестве критериев используются происхождение, агрегатное состояние, структура и т.п.

Различают четыре основные группы электротехнических материалов: проводниковые, полупроводниковые, диэлектрические и магнитные.

Указанная классификация очень приблизительна, поэтому в пределах названных четырех основных групп материалы систематизируются в подгруппы, причем при выборе критерия здесь нет единства.

Проводниковые свойства проявляют как твердые тела, так и жидкости, а при соответствующих условиях и газы.

В электротехнике из твердых проводников наиболее широко используются металлы и их сплавы, различные модификации проводящего углерода и композиции на их основе.

Металлические проводниковые материалы подразделяются на материалы высокой проводимости и сплавы высокого сопротивления. Металлы высокой проводимости используются в тех случаях, когда необходимо обеспечить минимальные потери передаваемой по ним электрической энергии, а сплавы высокого сопротивления, наоборот, в тех случаях, когда необходима трансформация электрической энергии в тепловую.

К жидким проводникам относятся расплавы и электролиты. Если при прохождении тока через жидкие проводники на электродах не происходит выделение продуктов электролиза, то они относятся к проводникам первого рода. Расплавы ионных кристаллов и электролиты относятся к проводникам второго рода, так как при прохождении через них тока происходит перенос вещества, а на электродах выделяются продукты электролиза.

Газы и парообразные вещества становятся проводниками лишь в определенных диапазонах значений давления, температуры и напряженности электрического поля. Близка к газам по своему агрегатному состоянию особая проводящая среда — плазма. К группе проводящих материалов относятся сверхпроводники.

Полупроводниковые материалы чаще всего классифицируются по химическому составу как элементы (простые полупроводники) и соединения (сложные полупроводники). Химические соединения классифицируются далее по количеству составляющих на двухэлементные (бинарные), трехэлементные и многоэлементные. Отдельные составляющие часто обозначаются латинскими буквами А, В, С … с римской (иногда арабской) цифрой в надстрочном индексе, обозначающем принадлежность к группе элементов периодической системы химических элементов Д.И. Менделеева. Арабская цифра в подстрочном индексе показывает состав, как и в химической формуле.

Такая классификация не является единственной. Полупроводники классифицируются и по типу электропроводности: те, в которых преобладает электронная электропроводность, называются полупроводниками типа «n», а те, в которых преобладает дырочная электропроводность, — полупроводниками типа «p». Полупроводники по составу делятся на неорганические и органические, а по характеру электропроводности — на электронные и ионные. По структуре различаются кристаллические и аморфные полупроводники.

Диэлектрические материалы, к которым относятся и электроизоляционные материалы, делятся в зависимости от агрегатного состояния на газообразные, жидкие и твердые. Большинство из них относится к твердым, которые делятся на природные и синтетические, а также на органические и неорганические. По размерам молекул органические электроизоляционные материалы делятся на низкомолекулярные и высокомолекулярные. Последние можно также разделить по форме молекул и поведению при нагревании на термопластичные и термореактивные. Однако с точки зрения объяснения электрофизических свойств электроизоляционных материалов гораздо ценнее их классификация на полярные и неполярные.

Магнитные материалы по физическим свойствам делятся на ферромагнитные и ферримагнитные (ферриты), а по применению — на магнитотвердые и магнитомягкие. Последнее деление условно, и некоторые материалы в зависимости от способа обработки могут иметь характер как магнитомягких, так и магнитотвердых. Среди магнитомягких материалов выделяются группы со специальными свойствами, например с прямоугольной петлей гистерезиса, с постоянной магнитной проницаемостью и т.п. Ферримагнитные материалы различают иногда по типу кристаллической структуры.


10.2. ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ

Электроизоляционные материалы в электротехнике выполняют незаменимые функции, и их наличие является необходимым условием функционирования каждого электротехнического устройства. Особенно велико значение электроизоляционных материалов в силовой электротехнике, где от их качества в решающей степени зависит срок службы и надежность большинства видов оборудования. Так, появление генератора трехфазного тока, трансформатора и асинхронного двигателя, а также развитие радиотехники и электроники потребовали электроизоляционных материалов, обладающих малыми диэлектрическими потерями при различных частотах и высоких напряжениях. Возникла потребность в обеспечении надежности работы машин и аппаратов в условиях высокой влажности и воздействия химических реагентов. Повысились рабочие температуры электроизоляционных материалов и ужесточились требования к их морозостойкости. Все это заставляло работать над повышением качества электрической изоляции, улучшением отдельных ее свойств, привело к созданию и применению синтетических диэлектриков, которые могли удовлетворять новым запросам электротехники [10.3].

Важнейшей характеристикой электроизоляционных материалов является нагревостойкость, которая показывает уровень и устойчивость электрических и механических характеристик изоляционных материалов при длительном нагреве и временных перегрузках.

Основные классы нагревостойкости характеризуются следующими предельными температурами:

Класс нагревостойкости — Предельная длительно допустимая рабочая температура, °С

А — 105

В — 130

С — 180

Эта характеристика также предрешает срок службы изоляции в агрегате, т.е. срок службы самого агрегата в условиях эксплуатации (рис. 10.1).

Особую роль среди разнообразия электроизоляционных материалов играют различные пластические материалы. Основой любой пластмассы, за исключением пластмассы на основе битумов и дегтей, является полимер — высокомолекулярное вещество, молекула которого состоит из многократно повторяющихся элементарных звеньев одинаковой структуры.

Появление первых электроизоляционных пластических масс было связано с использованием синтетических смол. Важнейшим изобретением в области электрической изоляции является синтез фенольно-формальдегидных смол [10.4].

Рис. 10.1. Зависимость времени жизни изоляции классов А, В и С от температуры 

Немецкий ученый А. Байер в 1872 г. наблюдал, что при действии на бензол уксуснокислым метиленом и крепкой серной кислотой получаются сложные смолообразные вещества. Однако эти продукты не имели технически ценных свойств. В Германии в 1891 г. И. Клееберг, а в 1895 г. А. Сторн, развивая исследования А. Байера, применили вместо бензола фенол, а вместо уксуснокислого метилена — формальдегид. При этом оказалось, что реакция альдегида с фенолом протекает весьма активно, а получаемые смолы представляют собой твердые неплавкие продукты. Этим ученым не удалось получить смолы в растворимой и плавкой форме, а следовательно, сделать их технически ценными веществами.

А. Бакеланд и О. Лебах, развивая исследования своих предшественников, независимо друг от друга установили, что реакция фенола с формальдегидом может быть проведена и так, что получаются продукты реакции в растворимой и плавкой форме. В связи с тем, что реакция фенола с формальдегидом протекает с большим выделением теплоты, они предложили при развитии экзотермического процесса отводить ее, это и позволило остановить процесс конденсации на такой стадии, когда смола находится в растворимой форме. Ученые показали, что процесс конденсации фенола с формальдегидом может быть управляемым. Эти работы послужили основой для создания промышленного способа получения синтетических высокомолекулярных соединений из простых низкомолекулярных веществ. А. Бакеланд опубликовал свои исследования в 1908–1910 гг.

В 1904 г. A.M. Настюковым была открыта реакция конденсации нефти с формальдегидом, в результате которой получены неоформолитовые смолы. Исследования Е.И. Орлова (1910 г.) обогатили изоляционную технику новым пластическим материалом, названным карболитом, который был получен в результате конденсации фенолов с формальдегидом. В 1912 г. Г.С. Петровым были открыты каталитические свойства сульфонафтеновой кислоты при конденсации фенола с формальдегидом.

Организация производства фенольно-формальдегидных смол в 1915 г. явилась началом развития промышленности пластических масс в России. Особенно большое значение эти смолы имели для электротехники. Они явились новым интересным материалом, который превосходил по своим свойствам все известные до того времени натуральные и искусственные полимеры. В них гармонично представлено сочетание различных технически ценных свойств, характерных для твердого каучука, эбонита, кости и дерева. Важным преимуществом фенольно-формальдегидных смол по сравнению с известными в то время натуральными и искусственными полимерами являлись их высокие технологичность и нагревостойкость. Сочетание комплекса технически ценных свойств и сравнительно высоких электроизоляционных характеристик обеспечило на основе этих смол широкое развитие производства диэлектриков.

В результате конденсации формальдегида с фенолом, крезолами и ксиленолами промышленность получает различные смолы для производства пластических масс и слоистых диэлектриков и удовлетворяет разнообразные требования электротехники.

Исследовательские работы, проведенные в лабораториях СССР, США и Англии по синтезу полиэфирных смол с непредельными группами (акриловыми, матакриловыми, малеиновыми), показали способность этих полимеров переходить в неплавкое и нерастворимое состояние за счет двойных связей без применения давления. Это весьма важное свойство позволяет широко использовать эти продукты для изготовления с применением малых давлений слоистых диэлектриков: гетинакса, текстолита, стеклотекстолита. Кроме того, способность этих смол отвердевать в толстом слое при отсутствии кислорода дает возможность использовать их для изоляции трансформаторов тока. В этом случае совершенно по-новому решается конструкция трансформаторов тока. Полиэфир образует основу изоляции трансформаторов тока различных напряжений (3–35 кВ и выше) и одновременно выполняет функцию корпуса трансформатора. Появление полиэфирных и эпоксидных смол позволило создавать монолитную изоляцию трансформаторов и различных блоков питания, отказавшись от герметизации обмоток при помощи применявшегося ранее метода помещения обмотки в металлический корпус.

По мере развития электротехники номенклатура полиэфирных смол резко увеличивается.

Начиная с 30-х годов большое значение приобрели полимеры, полученные методом полимеризации (полистирол, поливинилхлорид, поливинилацетат, полиметилметакрилат и др.). 40-е годы характеризуются получением поли конденсационных полимеров: кремнийорганических, полиамидных, полиуретановых.

В 1940 г. начинается производство полиэтилена при давлении до 250 МПа — одного из наиболее распространенных в настоящее время полимеров. В 1955 г. К. Циглером (Россия) был разработан метод полимеризации этилена и при низком давлении, который в настоящее время получил весьма широкое распространение.

Вслед за этим на основе работ итальянского ученого В. Натта был разработан технологический процесс получения полипропилена.

Начиная с 50-х годов промышленностью выпускаются новые электроизоляционные материалы: стеклопластмассы, стеклолакоткани, синтетические лакоткани, стеклотканиты, фольгированные и асбестовые слоистые материалы, слюдопласты, материалы на основе кремнийорганических, эпоксидно-фенольных и эпоксидно-полиэфирных связующих и др.

Бурное развитие электротехнической промышленности, а в связи с этим и повышение рабочих напряжений оборудования потребовали проведения глубоких теоретических и экспериментальных исследований. Для этих целей на предприятиях, выпускающих электроизоляционные материалы, открылись специальные лаборатории.

Важную роль в разработке и изготовлении электроизоляционных материалов и в освобождении нашей страны от иностранной зависимости сыграли организованные Государственный экспериментальный электротехнический институт, затем переименованный во Всесоюзный электротехнический институт (ВЭИ), Всесоюзный научно-исследовательский институт электромеханики (ВНИИЭМ), Всесоюзный научно-исследовательский институт кабельной промышленности (ВНИИКП), СКБ синтетической изоляции, Всесоюзный научно-исследовательский институт стекловолокна (ВНИИстекловолокна), Всесоюзный научно-исследовательский институт бумаги (ВНИИБ), научно-исследовательские институты химической промышленности и Академии наук СССР, лаборатории заводов «Электроизолит», «Изолит», «Электросила», «Динамо» и др. [10.5, 10.6].

В исследованиях ВЭИ тех лет закладывались основы важнейших для электротехники научных направлений. Под руководством П.А. Флоренского проводились исследования электрофизических свойств электроизоляционных материалов. В 1924 г. П.А. Флоренским была издана монография «Диэлектрики и их техническое применение», в которой были обобщены материалы по изучению диэлектриков.

В ВЭИ проводились исследования, связанные с синтезом различных полимеров: полиэфиров, полиуретанов, эпоксидных, фенолформальдегидных и карбамидных смол, поливинилацеталей, полиамидов, полиорганосилоксанов, полиорганометаллосилоксанов и др. В ВЭИ и ряде других организаций (ВНИИЭМ, ВНИИКП) разрабатывались различные электроизоляционные лаки, компаунды и материалы на основе новых полимеров.

Особого внимания заслуживают работы по изысканию новых путей синтеза полимерных кремнийорганических соединений, связанных с фундаментальными исследованиями механизма образования этих соединений. Эти теоретические исследования были начаты в ВЭИ под руководством К.А. Андрианова в 1935 г. В то время в мире еще не были известны высокополимерные соединения, содержащие молекулы, построенные из силоксанных группировок атомов и обладающие хорошими технологическими свойствами (гибкостью, растворимостью, способностью полимеризоваться и т.д.), характерными для органических смол.

Развитие электроизоляционных материалов и электроизоляционной техники можно условно разбить на несколько этапов.

Первым этапом (1920–1928 гг.), способствовавшим развитию электроизоляционной техники, явились систематические электрофизические исследования диэлектриков, которые были начаты в лабораториях Ленинградского физико-технического института.

Руководителем института А.Ф. Иоффе было открыто явление высоковольтной поляризации, имеющее большое значение для понимания процессов, происходящих в изоляции электрооборудования. Сотрудники этого института Н.Н. Семенов и В.В. Фок создали оригинальные теории пробоя диэлектриков. Тогда же, в конце 30-х годов, проводили испытания природы диэлектрических потерь, электропроводности при больших напряженностях электрического поля И.В. Курчатов и А.П. Александров. Эти исследования, положившие начало новой науке — физике диэлектриков, заслужили самую высокую оценку как в нашей стране, так и за рубежом. В дальнейшем работы в области физики диэлектриков были продолжены в Физическом институте АН СССР, в Томском и Ленинградском политехнических институтах, в ВЭИ, МЭИ, а также заводских лабораториях крупных электротехнических заводов (ХЭМЗ, «Электросила», «Динамо», Московский электрозавод и др.). Несколько позднее (в 30-е годы) получила развитие химия диэлектриков.

Вторым этапом, способствовавшим развитию электроизоляционной техники (1928–1935 гг.), явились работы по созданию более совершенных электроизоляционных материалов, проводившиеся в ВЭИ, а также в лабораториях заводов ХЭМЗ, «Электросила», «Динамо», Московского электрозавода, завода им. Лепсе, «Изолит».

В результате этих исследований электротехническая промышленность получила новые электроизоляционные материалы: глифталевые смолы и лаки, битумно-масляные и масляно-смоляные пропиточные, клеящие и покровные лаки, битумные пропитывающие компаунды, покровные эмали, синтетические жидкости, большую номенклатуру слюдяных материалов, слоистые пластики, разные виды электроизоляционных бумаг и картонов, намотанные бумажно-бакелитовые изделия, светлые и черные лакоткани, асбоцемент непропитанный и пропитанный и др.

Третьим этапом развития электроизоляционной техники явилось создание в 1932–1940 гг. специальных видов изоляции — влаго-, водо- и химостойкой с повышенной теплопроводностью и нагревостойкостью. Сочетание стекловолокнистых материалов, щипаной слюды и модифицированных глифталевых электроизоляционных лаков позволило получить изоляцию электрических машин с повышенной нагревостойкостью.

Качественный скачок в повышении нагревостойкости изоляции стал возможен в результате разработки гаммы высоконагревостойких электроизоляционных материалов на основе кремнийорганических полимеров, созданных под руководством К.А. Андрианова.

В 1948 г. под его руководством в ВЭИ были начаты систематические исследования нагревостойкости кремнийорганической изоляции, синтетических пленок и других полимерных диэлектриков. В результате было доказано наличие связи между структурой диэлектриков и их нагревостойкостью, а также установлены количественные зависимости срока службы изоляции электродвигателей от температуры для кремний-органических и других полимерных диэлектриков. Следует также отметить систематические исследования связи между строением полимерных диэлектриков и их электрофизическими и механическими свойствами, проводимые в ВЭИ с конца сороковых годов.

Возросший спрос на слюдяные материалы для изоляции обмоток турбо- и гидрогенераторов, высоковольтных машин, тяговых, шахтных, металлургических, морских и других электродвигателей с рабочей температурой 130–180 °С увеличивал расход дорогостоящей и остродефицитной щипаной слюды. В связи с этим возникла необходимость более рационального использования добываемых слюд, а также замены слюдяных материалов менее дефицитными.

В 1948–1951 гг. развитие электроизоляционной техники шло главным образом по пути значительного сокращения потребления слюд высоких номеров и щипаных из очищенных слюд. Исследования, проведенные в ВЭИ и на заводе «Электросила», очищенных и колотых слюд позволили значительно сократить удельный расход остродефицитного сырья.

Современный этап развития электроизоляционной техники характеризуется разработкой и применением термореактивных смол для изоляции электротехнического оборудования. Создана и успешно внедряется термореактивная изоляция в турбо- и гидрогенераторах, синхронных компенсаторах и высоковольтных машинах; литая изоляция в измерительных трансформаторах, электробурах, тяговых и других электродвигателях, а также в высоковольтных аппаратах.

В ВЭИ осуществлен синтез полиорганометаллосилоксанов, что дало возможность вводить в цепь полиорганосилоксанов алюминий, титан, олово, кобальт, никель. Наибольшее развитие получили полимеры, содержащие в главной цепи алюминий. Кремнийорганические лаки находят применение в качестве добавок для изготовления нагревостойких лаков и композиционных пластических масс, а также для повышения влагостойкости фенолформальдегидных смол, используемых в производстве гетинакса и стеклотекстолита.

Одновременно с разработкой методов синтеза полиорганосилоксанов в довоенные годы начались исследования в области различных высокополимерных соединений, являющихся основными веществами для изготовления лаков, компаундов, пластических масс, лакотканей, слоистых пластиков. В 50-е годы в ВЭИ были проведены работы по синтезу 100-процентных маслорастворимых смол (гексилфенолформальдегидных, оксидифенолформальдегидных), обладающих высокой влагостойкостью, стойкостью к кислотам и слабым растворам щелочей, т.е. свойствами, необходимыми для создания высококачественных электроизоляционных пропиточных лаков. Синтезированы также новые эластичные растворимые в маслах анилиноформальдегидные смолы для изготовления лаков, стойких к щелочам, щелочным эмульсиям, бензину, керосину, хорошо совмещающиеся с полихлорвинилом и улучшающие его адгезию к металлам.

В конце 30-х — начале 40-х годов одним из важнейших направлений в области полимеров являлся синтез полиэфирных смол, главным образом алкидных, на основе продуктов поликонденсации фталевого ангидрида и глицерина.

Глифталевые смолы широко применяются в изоляционном производстве, и особенно для изготовления изоляционных лаков. Были синтезированы немодифицированные глифталевые смолы, а также глифталевые смолы, модифицированные жирными кислотами, маслами и продуктами окисления парафина. Наиболее широко распространены полиэфирные смолы, представляющие собой продукты поликонденсации многоосновных кислот и многоатомных спиртов. Общие свойства полиэфирных смол — высокие электрические характеристики, хорошая адгезия к металлам и различным изоляционным материалам, значительная стойкость к действию масел и различных растворителей. Нагревостойкость полиэфирных смол зависит от кислот и спиртов, примененных для их синтеза.

В середине 50-х годов отечественной промышленностью был создан ряд полимеров, в том числе полиуретаны и эпоксидные смолы. Полиуретаны обладают высокой химо-, масло- и влагостойкостью, прочностью на истирание, эластичностью, адгезией к металлам и хорошими электрическими свойствами. Полимеры на основе полиуретанов используются при изготовлении лаков для эмальпроводов, заливочных компаундов и лаков для стеклолакотканей.

Для изоляции различных электротехнических изделий широко применяются эпоксидные смолы. Благодаря высокой адгезии к большинству электроизоляционных материалов и к металлам эпоксидные смолы являются хорошими клеями. Они применяются для изготовления стеклопластиков, отличающихся большой механической прочностью, и в качестве связующего в слюдяных изоляционных материалах. Способность эпоксидных смол отверждаться в толстых слоях без давления с малой усадкой позволила широко использовать их для изготовления литой изоляции.

Для заливки трансформаторов тока и напряжения, предназначенных для работы при низких температурах, разработаны компаунды на основе эпоксидных смол с отвердителями ангидридного типа (малеиновый ангидрид, смесь малеинового и фталевого ангидридов), а также пластифицированные полиэфирами компаунды. Введение в эпоксидную смолу до 20% полиэфира улучшает физические свойства полимера, практически не снижая электрических свойств компаунда. Эпоксидно-полиэфирные компаунды К-168 и К-293 и другие применяются для защиты полупроводниковых приборов и схем от влаги.

Среди электроизоляционных лаков различного назначения особое место занимают разработанные в ВЭИ под руководством К.А. Андрианова в начале 60-х годов композиции эпоксидных смол с полиэфирами и полиорганосилоксанами, позволившие создать комплекс электроизоляционных материалов высокой нагревостойкости. К ним относятся: пропиточный лак ПЭ-933, лак ПЭ-942 для стеклоткани и стекло лакочулок, лак ПЭ-948 для гибких слюдяных материалов, смола ТФП-18 для формовочного и коллекторного миканитов, лаки ПЭ-935 и ПЭ-936 для гибких слюдинитовых материалов, эмаль ЭП-9], стеклолакоткань ЛСП, а также компаунд ЭК. Эта группа лаков и материалов рекомендуется для изоляции кранового, тягового электрооборудования и электродвигателей прокатных станов.

Большой интерес представляют органические полимеры с ароматическими и гетероциклами в основной цепи, обладающие высокой нагревостойкостью. К таким полимерам относятся полиимиды — продукты взаимодействия ангидридов поликарбоновых кислот (пиромеллитовой, тримеллитовой) и ароматических диаминов (диаминодифенилоксид, диаминодифенилсульфид и др.), полимеры на основе ароматических амидов (типа фенилона), а также полиоксидифенилы. Полиимиды наиболее огнестойкие среди органических полимеров, отличаются хорошими электроизоляционными и механическими свойствами при температурах 250–350 °С, чрезвычайно устойчивы к воздействию атмосферы, радиации и химических реактивов. Полиоксидифенилы обладают хорошей цементирующей способностью при температуре от 120 до 300 °С, что свидетельствует об их низкой термопластичности и высокой твердости лаковых пленок. Эти свойства позволяют использовать полиоксидифенилы для получения пропиточных лаков и бандажных лент.

В настоящее время в ВЭИ разрабатываются новые электроизоляционные лаки и материалы на основе полиимидов (эмаль-лаки для эмаль-проводов, пропиточные лаки, стеклолакоткани). Ведутся работы по созданию полимеров на основе оксидифенила.

Разработаны и проходят стадию технологического опробования цианэтилированные целлюлозные материалы, а также ацетилированные бумаги. По сравнению с аналогичными материалами, изготовленными на обычной целлюлозе, нагревостойкость цианэтилированных целлюлозных материалов приблизительно на 20 °С выше, водопоглощение ацетилированных целлюлозных бумаг примерно на 50% ниже, удельное сопротивление на два-четыре порядка выше. Снижается также зависимость сопротивления от температуры. В ВЭИ созданы стеклянные бумаги, изготовляемые сухим формованием и методом растяжки срезов стекловолокон. Новые материалы обладают высокой нагревостойкостью, хорошими электроизоляционными свойствами, высокой прочностью на разрыв. Качество асбестовых бумаг, выпускаемых промышленностью, не отвечает основным требованиям, предъявляемым к электроизоляционным материалам. В связи с этим ВЭИ разработана технология изготовления тонких асбестовых бумаг на основе хризотилового асбеста с повышенными электрическими характеристиками. Нагревостойкость различных электроизоляционных материалов, в которых применены эти бумаги, 400 °С.

В электротехнике (в трансформаторостроении, кабельной технике) широко применяются нефтяные масла. Однако они имеют существенный недостаток — способны окисляться при повышенных температурах, в результате чего образуются осадки, изменяющие физико-химические и электрические характеристики масел. Кроме того, нефтяные масла горючи и взрывоопасны, имеют низкую диэлектрическую проницаемость. Все это обусловило необходимость форсирования работ, связанных с получением синтетических жидких диэлектриков. В ВЭИ, ВНИИЭМ и ряде других организаций интенсивно ведутся работы по синтезу электроизоляционных жидкостей различного химического состава (хлор- и фторсодержащие углеводороды, жидкие полиизобутилены, кремнийорганические жидкости).

Наибольший интерес для электротехнической промышленности представляют жидкие хлордифенилы — смеси индивидуальных хлорпроизводных дифенила. Хлордифенилы негорючи, взрывобезопасны, имеют высокие электрические характеристики и термически стабильны. К таким электроизоляционным материалам относятся: совол, хлордифенил и совтол, производство которых уже освоено промышленностью.

Для заполнения малогабаритных трансформаторов, рассчитанных на работу при высоких температурах, применяются фторорганические жидкости, имеющие наряду с высокими электрическими характеристиками хорошие охлаждающие свойства. Для пропитки силовых кабелей широко используется масло октол (смесь полимеров изобутилена), обладающее высокой термической стабильностью и стабильностью в электрическом поле. Для силовых высоковольтных трансформаторов создан специальный целлюлозный картон.

В 50-е годы разработаны жидкие кремнийорганические диэлектрики, которые отличаются высокой нагревостойкостью, имеют низкую температуру застывания, малый температурный коэффициент вязкости, хорошие электрические свойства в широком интервале частот и температур, химически инертны. Отечественной промышленностью освоен выпуск нескольких разновидностей полиорганосилоксановых жидкостей. Наибольший интерес представляют полиметил- и полиэтилсилоксановые жидкости с высокими температурами кипения.

Наиболее важным из числа газообразных электроизоляционных материалов является воздух. В силу своей всеобщей распространенности воздух часто входит в состав электротехнических установок и играет в них роль электроизоляционного материала дополнительно к жидким и твердым электротехническим материалам. Однако электрическая прочность воздуха весьма невелика [10.6].

В 1941–1942 гг. Б.М. Гохберг опубликовал результаты исследования электрофизических характеристик гексафторида серы. Это соединение оказалось наиболее перспективным для изоляции электроустановок и было названо Б.М. Гохбергом элегазом. Само название «элегаз» указывает на то, что это газ, предназначенный для целей электротехники.

Современное развитие электротехники идет в направлении повышения напряжений, роста мощностей и увеличения частот. К электротехническим материалам, применяемым в электро- и радиотехнике, предъявляются более высокие, чем прежде, требования.

Повышение уровня характеристик может быть достигнуто как путем усовершенствования известных материалов, так и посредством синтеза новых диэлектриков. Так, для высокочастотной техники может представить интерес синтез керамических материалов с малыми потерями и высокой добротностью. В области электроизоляционных материалов, предназначенных для работы при промышленной частоте, очень важно повысить их нагрево- и влагостойкость. Большие перспективы в этом отношении имеют электроизоляционные композиции на основе кремний-органических полимеров, эпоксидных и полиуретановых смол.


10.3. КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ

В настоящее время под керамическими материалами подразумеваются не только такие мате-

риалы, как фаянс, фарфор, огнеупоры, строительная керамика, абразивы, эмали, цементы и стекла, но также неметаллические магнитные материалы, сегнетоэлектрики, синтетические монокристаллы и другие виды, еще не существовавшие несколько лет назад.

Слово керамика происходит от греческого слова «keramos», что означает горшечная глина или фаянс. Традиционная керамика изготавливается силикатной промышленностью, которая занимается главным образом производством изделий из глин, цемента и силикатных стекол.

Изготовление фаянса путем формования и обжига глиняных изделий известно давно. В раскопках находят изделия из обожженной глины, имеющие возраст около 17 тыс. лет. В Египте около 5 тыс. лет до нашей эры существовало промышленное производство керамических изделий.

Производство силикатных стекол известно также с древних времен. Эмали на каменных украшениях и изделия из стекла были известны 12–5 тыс. лет до нашей эры, а в Египте около 2 тыс. лет до нашей эры имелась достаточно развитая стекольная промышленность.

Производство цементных материалов получило развитие не более 200 лет назад.

В России гончарное производство было широко распространено уже в X–XIII вв. Глиняные изделия, найденные при раскопках Великого Новгорода, указывают на высокое мастерство русских гончаров.

В XVIII в. в России был создан фарфор и стало осваиваться его промышленное производство. В 1756 г. под Москвой строится фарфоровый завод. В 1798 г. начинает выпускать продукцию первый фаянсовый завод вблизи Киева.

В XIX в. керамическая промышленность России добивается значительных успехов. Центрами силикатной промышленности становятся такие города, как Москва, Санкт-Петербург, Харьков и др.

Если провести анализ керамической промышленности развитых стран, то можно увидеть, что наибольший объем занимает производство натрий- и кальцийсиликатных стекол. Затем наиболее крупным по объему является производство извести и цемента (здесь большая доля падает на производство строительного цемента). Наиболее разнообразная группа изделий относится к тонкой керамике, которая включает фаянс, фарфор и другие виды материалов с тонким черепком. К следующей распространенной группе традиционной керамики относятся эмали, выпускаемые для покрытия металлов, затем следуют строительные материалы, огнеупоры и абразивные материалы.

Несмотря на то что силикатная (традиционная) керамика составляет наибольший объем выпускаемых керамических изделий и материалов, в последнее время разрабатываются разнообразные типы новых керамических материалов, которые обладают уникальными свойствами. Такие материалы разработаны либо для применения при очень высоких температурах и при этом обладают большой механической прочностью, высокими значениями электрического сопротивления и химической стойкостью, либо при исследовании материалов, когда открываются новые свойства, которые позволяют создавать принципиально новые устройства или существенно улучшить параметры существующих (например, открытие варисторного и позисторного эффектов, высокотемпературной сверхпроводимости и гигантского магнитного сопротивления в оксидных перовскитовых структурах).

В последние 50 лет было создано много новых керамических материалов [10.8–10.13]:

керамика чистых оксидов для специальных электротехнических или огнеупорных изделий характеризуется высокими значениями ряда свойств и стабильностью; ее изготовляют чаще всего на основе корунда Аl2O3, диоксида циркония ZrO2, оксида магния (MgO), шпинели MgAl2O4 и форстерита Mg2SiO4;

ядерное топливо на основе использования диоксида урана UO2, который сохраняет свои свойства при длительном использовании в ядерных реакторах;

магнитная керамика, уникальные электрические свойства которой позволяют использовать ее в высокочастотной радиоэлектронике;

монокристаллы разнообразных материалов, которые используются в настоящее время в различных областях техники. В качестве примера можно привести монокристаллы сапфира, выращиваемые из расплава, и крупные кристаллы кварца, выращиваемые в гидротермальных условиях;

металлокерамика, играющая большую роль в машиностроении; представителями этой группы материалов являются различные карбиды на металлической связке, а также смеси хромосодержащих сплавов с оксидом алюминия;

сегнетоэлектрическая керамика на основе титана бария, открытого в 1944 г. Б.М. Вулом (СССР), которая имеет высокую диэлектрическую постоянную и может служить активной и пассивной средой во многих электротехнических приборах и устройствах;

бессиликатные стекла, которые имеют особое применение благодаря прозрачности в инфракрасной части спектра;

ситаллы, технология которых является достаточно новой и заключается в формовании изделий из стекла с последующей термообработкой, обеспечивающей протекание процессов образования центров кристаллизации и контролируемого роста кристаллов с получением однородного тонкозернистого стеклокристалличес-кого материала.

Кроме того, в настоящее время производят и используют большое количество других новых керамических материалов, не известных 10 или 20 лет назад. С этой точки зрения керамическая промышленность является одной из наиболее быстро развивающихся отраслей индустрии, продукция которой постоянно совершенствуется. Необходимость в новых керамических материалах обусловливается постоянными потребностями в создании более совершенных и новых изделий.

Быстрое развитие электротехнической и радиотехнической промышленности требует роста производства, электротехнической керамики и высококачественных изоляторов.

Основными материалами для изготовления изоляторов являются керамические материалы, среди которых ведущее место занимает фарфор [10.13–10.19]. В России этот замечательный материал был создан Д.И. Виноградовым, современником М.В. Ломоносова. В результате многочисленных исследований. Д.И. Виноградов получил первые образцы отечественного фарфора (порцелина) [10.20] и основал первый фарфоровый завод в России «Порцелиновая мануфактура» в 1744 г. До нас дошли 23 рецепта фарфоровых масс и 10 рецептов глазурей, разработанных Д.И. Виноградовым, которого по праву можно считать основоположником производства русского фарфора [10.14, 10.20, 10.24].

В России до 1917 г. изоляторная промышленность как самостоятельная отрасль не существовала. Электротехнические изделия из фарфора — телефонные и телеграфные изоляторы, ролики, розетки и другие изделия — изготовлялись на заводах, основной продукцией которых являлась фарфоровая посуда. Это заводы в Санкт-Петербурге, Я. Эссена в Риге, Славянске, Бердникова в Житомирской области и др. Исключение составлял завод С.П. Чоколова (ныне завод «Изолятор»), основанный в 1894 г. под Москвой и специализировавшийся на выпуске электротехнических изделий из фарфора. Эти заводы выпускали преимущественно электротехнический фарфор для установок низкого напряжения.

В конце XIX в. эти заводы начали выпуск телефонных и телеграфных изоляторов, электроустановочных изделий (роликов, розеток и др.) [10.14, 10.15]. После Октябрьской революции ряд заводов полностью переходит на изготовление электротехнической продукции: завод Корниловых в Петербурге, ныне завод «Пролетарий», завод им. Артема в г. Славянске, завод «1 Мая» в Токаревке Житомирской области. Производство электротехнических фарфоровых изделий, несмотря на отсутствие на заводах механизации, достигло значительного совершенства, и высокое мастерство рабочих керамистов заслуженно и неоднократно отмечалось на всемирных выставках.

Объем отечественного производства электротехнического фарфора не мог удовлетворить спроса развивающейся электротехнической отрасли. Значительная часть потребности в изоляторах низкого напряжения и почти полностью высокого напряжения удовлетворялась ввозом из-за границы.

Одна из первых попыток выпуска отечественных изоляторов высокого напряжения относится к 1906–1907 гг., когда заводом С.П. Чоколова была изготовлена партия штыревых изоляторов на напряжение 6–10 кВ довольно сложной конструкции, имевших три выступающие «юбки». Эти изоляторы были направлены для испытания в Германию в лабораторию завода ГЕШО (Гемсдорф-Шомбург). Все изоляторы выдержали испытания и были рекомендованы к производству. Однако завод С.П. Чоколова не организовал массового выпуска штыревых изоляторов этого типа, что можно объяснить сложностью их конструкции и трудностью конкуренции с иностранными фирмами.

Значительных успехов в выпуске высоковольтных изоляторов добился завод Я. Эссена в Риге. В 1912–1915 гг. этим заводом выпускались изоляторы на напряжение до 20 кВ преимущественно по чертежам германских фирм. В 1915 г. завод Я. Эссена был эвакуирован в г. Славянск, где Я. Эссен купил у фабриканта М.С. Кузнецова посудную фабрику, в корпусах которой было размещено оборудование, вывезенное из Риги.

В годы первой мировой войны Россия была отрезана от заграничных поставщиков. Для удовлетворения острой потребности в изоляторах высокого напряжения славянский завод, а также некоторые другие предприняли попытки наладить массовый выпуск изоляторов высокого

напряжения. Эти попытки не увенчались успехом, ввиду того что заводы не смогли овладеть особенностями обработки электрокерамики и режима сушки и обжига. Кроме того, заводы того времени не располагали испытательным оборудованием высокого напряжения и были лишены возможности корректировать конструкцию и технологию производства изоляторов.

Первые партии изоляторов на напряжение 35 кВ были выпущены по заграничным образцам в 1919–1920 гг. заводом им. М.В. Ломоносова в Петрограде ив 1921 г. Дулевосим заводом фарфоровой посуды. Изготовленные по технологии, обычной для производства хозяйственного фарфора, эти изоляторы после установки их на линиях электропередачи через короткий срок выбыли из эксплуатации вследствие массовых пробоев.

Опыт показал, что производство изоляторов высокого напряжения требует специальной технологии. Для этой цели электропромышленности были переданы четыре завода, которые ранее частично выпускали изоляторы и фарфоровые изделия («Изолятор», «Пролетарий», им. Артема и «1 Мая»).

Центральным электротехническим советом (ЦЭС) были утверждены разработанные в 1919 г. Петроградским политехническим институтом под руководством М.А. Шателена первые технические условия на высоковольтные фарфоровые изоляторы.

Большую роль в развитии отечественной керамической промышленности сыграла организация в 1919 г. в Петрограде Государственного научно-исследовательского керамического института.

В 1921 г. по заданию Главэнерго А.А. Горевым были разработаны отечественные конструкции штыревых изоляторов на напряжение 6–35 кВ. Эти изоляторы выпускались заводами «Изолятор» и «Пролетарий» до 1924–1926 гг. [10.18–10.19].

В период 1926–1935 гг. широким фронтом велись работы по реконструкции изоляторных заводов и оснащению их новым оборудованием. В 1934 г. завод «Пролетарий» ввел в эксплуатацию первую туннельную печь непрерывного действия длиной 121 м для обжига электроустановочных изделий. На заводе им. Артема в 1940 г. введены в эксплуатацию печи периодического действия с шестью камерами общей вместимостью 450 м3 и туннельная печь, разработанная в СССР.

Сооружение Свирской ГЭС и линии электропередачи на напряжение 220 кВ потребовало подвесных изоляторов с гарантийной механической прочностью 6,86?104 Н. Производство таких изоляторов было освоено в 1932 г. на заводе им. Артема и в 1935 г. на заводе «Пролетарий».

В начале 1923 г. на заводе «Изолятор» была сооружена изоляторная лаборатория с испытательной установкой на напряжение до 300 кВ и специальной машиной для механических испытаний изоляторов, что позволило планомерно проводить работы по изучению характеристик зарубежных и разрабатываемых отечественных изоляторов. В том же 1923 г. на заводе «Изолятор» была разработана и выпущена первая партия штыревых изоляторов на напряжение 35 кВ технологически приемлемой формы типа ШИ. Опыт эксплуатации этих изоляторов дал удовлетворительные результаты, и они были включены в первый общесоюзный стандарт (ОСТ 3370) и выпускались до 1939 г. [10.21].

В период 1923–1925 гг. осваивается серийное производство линейных изоляторов высокого напряжения на заводах им. Артема и «Изолятор» и аппаратных изоляторов на заводе «Пролетарий». Производство аппаратных изоляторов представляло наибольшие трудности вследствие сложности их профилей и примитивности оборудования, которым в то время были оснащены наши заводы. Значительную помощь заводам в области испытаний и корректирования первых конструкций изоляторов оказали коллективы научных работников ИНХ им. В.Г. Плеханова (Б.И. Угримов), а также ЛЭТИ (А.А. Смуров и его сотрудники). В 1925 г. для создания новых изоляторов было организовано Техническое бюро изоляторных заводов Электротехнического треста Центрального района (ЭТЦР), руководителем которого являлся Н.В. Головкин. Экспериментальной базой бюро был завод «Изолятор», на территории которого оно помещалось. Бюро разработало конструкции первых отечественных подвесных изоляторов (типа ПГ-22), проводило работы по исследованию, созданию и модернизации ряда конструкций изоляторов и арматуры для них. В бюро выросла группа инженеров-специалистов в области керамической изоляции (А.В. Ефимов, Л.И. Федоров и др.).

Рис. 10.2. Подвесной фарфоровый изолятор ПГ-22 (первая отечественная конструкция подвесного изолятора) 

Важным этапом в развитии отечественного изоляторостроения явились разработка и технологическое освоение производства подвесных изоляторов для строившихся линий электропередачи напряжением 110 кВ. В результате проведенных исследований подвесных изоляторов, поставлявшихся СССР заграничными фирмами, была разработана отечественная конструкция подвесного изолятора ПГ-22 (рис. 10.2). В этом изоляторе шапка 7 закреплялась на головке изолятора при помощи цементной замазки, заделка же стального стержня 2 производилась при помощи стальных шпилек 3, заливаемых легкоплавким сплавом, состоящим из свинца и сурьмы. Серийный выпуск подвесных изоляторов был начат в 1927 г., что позволило уже в годы первой пятилетки отказаться от импорта изоляторов этого класса. Впоследствии (1938–1939 гг.) на освоении работ, проведенных изоляторной лабораторией ВЭИ, в конструкцию подвесного изолятора были внесены изменения (изолятор П-4,5): заделка шапки и стержня производилась на цементной замазке с применением эластичных битумных покрытий. Этот тип изолятора вошел в первый общесоюзный стандарт на фарфоровые изоляторы (ОСТ 3370) в 1930 г., а также в ГОСТ 6490–53. Для повышения качества продукции и производительности заводов большое значение имели работы, проведенные в 1926–1928 гг., по переводу печей (горнов) с твердого топлива (дров) на жидкое и усовершенствованию процессов обжига электротехнического фарфора.

Дальнейшее развитие электроизоляторного производства связано с развитием трансформаторе- и электроаппаратостроения, а также сооружением линий электропередачи на напряжение 220 кВ.

В 1931 г. завод «Изолятор» начал производство маслонаполненных фарфоровых вводов на напряжение 110 кВ, которые изготовлялись по чертежам американской фирмы ДЖИИ, а затем по усовершенствованным заводским конструкциям.

Рис. 10.3. Фарфоровый маслонаполнениый ввод с внутренней бумажно-масляной изоляцией конденсаторного типа
1 — гайки; 2 — токоведущая труба; 3 — верхняя фарфоровая покрышка; 4 — обмотка из кабельной бумаги; 5 — трансформаторное масло; 6 — опорная поверхность втулки; 7 — соединительная втулка; 8 — нижняя фарфоровая покрышка; 9 — цилиндрические обкладки; 10 — стакан; 77 — экран; 12 — масляный расширитель; 13 — контактный зажим

В 1932 г. для линий электропередачи на напряжение 220 кВ были разработаны и освоены в производстве подвесные изоляторы типа П-7 с гарантийной механической прочностью 6,86?104 Н. Освоение в производстве вводов на напряжение 220 кВ потребовало большего времени, чем для вводов на напряжение 110 кВ, так как их конструкция была более сложной. Потребовалась разработка специальной технологии

сушки, обжига и охлаждения этих крупногабаритных керамических конструкций. Внутренняя изоляция ввода, которая изготовлялась по американским чертежам, не обеспечивала необходимой надежности. Группой специалистов заводов «Изолятор», «Электроаппарат», Московского электрозавода и ВЭИ изоляция ввода была улучшена, после чего начался серийный выпуск вводов на напряжение 220 кВ (рис. 10.3).

В 1932–1933 гг. были разработаны конструкции установок для непрерывного испытания изоляторов высоким напряжением, что позволило в 3–5 раз повысить пропускную способность испытательных станций.

Улучшению производства фарфоровых изоляторов способствовала специализация заводов, проведенная в 1933 г. Заводы «Пролетарий» и «Изолятор» стали специализироваться на выпуске аппаратных изоляторов, завод «1 Мая» — на изоляторах для линий связи и электроустановочных изделиях, а завод им. Артема — на выпуске линейных (подвесных и штыревых) и станционных (опорных и опорно-штыревых) изоляторов. На рис. 10.4 показаны основные типы опорных изоляторов, каждый из них состоит из фарфорового элемента и арматуры. Фарфоровые элементы либо полые (рис. 10.4, а и б), либо сплошные с небольшими выемками для внутренней заделки арматуры (рис. 10.4, в). В первых двух конструкциях опорных изоляторов нижняя часть фарфорового элемента закрепляется в чугунном фланце с помощью цементно-песчаного состава. Сверху фарфорового элемента закрепляется чугунный колпак. Опорные изоляторы на напряжения 6 и 10 кВ имеют по одному верхнему ребру и отличаются друг от друга только высотой.

В 1935–1936 гг. изоляторная лаборатория ВЭИ разрабатывает конструкции линейных противогрязевых изоляторов, которые нашли широкое применение [10.21].

Развитие электрификации СССР предъявило повышенные требования к объему выпуска изоляторов и улучшению их качества, что потребовало пересмотра и усовершенствования основных технологических операций. Важное значение в этом отношении имели разработка и внедрение в электрокерамическое производство в 1939–1940 гг. вакуум-пресса для переработки сырой фарфоровой массы с целью удаления из нее газовых включений и равномерного распределения влаги.

Внедрение вакуум-пресса в изоляторное производство позволило исключить трудоемкий процесс — проточку заготовок керамической массы, которая производилась вручную.

Рис. 10.4. Опорные изоляторы
а — изолятор на 6 кВ с круглым фланцем; б — изолятор на 35 кВ с овальным фланцем; в — малогабаритный изолятор на 6 кВ с внутренней заделкой арматуры; 1 — чугунный колпак; 2 — фарфоровый элемент; 3 — фланец; 4 — колпачок; 5 — картонные прокладки; 6 и 7 — арматура для внутренней заделки в изоляторах 

Первыми отечественными изоляторами, изготовляемыми методом протяжки при помощи вакуум-пресса, были модернизированные проходные изоляторы на напряжения 3, 6 и 10 кВ. При этом токоведущий стержень круглого сечения с резьбой на двух концах был заменен плоской шиной, закрепление на цементе двух чугунных колпачков было исключено, что сократило цикл армирования изоляторов. Проходные изоляторы описанной конструкции широко применяются в промышленности начиная с 1940 г.

Для разработки новых электрокерамических материалов и новой технологии и проектирования новых заводов в 1938–1939 гг. в Москве был организован Государственный исследовательский электрокерамический институт (ГИЭКИ).

Этот институт во время войны в 1941 г. был эвакуирован на Урал, где его немногочисленные сотрудники провели ряд важных работ по исследованию и применению уральского сырья в изоляторном производстве, что помогло развернуть работу по производству изоляторов на организованном заводе «Урализолятор» (г. Камышлов).

В 1939–1941 гг. ВЭИ совместно с заводом «Изолятор» разрабатывает маслонаполненный ввод на напряжение 400 кВ для трансформаторов Куйбышевской ГЭС. Эта работа была прервана начавшейся войной.

Дальнейшие интенсификация и совершенствование изоляторного производства развиваются по линии механизации и автоматизации процессов, внедрения высокопроизводительных станков-автоматов и перевода серийного производства на поточный метод.

Бурное развитие изоляторной промышленности происходит в послевоенный период. Осваивается производство линейных изоляторов с гарантированной прочностью 1?105 и 1,57?105 Н. Изоляторная промышленность осваивает выпуск новых типов изоляторов на напряжение 330, 400 и 500 кВ. В 1949 г. начинаются разработки и освоение производства высоковольтных вводов с бумажно-масляной изоляцией, позволившей значительно снизить их массу. В 1959–1960 гг. выпускаются вводы на напряжения 110, 150, 220, 330, 400 и 500 кВ для трансформаторов, установленных на Каховской ГЭС, линиях электропередачи Волгоград — Москва, Волгоград — Урал.

Таким образом, фарфор имеет чрезвычайно широкое применение в электротехнике. Однако он имеет и недостаток — большие диэлектрические потери, сильно возрастающие при повышении температуры, что затрудняет применение фарфора при высоких частотах и температурах.

Развитие радиоэлектронной промышленности вызвало необходимость в новых керамических материалах, обладающих повышенными свойствами. Развитие этих материалов сначала шло по линии усовершенствования фарфора, а затем по линии получения керамических материалов другого состава.

В 1937–1938 гг. Н.П. Богородицкий провел исследования электрокерамических материалов, способных работать в электрических полях высокой частоты, которые имели большое значение для производства радиофарфора и ультрафарфора. Из этих материалов на заводе «Пролетарий» начали изготовляться многие конструкции высокочастотных установочных изделий и радиоизоляторов.

Следует отметить разработку технологии получения отечественного стеатита в 1944–1945 гг. в ГИЭКИ и освоение производства стеатитовых изоляторов, отличающихся от фарфоровых лучшими механическими и диэлектрическими параметрами. Благодаря малым диэлектрическим потерям этот материал нашел широкое применение в высокочастотных установках.

Широкое использование в специальной и бытовой технике высокочастотных устройств приводит к разработке и освоению выпуска высоковольтных конденсаторов для высокочастотных генераторов. В 1945–1946 гг. впервые в СССР разрабатывается и начинается промышленный выпуск малогабаритных керамических конденсаторов типа ТБК и КВИ, которые позволили заменить слюдяные конденсаторы и значительно снизить стоимостные показатели СВЧ-генераторов. Применение керамических конденсаторов типов ТГК-1К, ТГК-1А, ТГК-2,5 и ПТК-2,5, разработанных в 1952 г., также позволило снизить стоимость генераторов примерно в 2 раза и уменьшить их габариты.

В этот же период расширялись и реконструировались действующие изоляторные заводы, строились новые предприятия. Изоляторный завод в г. Камышлове, Южно-Уральский арматурно-изоляторный завод, заводы «Электроконденсатор», «Комиэлектростеатит», Славянский изоляторный завод. В 60-х годах была пущена первая очередь Пермского завода высоковольтных изоляторов, построены завод в г. Великие Луки и завод «Электрофарфор» в г. Бендеры. Мощность отдельных заводов достигала 10–15 тыс. т электрофарфора в год. Заводы, как правило, специализировались на выпуске отдельных видов изоляторов. Производство линейных высоковольтных (подвесных и штыревых) изоляторов было сосредоточено на заводах им. Артема и Южно-Уральском, высоковольтных керамических конденсаторов — на заводе «Электроконденсатор». Завод «Пролетарий» выпускал в основном аппаратные изоляторы и вилитовые разрядники.

Промышленностью в 50–60-е годы был освоен выпуск изоляторов различного назначения из фарфора, стеатита, кордиерита, титановых и других материалов. В производстве стали использовать глиноземистый и тонкодисперсный высококварцевый фарфор. Механическая прочность изоляторов из этих материалов соответствовала мировым стандартам. В короткое время в промышленности освоены более совершенные конструкции проходных, подвесных и опорных изоляторов. Заводы отрасли перешли на производство подвесных изоляторов для подвески тяжелых проводов на линиях электропередачи напряжением 500 кВ, линейных подвесных высоковольтных изоляторов из стекла. В 1964 г. изготовлены вводы постоянного тока на напряжения 200 и 400 кВ для линии электропередачи Волгоград — Донбасс.

В 60–70-х годах разработаны вводы с твердой изоляцией на напряжения 110 и 220 кВ, что позволило уменьшить их габариты и массу; конструкции вводов с твердой изоляцией для трансформаторов на напряжения 330, 500 и 750 кВ; керамические конденсаторы для наружной и внутренней установки с номинальными емкостями от 300 до 4500 пФ на напряжения до 350 кВ; малогабаритные керамические конденсаторы КСК-3–5 емкостью 6000 пФ на напряжение 3 кВ. По своим характеристикам эти конденсаторы превзошли лучшие зарубежные образцы [10.21].

Ленинградский филиал ГИЭКИ разработал новую серию магнитно-вентильных разрядников на напряжения 3–10 и 110–500 кВ с высокими эксплуатационными характеристиками. Здесь же разработана новая серия высокопрочных опорных изоляторов с механической прочностью до 2?104 Н?кг, позволяющая в 2–3 раза снизить массу разъединителей на напряжения 220, 330, 500 и 750 кВ.

В настоящее время продолжают совершенствоваться конструкции фарфоровых изоляторов и повышается их рабочее напряжение. Так, например, заводом «Изолятор» в последнее время разработаны вводы на очень высокие напряжения (500, 750 кВ и выше).


10.4. МАГНИТНЫЕ МАТЕРИАЛЫ В ЭЛЕКТРОПРОМЫШЛЕННОСТИ

История современных магнитных материалов начинается с одного из практических применений переменного электрического тока — изобретения телефона. При увеличении дальности телефонной связи изучались возможности ограничения увеличивающегося затухания телефонных токов. В 1893 г. О. Хевисайд (Англия) предложил использовать индуктивные катушки с сердечниками из мелких стальных опилок и воска, которые должны были ограничить растущее затухание на телефонной линии. К 1900 г. сформулировались основные требования к магнитомягким материалам для техники связи: малые потери, малое искажение передаваемых токов и напряжений, высокая магнитная проницаемость.

С появлением асинхронных машин и развитием однофазной и многофазной систем переменного тока требования к магнитным материалам еще более возросли. От них стали требовать больших значений магнитной индукции насыщения, малых потерь энергии на гистерезис и вихревые токи и меньшего старения, чем у использовавшейся в то время низкоуглеродистой стали.

Первым материалом с высокой магнитной проницаемостью было железо, которое в зависимости от получаемой в то время чистоты имело начальную проницаемость 200–300. Около 1900 г. был достигнут значительный прогресс в разработке листовых электротехнических материалов, в которых благодаря присадке кремния удалось существенно снизить потери на гистерезис и вихревые токи в области высоких магнитных индукций. Однако при работе на начальном участке кривой намагничивания эти материалы дают лишь некоторое снижение потерь энергии на вихревые токи, в то время как наиболее важный в данном случае параметр — начальная магнитная проницаемость остается практически на том же самом низком уровне [10.22].

До 1917 г. в России магнитные материалы в основном ввозились из-за границы, и только в 1915 г. на Верх-Исетском металлургическом заводе (ВИМЗ) был организован выпуск так называемой динамной стали (сталь, содержащая до 3% Si). По своим свойствам динамная сталь ВИМЗ была не хуже соответствующих марок заграничных сталей (Германия). Но по количеству и номенклатуре полностью удовлетворить потребности промышленности ВИМЗ не имел возможности.

Бурное развитие промышленности в годы индустриализации потребовало расширения отечественного производства магнитных материалов, в первую очередь листовых электротехнических сталей. В этот период ряд уральских заводов освоил изготовление стали в объеме, полностью удовлетворявшем потребности народного хозяйства.

Параллельно с ростом производства магнитных материалов в России ведутся работы по их исследованию. Большой вклад в развитие исследований в области теории магнетизма внесли А.Г. Столетов, Б.Л. Розинг и В.К. Аркадьев.

Впервые в 1892 г. Б.Л. Розинг сделал предположение о существовании внутренних сил, помогающих намагничиванию ферромагнетика. Эти силы были названы молекулярным полем. Представления о молекулярном поле, которое также независимо от Б.Л. Розинга было введено П. Вейссом (Франция), позволили объяснить многие макроскопические магнитные явления. Метод молекулярного поля широко используется в науке и в настоящее время. В 1927 г. опыты советского физика Я.Г. Дорфмана показали, что молекулярное поле имеет немагнитную природу. Решение вопроса о природе молекулярного поля, приводящего к возникновению самопроизвольной намагниченности, было найдено в 1928 г. благодаря работам советского ученого Я.И. Френкеля. Согласно теории ферромагнетизма, предложенной Я.И. Френкелем и В. Гайзенбергом, решающую роль в создании спонтанной намагниченности играют силы обменного взаимодействия, которые носят чисто квантовый характер, имеют электростатическую природу и действуют на определенном расстоянии. Таким образом, в большой области кристалла магнитные моменты соседних атомов ориентируются параллельно. Эти области получили название доменов.

Теоретическое обоснование модели доменной структуры и разработка квантово-механической теории магнетизма являются заслугой Л.Д. Ландау и Е.М. Лифшица.

Огромное значение в исследовании магнитных материалов имели работы В.К. Аркадьева и его школы [10.23]. Еще в 1913 г. В.К. Аркадьев создает учение о магнитодинамике, которое имело большой научный интерес в связи с изучением атомных и ядерных процессов. Под руководством В.К. Аркадьева были решены вопросы, связанные с магнитной проницаемостью, позволившие исследовать характеристики магнитных материалов, проводить расчет магнитных цепей и создать основы магнитной спектроскопии, имеющей широкое применение в современной радиоэлектронике.

Фундаментальные основы технического намагничивания были исследованы в работах советских ученых, и в первую очередь Н.С. Акулова [10.25], который в 1928 г. открыл закон магнитной анизотропии ферромагнитных кристаллов, при помощи которого он впервые дал теоретическое объяснение кривых намагничивания, кривых магнитострикции, термо-, гальвано- и магнитоупругих явлений. Закон анизотропии позволил понять роль текстуры в ферромагнетиках и на годы определил развитие науки и техники магнитных материалов. Н.С. Акулов показал, что обменные силы, ответственные за самопроизвольную намагниченность, не объясняют природу магнитной анизотропии, кривых намагничивания и гистерезиса. Магнитная анизотропия по Н.С. Акулову объясняется магнитным спин-орбитальным взаимодействием. Магнитокристаллическая анизотропия и магнитострикция являются свойствами, от которых в значительной степени зависит кривая намагничивания. Согласно правилу Акулова — Кондорского высокую магнитную проницаемость могут иметь ферромагнетики, у которых константы анизотропии и магнитострикции малы [10.24].

Дальнейшее развитие теория ферромагнетизма нашла в работах Е.И. Кондорского [10.26]. В частности, он впервые показал зависимость коэрцитивной силы от формы частиц ферромагнитного тела, разработал теорию зародышей, теории обратимых процессов смещения и др.

Работы С.В. Вонсовского [10.29] позволили уточнить критерии ферромагнетизма, теории высокой коэрцитивной силы, квантово-механической теории магнитострикции и др.

10.4.1. МАГНИТОМЯГКИЕ МАТЕРИАЛЫ

На протяжении многих лет для массивных магнитопроводов применялась конструкционная низкоуглеродистая сталь марки Ст10 с содержанием углерода 0,1%. Требования увеличения магнитной индукции и снижения коэрцитивной силы привели к разработке технически чистого железа, соответствующего марке «армко» в США, Швеции и других странах [10.28, 10.32].

Промышленные опыты по производству железа «армко» были проведены на заводе им. А.А. Андреева в конце 1932 г. Развитию производства этого железа в значительной степени способствовали исследования, проведенные в 1933 г. на московском заводе «Серп и молот», который с тех пор является основным поставщиком высококачественного технически чистого железа.

Впервые в СССР технология производства специальной низкоуглеродистой стали под маркой ВИТ-железа была разработана в начале 30-х годов. По своему составу ВИТ-железо близко к железу «армко», но отличается от последнего большим содержанием кремния и имеет более низкие магнитные свойства.

Фундаментальные исследования кремнистых сталей связаны с именем английского инженера Р.А. Гадфилда, подробное сообщение об этих работах опубликовано в 1902 г. [10.22]. Оптимальным является легирование железа до 6% Si. Однако присадки кремния снижают магнитную индукцию в средних и сильных магнитных полях и повышают хрупкость железа.

На протяжении десятилетий работы ученых и металлургов были направлены на совершенствование технологии плавки, горячей прокатки и термообработки листовых электротехнических сталей с целью получения сплавов, максимально свободных от вредных примесей, неметаллических включений и обладающих зернами максимального размера. В результате за период с 1931 по 1958 г. удалось почти вдвое снизить гистерезисные потери энергии в горячекатаной трансформаторной стали.

Задача освоения и внедрения в производство трансформаторной стали ставится перед ВИМЗ. Работа ведется под руководством С.С. Штейнберга, и с конца 1928 г. начинается выпуск этой стали. В первые годы сталь имела невысокие магнитные свойства, но в результате совместной работы коллективов ВИМЗ, ВЭИ и Ленинградского института металлов качество стали улучшалось из года в год, ив 1941 г. удается выпустить сталь на уровне зарубежных аналогов.

Во время и после Великой Отечественной войны продолжается разработка и внедрение новых марок электротехнических сталей. Появляются стали с улучшенными свойствами, предназначенные для работы в слабых магнитных полях и на повышенных частотах.

В 1935 г. Н.Р. Госсом (Германия) разработана технология холодной прокатки и термообработки так называемой малотекстурованной динамной стали, позволяющая получить исключительно высокие магнитные свойства вдоль направления прокатки [10.28, 10.32, 10.33].

В результате совместной работы коллективов ВИМЗ и Нижнетагильского завода в 1937 г. выпускается сталь ХВП (холоднокатаная с высокой проницаемостью, имеющая свойства, аналогичные свойствам заграничной стали «гайперсил» [10.34].

Принципиально новой явилась технология изготовления анизотропной трансформаторной стали с ребровой текстурой. Железо и сплавы железа с кремнием имеют объемно центрированную кубическую решетку, оси легкого намагничивания которой совпадают с ребрами куба. В обычной горячекатаной стали в плоскости листов зерна расположены хаотически, в результате чего получаются некоторые усредненные магнитные свойства, примерно одинаковые во всех направлениях. При изготовлении холоднокатаной стали с содержанием кремния 2,8–3,2% холодная прокатка чередуется с промежуточными отжигами, после чего проводят рекристализационный отжиг. При определенных режимах термической обработки и проката удается получить направленное расположение кристаллитов (текстуру). В этом случае в плоскости листа лежит плоскость грани куба (110) и большинство кристаллитов имеет ребро куба вдоль направления прокатки (отсюда «ребровая текстура»). Сталь с ребровой текстурой обладает лучшими магнитными свойствами вдоль листа, худшими под углом 55° к направлению прокатки и некоторыми промежуточными свойствами во всех остальных направлениях. Сталь с ребровой текстурой освоена в нашей стране и выпускается в промышленном масштабе с 1949 г. Анизотропия потерь энергии отечественной стали с ребровой текстурой (отношение потерь под углом 90° к потерям под углом 0) равна примерно 2, тогда как соответствующее отношение удельных магнитодвижущих сил — от 3 до 8. Поэтому при конструировании магнитопроводов необходимо, чтобы направление магнитного потока возможно ближе совпадало с направлением прокатки. Для маломощных трансформаторов эта задача успешно решена созданием витых ленточных магнитопроводов. Таким образом удалось полностью использовать высокую магнитную проницаемость стали, резко повысить рабочую магнитную индукцию, уменьшить массу и габариты трансформаторов почти на 30%.

Большой интерес представляет трансформаторная сталь с кубической текстурой. Определенные технологические режимы разливки, холодной прокатки и термообработки позволяют получить рулонную сталь, в которой в плоскости прокатки лежит плоскость куба. Ребра куба направлены как вдоль, так и поперек прокатки. Таким образом, в листах стали имеется не одно, а два направления легкого намагничивания: вдоль и под углом 90° к направлению прокатки. В каждом из них электромагнитные свойства стали с кубической текстурой аналогичны свойствам стали с ребровой текстурой в направлении прокатки. Сталь с кубической текстурой успешно выпускается и отечественной промышленностью.

В табл. 10.1 приведены параметры некоторых промышленных магнитомягких материалов.

Таблица 10.1. Некоторые параметры промышленных магнитомягких материалов
Материал Начальная магнитная проницаемость ?нач Максимальная магнитная проницаемость ?max Коэрцитивная сила НC, А/м Индукция насыщения BS, Тл Удельное электрическое сопротивление ?, Ом?м
Технически чистое железо 250 3500–4500 40–100 2,18 10—7
Электротехническая сталь 200–600 3000–8000 10–6 5 1,89 (6–2,5)?10—7
Пермаллой:
низконикелевые (примерно 40–50%Ni) 2000–4000 15 000–60 000 5–32 1,3–1,6 (2,5–6)?10—7
высоконикелевые (примерно 79% Ni) 15 000–100 000 70 000–300 000 0,65–4 0,7–0,75 (1,6–8,5)?10—7
Ферриты:
никель-цинковые 10–2000* 40–7000 1700–8 0,2–0,44 108–10
марганец-цинковые 700–20 000[7] 1800–35 000 28–0,25 0,35–0,40 20–10—3
Магнитодиэлектрики на основе:
альсифера 20–65 100–500 0,2–0,5
карбонильного железа 5–15
молибденового пермаллоя 60–250 0,6–0,7

В настоящее время широким фронтом продолжаются исследования магнитных материалов с целью достижения экстремальных характеристик. Направлениями повышения качества этих материалов являются уменьшение вредных примесей в стали, разработка методов выплавки стали при малых скоростях кристаллизации, разработка оптимальных режимов термической обработки, применение термомагнитной обработки, уменьшение констант магнитной анизотропии и магнитострикции, разработка технологии получения электротехнических сталей с повышенным содержанием кремния, применение методов порошковой металлургии и другие способы.

Для большинства элементов устройств автоматического регулирования требуются магнитные материалы с высокими значениями магнитной проницаемости при форме петли гистерезиса, близкой к прямоугольной. Отечественная металлургия выпускает две группы таких сплавов: железоникелевый сплав с 50% никеля и 50% железа, известный под маркой 50НП, и железоникелевые и железоникелькобальтовые, легированные в некоторых случаях молибденом, медью, хромом и кремнием.

Исследование железоникелевых сплавов было начато в 1913 г. Г. Элменом (Канада). К этой работе его побудило желание найти сплав с высокой магнитной индукцией. Он хотел обойтись без дефицитного кобальта, влияние которого на увеличение магнитной индукции насыщения было открыто им же. Он установил, что сплавы с содержанием никеля более 30% (от 36 до 80%) дают возможность резко повысить как начальную, так и максимальную магнитные проницаемости, но одновременно снижается намагниченность насыщения по сравнению с чистым железом. Бинарные железоникелевые сплавы, которые были названы пермаллоями, с высоким содержанием никеля отличаются сравнительно низким удельным электрическим сопротивлением. Поэтому уже в самом начале работ над пермаллоями были сделаны попытки повысить удельное сопротивление введением дополнительных легирующих присадок — молибдена и хрома. К этому периоду относится и первое применение пермаллоя в технике связи при конструировании телеграфного реле.

Систематическое изучение тройных сплавов (железо-никель-медь) было предпринято О. Ауверсом и X. Нейманом (Германия). В 1935 г. они установили, что если в исходном сплаве, содержащем от 70 до 80% никеля (остальное железо), уменьшать содержание никеля вплоть до 50% и вводить в сплав до 40% меди, то можно

получить целый ряд сплавов, характеризующихся максимумом начальной магнитной проницаемости.

Другой, четырехкомпонентный, сплав на основе хромпермаллоя, известный под названием мюметалл (75% никеля, 18% железа, 5% меди и 2% хрома), который долго являлся материалом с наибольшей магнитной проницаемостью, был разработан Н. Рандаллом в 1937 г. в Германии. С этого времени начинается интенсивная и очень успешная работа над улучшением качества металлических магнитных материалов.

Для высокочастотных цепей в сердечниках долгое время применялся так называемый феррокарт. Это было торговое название материала, изготовленного из прессованных слоев бумаги и слоев мелкого железного порошка с лаком в качестве связки. В 1928 г. Д. Митташ (Германия) из пентакарбонила железа изготовил железный порошок с размером частиц от 1 до 10 мк, который стал использоваться для изготовления колец и стержней карбонильных сердечников. В 1930 г. В. Шаселтоном и Г. Барбером в Англии были изготовлены сердечники из порошка пермаллоя, превосходившие по свойствам карбонильные сердечники. Такой материал был получен в 1935 г. в Японии X. Масумото и известен под названием альсифер. Он представляет собой сплав на основе железа, легированный кремнием и алюминием. Современные высокие требования электротехники могут быть выполнены благодаря новым видам магнитных материалов. Систематические экспериментальные исследования металлических материалов, начатые 30–40 лет назад, почти исчерпали свои возможности. Из простых, двойных и более сложных сплавов были использованы лишь самые лучшие. Совершенствовались технологические процессы: были применены вакуумные плавки и отжиг. Новые свойства материалы получили при термомагнитной обработке, действие которой известно со времени, когда отыскивали средства увеличения магнитной индукции насыщения кремнистой стали.

Следующий этап был связан с разработкой в 1947 г. Р. Бозортом (США) [10.28] новой технологии термообработки пермаллоев, а именно: были введены отжиг при температуре 1200–1300 °С в среде чистого водорода и длительный отпуск при температуре 400–550 °С. После подобной обработки одной из промышленных марок пермаллоя — так называемого супермаллоя (79% никеля, 16% железа, 5% молибдена) удается получить начальную проницаемость более 100 тыс. В 1958 г. Ф. Ассмус (Германия) доказал, что эффект удаления примесей в процессе высокотемпературного отжига и последующего отпуска имеет место не только в супермаллое и что таким способом достигается очень высокая магнитная проницаемость в целой группе тройных сплавов, например в мюметалле и сплаве 1040.

Дальнейшие исследования привели к получению двойных сплавов алюминий-железо, к которым относятся, например, альфенол (16% алюминия) и терменол (16% алюминия, 3% молибдена), которые по магнитным свойствам не уступают низконикелевым пермаллоям. Альфенол удается изготавливать в виде лент толщиной до 0,1 мм, что позволяет использовать его в головках для звукозаписи. Отечественный альфенол марок 12Ю с магнитной проницаемостью ?r = 1000 и 12ВИ с ?r = 10 000 характеризуется высокой прочностью, износоустойчивостью и стойкостью к коррозии, что позволяет изготовлять изделия с высокой чистотой обработки поверхности.

10.4.2. АМОРФНЫЕ МАГНИТОМЯГКИЕ МАТЕРИАЛЫ (АММ)

Это новая группа магнитомягких материалов с перспективным сочетанием высоких магнитных, электрических и механических свойств. Упорядоченное расположение атомов в этих материалах существует только в ближнем порядке. Такое аморфное состояние формируется при высокой скорости охлаждения жидкого расплава металла или сплава, частицы при этом не успевают образовать кристаллическую решетку. На практике наиболее широко применяют метод быстрой закалки. Процесс производства АММ дешевле, чем традиционных листовых магнитомягких металлов (МММ).

Металлические АММ содержат 75–85% переходных металлов (железо, кобальт, никель), сплавленных с 15–25% металлоида — бора, углерода, кремния, фосфора, использующихся в качестве стеклообразующих. Дополнительно АММ легируются хромом, танталом, ванадием, марганцем и др. По магнитным свойствам АММ не уступают электротехническим сталям и пермаллоям. Удельное электрическое сопротивление АММ 1,25–1,8 мкОм?м. Магнитные потери в АММ для переменных полей высоких частот (до 100 кГц) ниже, чем потери в электротехнических сталях. Основным разработчиком АММ в России являлся ЦНИИчермет. В настоящее время в России налажено производство АММ различных марок.

10.4.3. ФЕРРИМАГНИТНЫЕ МАТЕРИАЛЫ

В настоящее время большое внимание уделяется ферритам. Ферриты ведут свое происхождение от магнетита — естественного постоянного магнита, известного на протяжении всей истории человечества. Природный минерал — феррит железа, или магнетит Fe3O4, был давно известен как один из магнитных материалов. Учитывая низкую удельную электрическую проводимость магнетита (100 Ом?см). С. Гильберт (Германия) уже в 1909 г. предложил использовать его в высокочастотных магнитных цепях. Однако из-за плохих магнитных свойств, и прежде всего из-за низкой магнитной проницаемости, ферриты железа не нашли практического применения; к тому же сама техника высоких частот делала в те годы первые шаги. Лишь после интенсивных исследований, начатых в Голландии в 1933 г., удалось существенно улучшить характеристики ферритов и организовать их широкое внедрение в технику.

В 1936 г. научные исследования в этом направлении начала лаборатория фирмы «Филипс». К концу второй мировой войны благодаря фундаментальным исследованиям Я. Сноека в Голландии был разработан ряд синтетических магнитомягких ферритов с начальной магнитной проницаемостью 103 [10.27].

В СССР пионерами разработки ферритов являлись коллективы ученых, возглавляемые ГА. Смоленским, Н.Н. Шольц, К.А. Пискаревым, С.В. Вонсовским, К.М. Поливановым, С.А. Медведевым, К.П. Беловым, Е.И. Кондорским, РВ. Телесниным, Я.С. Шуром, Т.М. Перекалиной, И.И. Ямзиным, Л.И. Рабкиным, А.И. Образцовым и многими другими [10.30, 10.31,10.33].

Для получения высокой магнитной проницаемости ферритов, относящихся к группе поликристаллических материалов с кубической гранецентрированной решеткой, необходимо стремиться к уменьшению внутриструктурных напряжений и кристаллической анизотропии. Другими словами, магнитострикция и константа кристаллографической анизотропии должны быть близкими к нулевому значению. Исследованиями было установлено, что если образовать твердый кристаллический раствор оксида железа Fe2O3 с немагнитной присадкой, то точку Кюри можно сместить в область, близкую к комнатным температурам, и таким образом резко повысить магнитную проницаемость в рабочем диапазоне температур. В качестве немагнитного компонента наиболее пригодным оказался оксид цинка, так как феррит цинка кристаллизуется не в обращенной магнитной форме, а в форме нормальной немагнитной шпинели. В последующие годы была разработана большая группа магнито-мягких ферритов для различных диапазонов частот путем присадки цинка и никеля или цинка и марганца. По сравнению с никель-цинковыми марганец-цинковые ферриты обладают более высокой магнитной проницаемостью и намагниченностью насыщения. Наряду с этим тангенс угла диэлектрических потерь возрастает быстрее у марганец-цинковых ферритов начиная с частоты около 1 МГц; причина этого явления — смещение в сторону более низких частот гиромагнитной граничной частоты, увеличение размеров зерен структуры и уменьшение удельного электрического сопротивления материала. Поэтому в катушках высокой добротности марганец-цинковые ферриты применяют только для работы на частоте до 2 МГц, а для работы на частотах до 300 МГц сердечники изготовляют из никель-цинковых ферритов, имеющих также кубическую поликристаллическую структуру, но более низкую магнитную проницаемость.

Редкоземельные ферриты со структурой граната заняли в технике столь же важное место, как и ферриты со структурой шпинели. Формула гранатов может быть записана следующим образом: Me3Fe5O12, где Me обозначает ион редкоземельного металла. Изучение редкоземельных гранатов было затруднено тем, что их структуру относили к типу искаженного перовскита. В 50-х годах X. Форестье и Г. Гийо-Гийен (Франция) изготовили несколько соединений класса Fe2O3Me2O3, где Me обозначает лантан, празеодим, неодим, самарий, эрбий, иттрий, гадолиний, тулий, диспрозий и иттербий. Они обнаружили, что намагниченность насыщения этих соединений несколько ниже, чем намагниченность насыщения никелевого феррита, и что существует две температуры Кюри — выше 400 °С и около 300 °С, в которых намагниченность принимает нулевое значение. Одна из этих «точек Кюри» представляет собой температуру компенсации, характерную для некоторых ферримагнитных гранатов. Г. Гийо считал, что этот материал обладает кубической структурой типа перовскита, и установил соответствие между температурами Кюри и диаметрами металлических ионов. В 1954 г. Р. Потенэ и X. Форестье (Франция) опубликовали дополнительные данные о температурных зависимостях намагниченности для ферритов гадолиния, диспрозия и эрбия. Е.Ф. Берто и Д. Форра (Франция) в 1956 г. рассмотрели подробнее систему Fe2O3Me2O3 и предположили наличие новой структуры для этого класса материалов. Эта структура состоит из кубических элементарных ячеек, содержащих восемь формульных единиц 5Ре2О33Ме2О3.

Эта структура оказалась изоморфной с классическим природным гранатом Ca3Fe2Si3O12. Л. Неель, Ф. Берто, Д. Форра и Р. Потенэ (Франция) назвали эту новую группу ферримагнитных материалов редкоземельными гранатами.

В 1958–1970 гг. Д. Геллер и А. Джилео (США), А.Г. Титова, В.А. Тимофеева и Н.Д. Урсуляк (СССР) продолжили изучение структуры граната и ферримагнитных свойств иттриевого граната. Это соединение оказалось наиболее важным представителем данного класса веществ. Такие материалы оказались незаменимыми в сверхвысокочастотных устройствах.

10.4.4. МАГНИТОТВЕРДЫЕ МАТЕРИАЛЫ

До 1910 г. постоянные магниты изготовлялись из углеродистой стали, так как эта сталь обладает относительно небольшим значением коэрцитивной силы Нс и большим значением индукции Вr, отношение длины магнитов к поперечному сечению было большим. Чтобы уменьшить рассеяние, магниты выполнялись в виде подковы, которая и стала условным обозначением постоянного магнита. Наибольшее значение магнитной энергии для таких материалов составляло 1,6 кДж/м3.

Возможность повышения магнитной энергии была показана еще в 1885 г. при исследовании вольфрамовой стали. В период первой мировой войны нашли применение хромистые стали (до 6% Cr), в которых энергия достигала 2,5 кДж/м3.

В 1917 г. находят, что добавки в сталь до 36% кобальта приводят к значительному повышению энергии — до 8 кДж/м3. Кобальтовые стали в ограниченном объеме изготовляются и применяются в настоящее время.

В 1926–1927 гг. на заводе «Красный путиловец» исследуются свойства и технология производства вольфрамовой стали. В 1926 г. на Ижевском заводе отливаются слитки нескольких марок кобальтовой стали для постоянных магнитов. Исследование кобальтовых сталей проводилось в Горной академии и ВЭИ.

В 1934 г. кобальтовую сталь, которая имеет коэрцитивную силу в 2,5–3,5 раза выше, чем вольфрам истая, начинает выпускать завод «Электросталь». Сталь находит широкое применение в приборостроении.

Высокие механические параметры стали позволяют изготовлять магниты достаточно тонкими и сложной формы. Во время второй мировой войны была разработана магнитная сталь МТ, без дефицитных добавок кобальта и никеля с добавками алюминия и углерода, обладающая высокими магнитными свойствами (магнитная энергия до 3,6 кДж/м3 и коэрцитивная сила больше 16 кА/м).

Начиная с середины 30-х годов среди лабораторий, занимающихся исследованием магнитных материалов в СССР, на первое место выдвигается магнитная лаборатория (МЛ) ВЭИ, заслуга которой состоит не только в исследовании материалов, но и в их внедрении в производство. Большую работу МЛ ВЭИ проделала в области исследования сплавов для постоянных магнитов.

В 1931 г. Т. Мишимой (Япония) и В. Кестером (Германия) были созданы сплавы для постоянных магнитов, которые приобретают свои магнитные свойства в результате процессов дисперсионного твердения. Это сплавы типа Fe-Co-W, Fe-Co-Mo и Fe-Ni-A (прежнее название альни). Исследование этих сплавов в нашей стране началось в 1933 г. в МЛ ВЭИ, где были получены первые образцы, имеющие следующие параметры: Вr = 0,7?0,8 Тл и Нс = 34 кА/м.

В 1934 г. К. Хонда (Япония) разрабатываются сплавы Fe-Ni-Al-Co (альнико), которые наиболее подробно исследовались в различных вариантах составов. Значение магнитной энергии в этих сплавах, легированных медью, достигает 15,2 кДж/м3.

Магнитотвердые сплавы на основе системы железо-никель-алюминия позволили отечественной электротехнической промышленности освоить выпуск литых постоянных магнитов из сплавов альни для генераторов, не уступавших по свойствам зарубежным. Сплавы альни имеют меньшую остаточную магнитную индукцию, чем мартенситные стали, но значительно превосходят их по значению коэрцитивной силы и удельной магнитной энергии.

В истории исследований магнитных сплавов важное значение имеют работы Д.А. Оливера и Дж. Шедцена (Англия) по исследованию влияния магнитного поля в процессе охлаждения на свойства сплавов типа Fe-Ni-Al с повышенным содержанием кобальта, опубликованные в 1938 г. Благодаря их работам удалось довести магнитную энергию сплавов до 32 кДж/м3. Следующий шаг в области улучшения характеристик постоянных магнитов был сделан в 1948 г. при исследовании процессов направленной кристаллизации таких сплавов. Путем регулирования скорости охлаждения изделий удалось получить согласованную ориентацию по ребрам кубов кристаллитов, причем этот процесс усиливается при воздействии магнитного поля на образец. Методом направленной кристаллизации удается повысить остаточную магнитную индукцию до 1,3 Тл и магнитную энергию до 87,5 кДж/м3. Такие результаты в настоящее время достигаются только при специальном изготовлении магнитов. В промышленных условиях, которые обеспечивают частичную ориентацию кристаллов, магнитная энергия достигает не более 58 кДж/ м3. В ряде случаев необходимы материалы со специфическими механическими свойствами. Так, например, в производстве специальных измерительных приборов нужны постоянные магниты, изготовленные из тонколистового или пруткового сортамента; для роторов высокоскоростных машин требуются магниты с высокой прочностью на разрыв. Этим требованиям хорошо удовлетворяют исследованные в 1935 г. сплавы на основе Fe-Ni-Cu, которые имеют исключительно высокие магнитные свойства и способны подвергаться прокатке. В 1937 г. было найдено, что свойства этих сплавов существенно улучшаются, если подвергнуть их деформации в холодном состоянии. В 1940 г. был разработан сплав викалой — Fe-Co-V, по магнитным свойствам превосходящий тройные сплавы Fe-Ni-Cu, но несколько хуже поддающийся механической обработке.

В 1930 г. Н.Н. Разумовскому в СССР было выдано авторское свидетельство на способ улучшения свойств постоянных магнитов путем охлаждения их в магнитном поле. В 1944 г. А.С. Заимовскому, К.В. Нащокину и Л.М. Львовой удалось разработать сплав магнико (ЮНДК24), который превосходит альнико в 1,5–2 раза по остаточной магнитной индукции и в 3 раза по энергии. Появление анизотропных магнитов, или магнитов, имеющих магнитную текстуру, позволило уменьшить массу систем с постоянными магнитами и расширить область их применения. Высококоэрцитивные сплавы системы ЮНДК хрупки и обрабатываются только шлифованием или электроискровым методом. Поэтому постоянные магниты из этих сплавов изготовляются в основном фасонным литьем. Однако для небольших постоянных магнитов этот способ затруднителен. Для решения задачи были выбраны два пути: использование металлокерамической технологии и поиск деформируемых магнитотвердых материалов, из которых можно было бы изготовлять магниты резанием, штамповкой и точением. В табл. 10.2 приведены магнитные свойства сплавов ЮНДК.

Исследование и внедрение металлокерамических магнитов проведено ВНИИЭМ совместно с заводом «Электроконтакт». Отечественная промышленность освоила ряд деформируемых сплавов: викаллой, сплав на основе платины и др. Викаллой, выпускаемый в виде проволоки, обладает высокими магнитными свойствами и достаточной пластичностью, что позволяет легко получать тонкие цилиндрические магниты. Викаллой, изготовляемый в листах, имеет худшие магнитные свойства, но очень эффективен в производстве стрелок буссолей и компасов. Сплав на основе платины дорог и дефицитен, однако его коэрцитивная сила, магнитная энергия и пластичность настолько высоки, что магниты массой в доли грамма успешно применяются в приборостроении и в электрических наручных часах.

Объем производства литых постоянных магнитов из сплавов альни для изделий широкого потребления достигает нескольких тысяч тонн в год, на что затрачивается несколько сотен тонн дефицитного и дорогого никеля. Поэтому наряду с улучшением магнитных свойств сплавов системы ЮНДК проводились поиски дешевых и недефицитных магнитотвердых материалов.

Магнитотвердые материалы на основе соединений RCo, где R — редкоземельные ионы La, Pr, Nd, Sm и др., впервые разработаны в конце 60-х годов в СССР, США и Японии и в настоящее время по магнитным параметрам — коэрцитивной силе и максимальной магнитной энергии — намного превосходят все известные магнитотвердые материалы. Магниты из соединений RCo являются уникальными для применения в магнитных системах, где используется сила отталкивания. Магниты из материалов SmCo5 и (SmPr)Co5 широко используются в различных устройствах.

Таблица 10.2. Магнитные параметры сплавов (ГОСТ 17809–72)
Марка сплава Максимальная магнитная энергия Wmax, кДж/м3 HC, кА/м Остаточная индукция Вr, Тл Тип кристаллической структуры
Не менее
ЮНД4 3,6 40 0,50 Равноосная
ЮНД8 5,1 44 0,60
ЮНТС 4,0 58 0,43
ЮНДК 15 6,0 48 0,75
ЮНДК18 9,7 55 0,90
ЮНДК18С 14 44 1,10
ЮН13ДК24С 18 36 1,30
ЮН13ДК24 18 40 1,25
ЮН14ДК24 18 48 1,20
ЮН15ДК24 18 52 1,15
ЮН14ДК24Т2 15 60 1,10
ЮН13ДК25А 28 44 1,40 Столбчатая
ЮН14ДК25А 28 52 1,35
ЮН13ДК25БА 28 48 1,40
ЮН14ДК25БА 28 58 1,30
ЮН15ДК25БА 28 62 1,25
ЮНДК31ТЗБА 32 92 1,15
ЮНДК34Т5 14 92 0,75 Равноосная
ЮНДК35Т5Б 16 96 0,75
ЮНДК35Т5 18 110 0,75
ЮНДК35Т5БА 36 110 1,02 Столбчатая
ЮНДК35Т5АА 40 115 1,05 Монокристаллическая
ЮНДК38Т7 18 135 0,75 Равноосная
ЮНДК40Т8 18 145 0,70
ЮНДК40Т8АА 32 145 0,90 Монокристаллическая

Примечание. В обозначениях марок сплавов буквы означают: Б — ниобий; Д — медь; К — кобальт; Н — никель; С — кремний; Т — титан; Ю — алюминий; А — столбчатая кристаллическая структура; АА — монокристаллическая структура. Цифры указывают процентное содержание элемента.

Недостатком является высокая стоимость. Свойства некоторых промышленных магнитов из сплавов RCo5 приведены в табл. 10.3.

Таблица 10.3. Промышленные магниты из сплавов RCo5 (по ГОСТ 21559–76)
Марка сплава Химический состав, % (остальное Со) Br, Tл кА/м W кДж/м3
Sm Sm + Pr
КС37 36,0–38,5 0,77 540 55
КС37А 36,0–38,5 0,82 560 65
КСП37 36,0–38,5 0,85 520 65
КСП37А 36,0–38,5 0,90 500 73

Примечание. В обозначении марки сплава: К — кобальт; С — самарий; П — празеодим; А — улучшенная структура. 

В последние 40 лет большие успехи достигнуты в разработке магнитов на основе микропорошков железа, технология которых была разработана в СССР А.С. Эйсуровичем и А.Б. Альтманом, сплавов марганца с висмутом подробно исследованные С. Гийо (Франция), ферритов со структурой магнетоплюмбита Е. Гортер (Франция). Впервые подобные магниты, состоящие из оксидов железа и кобальта, были описаны в 1933 г. японцами X. Като и Т. Такай. В те же годы проводилась разработка постоянных магнитов на основе металлических сплавов типа Fe-Ni-Al; поэтому работы над оксидами металлов не привлекли интереса и на долгие годы были фактически заброшены. Лишь в 1952 г. фирма «Филипс» (Голландия) сообщила о первом техническом применении оксидных магнитов. Фирмой был предложен материал под названием ферроксдюр, состоящий из оксидов железа с барием и имеющий химическую формулу BaFe12O19.

Поиски ученых (С.А. Медведев и др.) завершились разработкой технологии серийного производства магнитов, прессованных из порошка бариевого феррита. Бариевые постоянные магниты обладают коэрцитивной силой 120–240 кА/м при остаточной магнитной индукции 0,2–0,38 Тл и магнитной энергии 3,2–3,4 кДж/м3. Благодаря дешевизне и простоте изготовления они находят все большее применение в изделиях широкого потребления: осветительных генераторах для велосипедов, громкоговорителях, дверных затворах, держателях и т.п.


10.5. КАБЕЛЬНЫЕ ИЗДЕЛИЯ

Производство проводов и кабелей уходит своими истоками в глубокую древность, когда люди научились выплавлять металлы, а затем начали изготовлять тонкую золотую и серебряную проволоку, используемую для различных ювелирных украшений и отделки одежды. Однако это производство оформилось в самостоятельную область техники только после открытия электричества и реализации его технических применений. В XIX в. начато использование изолированных проводников для передачи электричества на расстояние [10.35–10.39]: появляются первые кабели и воздушные линии связи. Существенный вклад в развитие мировой кабельной техники внес Э.В. Сименс (Германия), предложивший использовать для изоляции кабелей новый в то время материал — гуттаперчу и усовершенствовавший промышленную технологию производства кабелей и проводов. В результате возникли первые кабельные заводы в Европе.

Первый кабельный завод в России был основан в 1879 г. в Петербурге — завод кабелей, проводников и углей для электротехнических целей (ныне АО «Севкабель»).

В начале 80-х годов XIX в. в Петербурге возник еще один завод — «Русское производство изолированных проводов электричества», который сначала выпускал обмоточные и монтажные провода с изоляцией из натурального шелка и хлопчатобумажного волокна, а затем в 1890 г. начал, как и «Севкабель», производство силовых кабелей и кабелей связи с ленточной или проволочной стальной броней. В 90-е годы прошлого столетия в Петербурге возникли еще три кабельных завода, изготавливавшие как неизолированные, так и изолированные провода.

XIX в. характеризовался интенсивным развитием отечественной кабельной промышленности. В 1900 г. было организовано кабельное производство на Кольчугинском латунном и меднопрокатном заводе, выпускавшем силовые и телефонные кабели, провода, кабели и провода с резиновой изоляцией. Ныне это ТОО «Электрокабель» — один из основных кабельных заводов России. В это же время в г. Киеве в кустарных мастерских было начато производство кабельной продукции, а позднее был создан завод «Укркабель».

В 1905 г. московская фабрика «Владимир Алексеев», специализировавшаяся на выпуске золотоканительных изделий, начинает выпускать кабели и провода. На основе этого производства в 1909 г. открываются меднопрокатный и кабельный заводы товарищества «Владимир Алексеев» и «П. Вишняков и А. Шамшин», освоившие ряд новых для России кабельных изделий: эмалированных проводов, медных шин и полос, алюминиевых проводников. На базе этих заводов впоследствии был организован завод «Электропровод», явивший собой наглядный пример превращения ремесленного мануфактурного предприятия в капиталистическое предприятие с машинным производством. Первым председателем правления всех вышеперечисленных заводов являлся выдающийся русский театральный режиссер К.С. Станиславский (К.С. Алексеев), который много сделал для реорганизации кабельного производства. В результате завод выполнил целый ряд важных заказов таких, как изготовление в 1910 г. крупного морского кабеля для Кронштадтского порта, разработка и изготовление в 1912 г. 1200-парных телефонных кабелей. С 1913 г. завод изготовлял резину и кабельную продукцию с ее применением.

Московский завод «Москабель», в настоящее время АО «Москабельмет», официально ведет свое существование с 1885 г. Завод был основан инженером-технологом М.М. Подобедовым, который был не только высококвалифицированным специалистом, но и ярым приверженцем становления отечественной кабельной промышленности, независимой от иностранного капитала. Завод «Москабель» уже в то время выпускал кабельную продукцию широкой номенклатуры: неизолированные медные проводники; проводники, изолированные лентами и нитями; проводники с изоляцией из гуттаперчи и каучука; кабели силовые и связи, бронированные, в свинцовых оболочках.

Одновременно на заводе разрабатывалось и изготавливалось кабельное технологическое оборудование, например машины для бронирования плоской оцинкованной проволокой, крутильные машины, и технологическая оснастка, в частности, калибры.

В период гражданской войны производство кабельной продукции в России резко сократилось. Последующее интенсивное развитие кабельных заводов началось в 20-х годах, когда был принят и начал реализовываться план электрификации страны, известный как план ГОЭЛРО и предусматривающий резкое увеличение производства различной электротехнической продукции, в том числе кабельной.

Рис. 10.5. Трехжильный кабель с отдельно освинцованными жилами
1 — жила; 2 — изоляция; 3 — свинцовая оболочка; 4 — заполнение; 5 — проволочная броня

В эти годы на заводе «Севкабель» были разработаны под руководством С.М. Брагина и С.А. Яковлева трехжильные кабели с радиальным электрическим полем, известные как кабели с отдельно освинцованными жилами и бумажной изоляцией, пропитанной вязким маслоканифольным составом (рис. 10.5). В изоляции этих кабелей тангенциальная составляющая электрического поля практически отсутствует, и поэтому кабели могут надежно эксплуатироваться даже при напряжениях 20 и 35 кВ переменного тока. В это же время за рубежом были созданы кабели на аналогичные напряжения, но другой конструкции: три изолированные жилы имели электрические экраны из медных лент и были заключены в общую свинцовую оболочку. Такие кабели были названы Н-кабелями по имени их изобретателя немецкого инженера М. Хохштедтера. Интересно, что эти кабели выпускаются и в настоящее время, только наряду со свинцовой оболочкой используется и гофрированная алюминиевая.

Дальнейшее развитие электрификации страны привело к созданию заводом «Севкабель» первого в СССР маслонаполненного кабеля на напряжение 110 кВ. Первая промышленная кабельная линия с использованием кабеля этого типа была проложена под Ленинградом, а несколько позднее такие линии были проложены и под Москвой. Позднее завод «Севкабель» организовал также производство газонаполненных кабелей.

Крупным достижением завода явилось также создание агрегата для наложения бумагомассной изоляции на жилы телефонных кабелей, а затем и создание и организация производства подводных и морских кабелей.

В конце 20-х годов на заводе «Укркабель» был освоен выпуск гибких шланговых кабелей, применяемых на угольных шахтах, в первую очередь шахтах Донбасса. В 1938–1939 гг. выпуск шахтных кабелей был освоен также на московском заводе «Электропровод». Кроме того, на этом же заводе был начат выпуск рентгеновских кабелей с резиновой изоляцией.

В 1939 г. на заводе «Москабель» был пущен в эксплуатацию новый цех силовых кабелей, который позволил не только резко увеличить объем производства завода, но и завершить его реконструкцию и модернизацию. Этот цех был крупнейшим в Европе, а завод «Москабель» на долгие годы стал ведущим кабельным заводом СССР.

Во время Великой Отечественной войны кабельные заводы страны оперативно перестроили свою работу в соответствии с нуждами фронта. Был начат выпуск военно-полевых кабелей связи, медных поясков для снарядов, специальных типов радиочастотных кабелей и т.д. Однако временная оккупация Украины и блокада Ленинграда привели к прекращению производства на заводе «Укркабель» и его резкому сокращению на заводе «Севкабель». Это привело к перебазированию части кабельных производств в глубь страны. В результате количество кабельных заводов значительно увеличилось. На базе эвакуированных производств были созданы такие крупные заводы, как «Томкабель» (г. Томск), в настоящее время АО «Сибкабель»; «Ташкенткабель» (г. Ташкент) — ныне ГАО «Узкабель»; «Уралкабель» (г. Свердловск) — позднее АО «Уралкабель».

После окончания Великой Отечественной войны восстановление народного хозяйства СССР потребовало резкого увеличения объемов выпуска кабельной продукции. Так, уже в 1946–1950 гг. объем производства кабелей и проводов был увеличен в зависимости от конкретных типов продукции в 308 раз. Новые технические требования различных отраслей народного хозяйства к кабелям и проводам привели к необходимости организации в Москве Научно-исследовательского института кабельной промышленности (НИИКП), в дальнейшем научно-технический центр ВНИИКП (в настоящее время АО «ВНИИКП»). Этот центр был создан на базе Центральной кабельной лаборатории завода «Москабель», в свою очередь выросшей из научного подразделения Всесоюзного электротехнического института (ВЭИ). В дальнейшем большинство базовых конструкций кабелей и проводов, передовых технологических процессов, оборудования, материалов разрабатывалось в тесном содружестве ВНИИКП с кабельными заводами страны. В начале 50-х годов были созданы филиалы НИИКП в г. Томске, Ташкенте и Ленинграде, а затем и в г. Бердянске. В эти же годы было создано Особое конструкторское бюро кабельной промышленности (ОКБ КП), специализированное на разработке кабельной продукции специального назначения, в первую очередь для оборонного комплекса.

ВНИИКП совместно с кабельным заводом «Москабель» были созданы маслонаполненные кабели высокого давления на напряжения 110 — 220 кВ, разработкой которых руководили С.С. Городецкий и Д.В. Быков. Кабели такого типа размещаются в стальных трубопроводах,

заполненных вязким маслом под давлением 1,5 МПа. Каждая фаза имеет экран из медных лент, поверх которого располагаются проволоки скольжения, необходимые для затягивания кабелей в трубу. Эти кабели имеют высокую электрическую прочность как при переменном, так и при импульсном напряжении и обеспечивают высокую надежность линий благодаря наличию стального трубопровода. Транспортируются эти кабели на место прокладки во временных свинцовых оболочках, которые снимаются при затягивании кабеля в трубу.

В начале 70-х годов ВНИИКП совместно с заводами «Камкабель» (ныне АО «Камкабель») и «Москабель» (ныне АО «Москабельмет») разработали маслонаполненный кабель высокого давления (рис. 10.6) для Токтогульской, Усть-Илимской и Нижнекамской ГЭС.

Рис. 10.6. Кабель высокого давления на напряжение 500 кВ в стальном трубопроводе
1 — медная токопроводящая жила; 2 — экран из электропроводящей бумаги; 3 — бумажная изоляция; 4 — экран из электропроводящей бумаги и медных лент; 5 — проволоки скольжения; 6 — масло; 7 — стальная труба; 8 — антикоррозионные защитные покровы

В конце 60-х годов в мировой практике начали применяться силовые кабели с изоляцией из полиэтилена, а несколько позднее и из химически сшиваемого полиэтилена, приобретающего после вулканизации пространственную (сетчатую) структуру и способного противостоять значительным температурным перегрузкам. Такие кабели первоначально использовались для напряжений до 69 кВ, а затем были созданы первые кабели на напряжения 110 и 220 кВ. В отечественной практике кабели подобного класса были разработаны ВНИИКП и начали выпускаться на Опытном заводе института (сейчас АО «Экспокабель») в 1981 г. Производительность при производстве этих кабелей резко повышается по сравнению с производством маслонаполненных кабелей. Кроме того, кабели с изоляцией из сшитого полиэтилена более просты в монтаже, прокладке и эксплуатации, обладают высокой ре-монтоспособностью. Они отвечают экологическим требованиям, возросшим за последнее время. Так, в ряде стран считают, что в случае аварии на кабельных линиях, выполненных масло-наполненными кабелями, в связи с вытеканием масла наносится непоправимый вред окружающей среде. При исследованиях силовых кабелей с полиэтиленовой изоляцией было установлено, что в процессе эксплуатации в полимерной изоляции развиваются проводящие каналы — древовидные образования, известные под названием триингов. Поэтому ВНИИКП были разработаны математические модели оценки срока службы таких кабелей и предложены комплексные мероприятия, позволяющие осуществить производство таких кабелей, обеспечивающих необходимую надежность в эксплуатации.

В 90-е годы мировая кабельная техника пошла дальше: в Японии, Германии и Франции созданы первые кабели с полимерной изоляцией на напряжение 400–500 кВ и с их применением проложены экспериментальные кабельные линии.

С момента создания кабельной промышленности одним из основных типов ее продукции являлись провода для воздушных линий электропередач (ЛЭП). В настоящее время создана широкая гамма этих проводов, позволяющая решать задачи энергетики: для воздушных ЛЭП, проходящих в районах с коррозионно-активной атмосферой; для переходов через реки с большим расстоянием между опорами; для воздушных ЛЭП, рассчитанных на сверхвысокие напряжения. Основными изготовителями таких проводов являются акционерные общества, созданные на заводах «Кирскабель» (г. Кире) и «Иркутскка-бель» (г. Иркутск).

Одним из важнейших элементов инфраструктуры любой страны являются телекоммуникационные системы. Поэтому сразу после окончания Великой Отечественной войны развитию производства кабелей связи было уделено особое внимание. Важным этапом развития в этой области кабельной техники явилась разработка и организация производства кабелей дальней связи — коаксиальных и симметричных. Первые коаксиальные магистральные кабели с шайбовой изоляцией были изготовлены на заводе «Севкабель» в 1949 г. Сначала они предназначались для передачи по каждой паре 960 телефонных переговоров на частотах до 4 МГц. Затем по мере усовершенствования конструкций этих кабелей, а также применяемой аппаратуры связи спектр передаваемых с помощью этих кабелей частот последовательно повышался до 8,5 и 20 МГц, что позволило передавать по каждой коаксиальной паре 3800 телефонных разговоров. На заводе «Азовкабель» был начат выпуск разработанных ВНИИКП кабелей дальней связи с баллонной изоляцией.

Пионерами в области освоения отечественного производства симметричных кабелей дальней связи явились заводы «Севкабель» (кордельно-бумажная изоляция) и «Москабель» (кордельно-стирофлексная изоляция). Постепенное усовершенствование конструкции этих кабелей и аппаратуры связи привело к тому, что линии связи позволяли обеспечить уплотнение 60-ка-нальной аппаратурой связи в спектре частот 12–252 кГц и передачу по каждой паре 60 телефонных разговоров. В дальнейшем производство симметричных кабелей связи развивалось на Куйбышевском заводе кабелей связи (КЗКС), ныне «Самарская кабельная компания». Постепенно характеристики симметричных кабелей со стирофлексной изоляцией были повышены настолько, что по каждому каналу можно было вести передачу 120 телефонных разговоров на частотах до 552 кГц.

Параллельно с разработкой и развитием новых пластмасс в области кабелей связи проводились работы по замене этими материалами оболочек кабелей из дефицитного и тяжелого свинца. Переход на пластмассовые оболочки сопровождался заменой гигроскопичной бумажной изоляции в основном на полиэтиленовую и частично на изоляцию из поливинилхлоридного пластиката. Результатом широкого внедрения пластмасс явилась организация под руководством ВНИИКП производства городских телефонных кабелей на заводах «Ташкенткабель», КЗКС, «Одесскабель», «Электрокабель» (г. Кольчугино). Революционным шагом в организации высокопроизводительного производства таких кабелей стало создание и внедрение в промышленность полуавтоматических линий по изготовлению жил телефонных кабелей с пластмассовой изоляцией, первая из которых, разработанная ВНИИКП, начала эксплуатироваться на КЗКС в 1961 г. Следует отметить, что в 60–70-е годы на базе полученного опыта была создана целая гамма полуавтоматических линий подобного назначения, в том числе для изготовления жил не только телефонных, но и сигнально-блокировочных, шахтных, контрольных кабелей, установочных проводов и т.д.

В начале 80-х годов на заводе «Одесскабель» финской фирмой «Нокиа» совместно с ВНИИКП было организовано первое в мире автоматическое производство городских телефонных кабелей в сочетании с автоматическим складированием полуфабрикатов и готовой продукции.

В эти же годы на смену традиционным кабелям связи приходят волоконно-оптические [10.40]. В этих кабелях взамен медных жил используются кварцевые волокна, способные передавать на дальние расстояния огромные объемы информации. В 1985 г. в СССР был создан, а в 1987 г. реорганизован межотраслевой научно-технический комплекс (МНТК) «Световод», головной организацией которого стало научно-производственное объединение «ВНИИКП». Научным руководителем МНТК «Световод» был лауреат Нобелевской премии, академик A.M. Прохоров. На заводах в г. Гусь-Хрустальный и С.-Петербург удалось организовать производство заготовок для оптического волокна, а на кабельных заводах «Электропровод», «Одесскабель», «Севкабель», «Экспокабель» и ОКБ КП (г. Мытищи) — производство оптического волокна для кабелей волоконно-оптической связи внутри городов, областей и магистральных систем связи, в также волоконно-оптических кабелей специального назначения. Эти кабели предназначались для работы на длинах волн 850, 1300 и 1550 нм, в том числе со смещенной дисперсией. В целом эти кабели (так называемого второго поколения) соответствовали предъявляемым в то время требованиям, и с 1986 г. объем их производства ежегодно увеличивался примерно вдвое. После распада СССР при переходе к рыночной экономике, сопровождавшемся гиперинфляцией, производство оптических кабелей в первый же год упало на 40% и сохранилось практически только на заводе «Электропровод». Однако затем это производство начало вновь интенсивно развиваться, и в 1997–1998 гг. было организовано производство волоконно-оптических кабелей на заводах «Москабельмет», «Воронежтелекабель» (г. Воронеж), в «Самарской кабельной компании» и на фирме «Оптика-кабель» (г. Москва).

Рис. 10.7. Магистральные и зоновые волоконно-оптические кабели связи
1 — оптическое волокно; 2, б — гидрофобный заполнитель; 3, 5 — полимерная трубка; 4 — центральный силовой элемент; 7 — скрепляющая лента; 8 — полиэтиленовая защитная оболочка; 9 — броня из стальных проволок; 10 — наружная оболочка кабеля

В России в настоящее время выпускаются волоконно-оптические кабели различных конструкций. Основные конструкции имеют в своем составе, как правило, шесть-восемь модулей с оптическим волокном, скрученных вокруг центрального силового элемента из стеклопластика или стального троса. Каждый модуль может содержать не только одно, но и большее число волокон. Кабели должны иметь требуемый заказчиком уровень затухания, в частности не более 0,22 дБ/км на длине волны 1550 нм, а также иметь герметизацию по всем элементам. Типичная конструкция волоконно-оптических кабелей для зоновых и магистральных линий связи показана на рис. 10.7.

В последние годы в мире интенсивно развивается производство оптических кабелей, применяемых для подвески на линиях электропередачи. Эти кабели имеют различную конструкцию, но чаще всего используется ввод оптического кабеля в грозотрос (рис. 10.8). Однако в ряде диапазонов частот продолжают широко применяться традиционные кабели связи и передачи информации, и замена их на волоконно-оптические кабели либо планируется в будущем, либо проблематична.

Так, в конце 70-х годов ВНИИКП была создана серия гофрированных эллиптических волноводов для передачи электромагнитной энергии СВЧ-диапазона частот, производство было организовано на заводе «Экспокабель» [10.41]. Такие металлические гофрированные волноводы (рис. 10.9) применяются в различных радиотехнических устройствах, в системах радиорелейной, космической и тропосферной связи. Применение гибких эллиптических волноводов позволило существенно улучшить параметры фидерных трактов дециметрового, сантиметрового и миллиметрового диапазонов волн. Гибкие эллиптические волноводы продолжают выпускаться АО «Экспокабель» в г. Подольске.

Рис. 10.8. Волоконно-оптический кабель для подвески на линиях электропередачи
1 — центральный силовой элемент; 2 — оптическое волокно (свободной укладки); 3 — гидрофобный заполнитель; 4 — полимерная трубка; 5 — броня из стальных и алюминиевых проволок

Важное место среди различных типов кабельной продукции занимают до сих пор радиочастотные кабели, начало создания которых было положено в 1938–1940 гг., когда на заводе «Севкабель» впервые были изготовлены коаксиальные кабели с изоляцией из фарфоровых колпачков. Появление новых электроизоляционных материалов, таких как полиэтилен, обладающий высокими диэлектрическими и технологическими характеристиками, знаменовало своего рода революционный переворот в области производства коаксиальных кабелей. Уже в годы Великой Отечественной войны была разработана первая серия радиочастотных кабелей с полиэтиленовой изоляцией для радиолокационных установок, а после окончания войны в ОКБ КП под руководством Т.М. Орловича была создана широкая гамма радиочастотных кабелей, в том числе нагревостойких, миниатюрных, нагревостойких импульсных и т.д. Отдельную группу радиочастотных кабелей составили фазостабильные кабели, которые сохраняют свои характеристики как при тепловых воздействиях, так и при воздействии других эксплуатационных факторов. Важным моментом в усовершенствовании радиочастотных кабелей явилось применение для их изоляции фторопластов, позволяющих эксплуатировать кабели вплоть до температур порядка 250 °С.

Рис. 10.9. Общий вид гибкого эллиптического волновода

Одним из наиболее старых производств в кабельной промышленности является производство гибких кабелей и проводов с применением резин. Такие производства существовали на всех кабельных заводах еще до революции, а затем после появления новых классов каучуков и других ингредиентов резиновых смесей заняли постоянные позиции в промышленности. Кабели с резиновой изоляцией и оболочкой незаменимы в угольной и горнорудной промышленности, судостроении, в бытовой технике, медицине, при проведении строительных работ, в сельском хозяйстве. Первые кабели такого типа основывались на использовании натурального каучука, а по мере создания синтетических каучуков происходила не только замена ими натурального каучука, но и существенно расширялась номенклатура выпускаемой продукции.

Особое внимание уделялось созданию шахтных кабелей, и пионером в этой области является киевский завод «Укркабель». Затем уже после окончания войны центр работ по шахтным кабелям переместился в Сибирь, где Томский НИИКП (сейчас ТомНИКИ) и завод «Том-кабель» создали новые серии кабелей для бурильного инструмента и для опережающего отключения. Внедрение в производство кабелей с использованием гибких электропроводящих экранов привело к существенному повышению уровня электробезопасности в шахтах.

На заводе «Камкабель» выпускаются высоковольтные экскаваторные кабели с изоляцией на основе этилен-пропиленовой резины на напряжение 6 кВ. Эти кабели имеют экраны, жилы больших сечений, обладают повышенным сроком службы в тяжелых условиях эксплуатации, например при добыче угля открытым способом.

В судостроении, несмотря на появление в последние годы широкой гаммы кабелей с пластмассовой изоляцией и оболочкой, кабели с применением резины во многих случаях остаются неизменными, и их выпуск успешно освоен на таких крупнейших заводах, как «Азовкабель», «Амуркабель», «Рыбинсккабель». Применение для изоляции судовых кабелей кремнийорганической резины, не распространяющей горение, позволило резко снизить вероятность возникновения пожаров на судах. Особо следует отметить исключительную надежность судовых кабелей с такой изоляцией: даже в случае возникновения пожара кабели позволяют энергетической системе на судне функционировать в течение 6 ч, что дает возможность ликвидировать очаг загорания и доставить судно в ближайший порт [10.42].

Существенным моментом в развитии производства кабелей и проводов с применением резин стала принципиально новая технология их производства, объединяющая в одном агрегате целый ряд технологических операций: наложение резиновой смеси на токопроводящие жилы, вулканизация резиновой смеси, непрерывное испытание резиновой изоляции или оболочек. Первый агрегат непрерывной вулканизации был пущен в эксплуатацию в 1950 г. на заводе «Севкабель», затем такие агрегаты были установлены на заводе «Электропровод». В настоящее время на кабельных заводах бывшего СССР эксплуатируется более 200 агрегатов (кабельных линий) непрерывной вулканизации.

Важную роль сыграли кабели с применением резин в освоении нефтегазового комплекса (страны. Эти кабели являются неотъемлемой частью систем, используемых для поиска нефти и газа и геофизической разведки, бурения скважин, добычи нефти и газа. С 1948 г. эти работы были сосредоточены в Ташкентском отделении НИИКП (сейчас НПО «Электросигнал») и на заводе «Ташкенткабель». В 80-е годы центр исследовательских работ переместился во ВНИИКП [10.43]. Вплоть до 1983–1984 гг. на отдельных скважинах продолжалась эксплуатация кабелей с резиновой изоляцией и оболочкой, применяемых для питания погружных нефтенасосов. Однако по мере расширения районов нефтедобычи, в том числе с повышенным содержанием газа и высокоагрессивных элементов в нефти, начали проявляться и существенные недостатки таких кабелей: повышенная скорость старения изоляции и разрывы оболочек при десорбции поглощенного газа. Поэтому начали выпускать кабели с изоляцией из полиэтилена высокой плотности («Подольсккабель», «Ереванкабель», «Ташкент-кабель»). Были созданы новые производства этих кабелей на заводах «Кавказкабель» (г. Прохладный) и в АО «Сибкабель», а также на ряде специализированных предприятий у конечных потребителей кабелей для питания погружных нефтенасосов.

Развитие отечественного электромашино-, электроаппарато- и приборостроения неразрывно связано с прогрессом в производстве обмоточных проводов, наиболее прогрессивной группой которых являются эмалированные провода. Начало этого производства в 1925–1931 гг. было связано с заводами «Севкабель», «Москабель», «Укркабель». В то время для эмалирования проволоки применялись лаки на асфальтово-масляной основе. Такая изоляция имела ряд недостатков, и интенсивная работа по созданию высокопрочных синтетических эмаль-лаков привела в послевоенные годы к созданию широкой гаммы эмалированных проводов с температурным индексом от 105 до 220 °С. Эта работа проводилась во ВНИИКП под руководством В.А. Привезенцева. Активное участие в этой работе принимали ВЭИ и ведущие кабельные заводы России — «Микропровод» (г. Подольск), «Москабель», «Сибкабель», «Камкабель»; Молдавии — «Молдавкабель» и Литвы — «Литкабель».

Этапы создания важнейших новых синтетических эмаль-лаков: 1946–1948 гг. — поливинилацеталевые; 1955–1956 гг. — полиуретановые; 1952–1962 гг. — полиэфирные; 1966–1967 гг. — полиимидные; 1969–1970 гг. — полиэфиримидные; 1975–1976 гг. — полиэфирциану ратимидные; 1980–1982 гг. — полиамиимидные. Параллельно разрабатывались новые типа эмалированных проводов с изоляцией на основе этих лаков, в том числе с двойной, позволяющей сочетать преимущества различных типов эмалевых покрытий. Среди наиболее прогрессивных типов эмалированных проводов, разработанных ВНИИКП, следует выделить провода с фреоностойкой изоляцией, предназначенные для механизированной намотки статоров компрессоров холодильных агрегатов в среде фреонов и холодильных масел, а также нагревостойкие провода для механизированной намотки электродвигателей единой серии.

Для применения в приборостроении и радиотехнической промышленности были созданы провода с полиуретановой изоляцией, облуживаемые оловом и его сплавами без предварительной зачистки эмалевого покрытия. Базовым заводом для производства таких проводов стал завод «Микропровод» в г. Подольске.

Важное значение для развития отечественной телевизионной промышленности и радиотехники имело создание эмалированных проводов с дополнительным термопластичным слоем. Эти провода нашли широкое применение для изготовления каркасных и бескаркасных катушек телевизоров, радиоприемников и измерительных приборов. При нагревании дополнительное термопластичное покрытие расплавляется и склеивает витки намотанных катушек без применения пропитывающих лаков, зачастую повреждающих эмалевую изоляцию.

Нельзя не отметить огромную работу, выполненную ВНИИКП под руководством Е.Я. Шварцбурда по созданию в послевоенные годы серии оборудования для производства эмалированных проводов. Сотни эмаль-агрегатов были смонтированы и пущены в эксплуатацию на многих кабельных заводах России и других республик бывшего СССР, а затем устаревшее оборудование планомерно заменялось более современным и высокопроизводительным. В конце 60-х — начале 70-х годов наступил новый этап технологического развития, когда во всем мире внимание было акцентировано на решении экологических проблем. Поэтому оборудование для производства эмалированных проводов было оснащено устройствами для каталитического дожигания газов, отходящих от печей эмаль-агрегатов. В результате дожигания газы, выделяющиеся в печах, превращались в углекислый газ и воду.

Следует остановиться на обмоточных проводах с пленочной изоляцией, применяемых для обмоток электродвигателей погружных насосов, которые пришли на смену обычным штанговым насосам, ранее применявшимся для добычи воды из артезианских скважин, нефти, перекачки нефтепродуктов и других жидких материалов. Такие провода в процессе эксплуатации соприкасаются с перекачиваемой жидкостью, а условия работы электродвигателя в скважине небольшого диаметра требуют изготовления обмотки методом многократной протяжки провода, что приводит к необходимости обеспечения исключительно высокой механической прочности изоляции. Кроме того, в связи с освоением месторождений в Западной Сибири, Казахстане и на севере европейской части России, ростом глубины залегания нефти и температуры окружающей среды непрерывно возникали требования по повышению рабочих температур обмотки электродвигателей.

Поэтому ВНИИКП были разработаны обмоточные провода с изоляцией из пленок фторопласта-4, а затем из полиимиднофторопластовых пленок, обладающих высокой нагревостойкостью (до 200 °С), высокой механической прочностью и стойкостью к действию агрессивных жидкостей.

Среди оригинальных технологических процессов, знаменующих собой переворот в производстве кабельной продукции, нельзя не назвать радиационное модифицирование изоляции путем введения в материалы ряда добавок и последующего облучения на ускорителях электронов [10.44]. Эти работы планомерно ведутся с 1957 г. в тесном содружестве ВНИИКП, Научно-исследовательского физико-химического института им. Л.Я. Карпова и Института ядерной физики им. Г.И. Будкера Сибирского отделения РАН. Электронно-лучевая технология производства кабельной продукции базируется на научных и инженерных решениях четырех ключевых проблем.

Прежде всего на основе принципов термостабилизации радиационно-сшитых полимеров были разработаны рецептуры электроизоляционных, электропроводящих и шланговых композиций, обладающих длительной работоспособностью при температурах выше 105 °С и повышенной радиационной стойкостью. Затем были созданы ускорители электронов — источники излучения, предназначенные для промышленной эксплуатации. Третьим этапом явилось создание специального технологического оборудования, транспортирующего обрабатываемое кабельное изделие через выведенный в атмосферу пучок электронов и формирующего зону облучения. И, наконец, была разработана совместно с Дзержинским филиалом ВНИИОГАЗ система очистки вентиляционных выбросов из помещений, где расположены ускорители электронов, исключающая попадание образующихся озона, оксидов азота и других токсичных продуктов в окружающую среду.

На основе новой технологии были разработаны и внедрены в производство различные типы авиационных и монтажных проводов, судовых кабелей, кабелей для атомных электростанций с облученной изоляцией. В настоящее время на шести заводах («Экспокабель», «Подольсккабель», «Уфимкабель» — Россия; «Азовкабель» — Украина; «Беларуськабель» — Белоруссия; «Молдавизолит» — Молдавия) успешно эксплуатируются 16 радиационно-технологических линий на базе ускорителей электронов.

В кабельной промышленности России всегда активно прорабатывались и затем реализовывались идеи, которые современникам казались фантастическими. Одна из таких идей — использование явления сверхпроводимости в кабельной технике. Сверхпроводящие провода, разработанные ВНИИКП и выпускаемые АО «Экспокабель», уже сейчас находят широкое применение в уникальных физических и электротехнических установках. В будущем сверхпроводящие кабели будут использоваться для передачи на большие расстояния. Уже в 70-е годы в кабельной промышленности была создана опытно-промышленная база, обеспечивающая как производство кабельной продукции, так и ее всесторонние испытания при температурах до температур жидкого гелия (4,2 К) в сильных магнитных полях (до 12 Тл) и при протекании мощных токов (до 100 кА). В 1980 г. ВНИИКП совместно с фирмой «Кабель металл электро» (Германия) была изготовлена первая в мире 50-метровая модель сверхпроводящего кабеля на напряжение 110 кВ (рис. 10.10) с гофрированными медными оболочками с использованием в качестве сверхпроводника NbSn [10.45].

С открытием высокотемпературной сверхпроводимости начаты исследования в области разработки сверхпроводящих проводов на основе оксидов редкоземельных элементов.

Кабельная промышленность и ее научно-технические центры располагают всем необходимым для активного участия в развитии электроэнергетики и электротехники в XXI в.

Рис. 10.10. Сверхпроводящий кабель на напряжение 110 кВ

Научно-технический центр кабельной промышленности России (АО «ВНИИКП») планирует выполнять разработки новых конструкций кабельных изделий и технологии их изготовления, специализированного оборудования, новых материалов для кабельного производства, активно работать в зоне сертификации и стандартизации. Особое внимание будет уделяться прогрессивным решениям в области оптических кабелей, включая кабели для компьютерных сетей, кабелям и проводам с использованием явления высокотемпературной сверхпроводимости, высоковольтным силовым кабелям, решению экологических проблем кабельного производства.

СПИСОК ЛИТЕРАТУРЫ

10.1. История энергетической техники СССР. Т. 2. Электротехника. М.: Госэнергоиздат, 1957.

10.2. Электротехническая промышленность СССР. М: Информстандартэлектро, 1967.

10.3. Тареев Б.М. Электротехнические материалы. М: Госэнергоиздат, 1947.

10.4. Шарле Д.Л. Памятные даты в истории электротехники // Контакты. 1996. № 12 (72).

10.5. Советский энциклопедический словарь. М.: Советская энциклопедия, 1989.

10.6. Советская энциклопедия. М.: Советская энциклопедия, 1987.

10.7. Штофа Я. Электротехнические материалы. М: Энергоатомиздат, 1984.

10.8. Окадзаки К. Технология керамических диэлектриков. М.: Энергия, 1976.

10.9. Технология производства электроизоляционных материалов и изделий / О.В. Бобылев, Н.В. Никулин, П.В. Русаков и др. М.: Энергия, 1977.

10.10. Технология электрокерамики / Г.Н. Масленникова, Ф.Я. Харитонов, Н.С. Костюков и др.; Под ред. Г.Н. Масленниковой. М.: Энергия, 1974.

10.11. Августник А.И. Керамика. Л.: Стройиздат, 1975.

10.12. Химическая технология керамики и огнеупоров / Под ред. П.П. Будникова. М.: Стройиздат, 1972.

10.13. Поляков А.А. Технология керамических радиоэлектронных материалов. М.: Радио и связь, 1989.

10.14. Техника высоких напряжений / Под ред. Б.И. Угримова. Вып. 2. М.: Промстройиздат, 1924.

10.15. Качалов Н.Н. Фарфор и его изготовление. М.: Пром строй издат, 1927.

10.16. Панов А.Д. Производство фарфора. М.: Пром строй издат, 1929.

10.17. Апраксин А.И., Ильин И.И. Изоляторы для установок высокого напряжения. М.: Госэнергоиздат, 1935.

10.18. Производство фарфоровых изоляторов / В.А. Шевченко, И.А. Дорошев и др. М.: Госэнергоиздат, 1941.

10.19. Технология керамических изделий / П.П. Будников, А.С. Бережной, Г.Н. Масленникова и др. М.: Стройиздат, 1946.

10.20. Безбородое М.А. Выдающийся русский керамик XVIII в. Д.И. Виноградов // Стекло и керамика. 1948. № 5.

10.21. Михайлов В.В. Расчет и конструирование высоковольтной аппаратуры. М.: Госэнергоиздат, 1951.

10.22. Barret W.R, Brown W., Hadfield R.A. Researches on the electrical conductivity and magnetic properties of upwards of one hundred alloys of iron // J.IEE. 1902. T. 31. P. 574–729.

10.23. Аркадьев B.K. Электромагнитные процессы в металлах. М.: Госэнергоиздат, 1935.

10.24. Белов К.П. Магнитные превращения. М.: Физматгиз, 1959.

10.25. Акулов Н.С. Ферромагнетизм. М., 1938.

10.26. Кондорский Е.И. Зонная теория магнетизма. М.: Наука, Ч. 1, 1976. Ч. 2, 1977.

10.27. Сноек Я. Исследования в области новых ферромагнитных материалов. М.: Изд-во иностранной литературы, 1949.

10.28. Бозорт P.M. Ферромагнетизм. М.: Изд-во иностранной литературы, 1956.

10.29. Вонсовский С.В. Магнетизм. М.: Наука, 1971.

10.30. Смоленский Г.А., Леманов В.В. Ферриты и их техническое применение. Л.: Наука, 1975.

10.31. Яковлев Ю.М., Генделев С.Ш. Монокристаллы ферритов в радиоэлектронике. М.: Советское радио, 1975.

10.32. Хек К. Магнитные материалы и их техническое применение. М.: Энергия, 1973.

10.33. Преображенский А.А., Бишард Б.Г. Магнитные материалы и элементы. М.: Высшая школа, 1986.

10.34. Займовский А.С., Чудновская Л.А. Магнитные материалы. М.: Госэнергоиздат, 1957.

10.35. Развитие электротехники в СССР. М.: ЦИНТИприборэлектропром, 1962.

10.36. Ламан Н.К., Белоусова А.Н., Кречетни-кова Ю.И. Заводу «Электропровод» 200 лет. М.: Энергоатомиздат, 1985.

10.37. Русский кабельный. 100 лет Акционерному обществу «Москабельмет». 1895–1995. М.: Наука, 1995.

10.38. Ларина Э.Т. Силовые кабели и высоковольтные кабельные линии. М.: Энергоатомиздат, 1996.

10.39. Электротехническая промышленность СССР. М.: Информэлектро, 1977.

10.40. Акопов С.Г., Мещанов Г.И., Пешков И.Б. Конструирование и производство оптических кабелей в России // Кабельная техника. 1997. № 12, 13 (250, 251). С. 29–34.

10.41. Пешков И.Б., Шолуденко М.В. Перспективы развития кабелей связи с медными жилами и гибких волноводов // КабельЙая техника. 1997. № 12, 13 (250, 251). С. 35–38.

10.42. Перспективные направления производства кабелей с применением эластомерных композиций / А.Г. Григорьян, В.А. Михлин, Т.А. Меркулова, В.Н. Волошин, Г.С. Козлова, Р.Г. Левит, В.В. Столбов // Кабельная техника. 1997. № 12, 13 (250,251). С. 25–28.

10.43. Кабельная продукция для нефтегазового комплекса / А.А. Гнедин, А.Г. Григорьян, Я.З. Месенжник, Г.И. Мещанов, Г.Г. Свалов // Кабельная техника. 1997. № 12, 13 (250,251). С. 71–77.

10.44. Технология производства проводов и кабелей с облученной изоляцией: состояние и перспективы / Э.Э. Финкель, Г.И. Мещанов, Е.И. Миронов, В.Л. Ауслендер, Р.А. Салимов, Г.А. Спиридонов // Кабельная техника. 1997. № 12, 13 (250, 251). С. 71–77.

10.45. Силовые кабели с использованием явления сверхпроводимости / В.Е. Сытников, ГГ. Свалов, Г.И. Долгошеев, Д.И. Белый // Кабельная техника. 1997. № 12, 13 (250, 251). С. 17–24.


Глава 11.
ПРОМЫШЛЕННАЯ ЭЛЕКТРОНИКА

11.1. ОБЩИЕ ПОЛОЖЕНИЯ

Электроника — область науки и техники, изучающая электрофизические явления в вакууме, газе, твердом теле и на границе сред; приборы и системы, основанные на этих явлениях.

Современная электроника, опираясь на достижения в различных областях знаний, в свою очередь, обогащает и способствует развитию других наук и производств, вооружая их новыми техническими средствами и методами. Электроника оказывает существенное влияние на жизнь человека, его образ мышления и поведение, на состояние среды обитания.

Можно рассматривать и характеризовать электронику в различных аспектах. Первый из этих аспектов предполагает рассмотрение электроники как части фундаментальной науки — физики. Электроника — это наука, изучающая взаимодействие заряженных частиц между собой, с электромагнитными полями и с веществом. Эта часть науки решает теоретические проблемы и задачи экспериментальных исследований. Второй аспект подразумевает область техники, включающую прикладные применения названного взаимодействия потоков заряженных частиц между собой, с электромагнитными полями и с веществом. Поэтому в качестве содержательного термина используется понятие «электронная техника».

Электроника как фундаментальная наука и ее прикладной аспект развивались в непрерывном взаимодействии. Результат тонкого физического эксперимента в короткий срок приводил к созданию и серийному выпуску нового класса электронных приборов. В свою очередь, электронные приборы позволили реализовать методы наблюдения, измерения процессов в микромире, неосуществимые иными средствами.

Электроника как наука зародилась на рубеже XIX и XX столетий. Ее предметом и по сей день является прежде всего изучение законов взаимодействия свободных и связанных электронов и других заряженных частиц между собой и с электромагнитными полями; разработка принципов, методов и технологий создания электронных приборов, использующих эти взаимодействия для преобразования электромагнитной энергии в собственном рабочем объеме прибора и заполняющей его среде для обеспечения требуемых условий и результатов функционирования. Во второй половине XX в. с большей или меньшей степенью условности оформились три основных направления электроники как науки: электровакуумная (включая плазменную); твердотельная (полупроводниковая); квантовая электроника.

Электроника как область техники решает вопросы создания на основе электронных приборов аппаратуры, систем и комплексов различных видов и поколений для выполнения функциональных задач в многочисленных разветвлениях энергетики, радиотехники, информатики; технологии разработки и производства различной вещественной и информационной продукции; доведения ее до потребителей; прогнозирования и оценки результатов (в том числе побочных) этого потребления и предотвращения (а то и ликвидации) нежелательных последствий.

В зависимости от степени развитости той или иной сферы науки, производства и применения, от доминирующего предназначения и специфичности условий, от удобства классификации, изучения, описания и преподавания, наконец, просто от складывающегося восприятия понятий (в том числе на бытовом уровне) уже появилось и продолжает появляться множество производных терминов от термина «электроника».

Эти производные более или менее адекватно отражают:

частные направления в собственно электронной науке и технике, например: катодная электроника, СВЧ-электроника, микроэлектроника, функциональная электроника, криоэлектроника, релятивистская электроника и т.д.;

доминирующий признак, объединяющий разнообразные направления электронной науки и техники (например, радиоэлектроника);

особую область применения, например: космическая электроника, авиационная электроника (авионика), бытовая электроника и пр.

Особое место по распространенности, профессиональному уровню, степени влияния на другие области техники и производства, развитию различных структур занимает промышленная электроника. Промышленная электроника как направление электронной техники зародилась в 40-х годах XX в. Ее появление было своего рода велением времени и неслучайно соответствующие направления с их проблематикой и терминологией появились на разных языках в технической литературе различных стран.

В последние годы определились три основных направления промышленной электроники: энергетическая (силовая) электроника (преобразование электрической энергии), информационная электроника (электронные средства получения информации, ее преобразования, отображения, использования в управлении), технологическая электроника (воздействие на вещество потоками частиц, электромагнитным излучением).

Впервые содержание промышленной электроники было сформулировано основателем кафедры промышленной электроникой МЭИ И.Л. Кагановым в 1947 г. За прошедшие десятилетия по этой дисциплине были подготовлены тысячи специалистов. Помимо МЭИ кафедры промышленной электроники существуют и готовят специалистов более чем в 20 вузах России и бывших республик Советского Союза. Само понятие промышленной электроники оказалось динамичным, и его содержание изменяется с каждым новым шагом технического прогресса.

В 60-х годах, термин «промышленная электроника» получил более широкое содержательное наполнение, охватывающее преобразовательные электронные устройства и источники электропитания (с соответствующими схемотехническими элементами, электровакуумными и полупроводниковыми приборами), а также информационные системы для электроэнергетики, технологии и управления промышленными объектами.

Промышленная электроника в вышеприведенном ее понимании охватывает все отрасли промышленности. Доминирующими направлениями в ее развитии являются:

1) преобразование тока промышленной (50 Гц) или иной частоты в постоянный (выпрямление) и преобразование постоянного тока в переменный с заданной частотой (инвертирование), а также преобразование переменного тока одной частоты в переменный ток иной частоты;

2) электропитание (вторичные источники) любых промышленных, в том числе радиотехнических, установок с выполнением регулирующих, стабилизирующих, защитных, коммутирующих и других функций; управляемый энергообмен между различными источниками энергии (например, сеть и солнечная батарея) либо между источниками и накопителями энергии (например, сеть и конденсаторная батарея); первое и второе направления объединяют названием «силовая (энергетическая) электроника»;

3) электронные средства систем управления, регулирования, контроля, сбора и отображения информации о состоянии промышленных объектов. В последние годы в связи с широким распространением промышленных микроконтроллеров электронные средства управления включают в себя комплекс аппаратных и программных средств; это направление называют «информационной электроникой»;

4) создание установок и устройств, обеспечивающих технологическое воздействие на материалы, детали машин, биологические и другие объекты и среды за счет использования потоков электронов и ионов, потоков электромагнитного излучения, включая излучение оптического диапазона (в том числе лазерного); это направление называют «технологической электроникой».

Несмотря на всю условность такого подхода, он достаточно полно отражает области применения промышленной электроники и в значительной мере ее элементную базу — электровакуумные (включая газоразрядные) и полупроводниковые электронные приборы, электронные источники, генерирующие потоки заряженных частиц и электромагнитные излучения (включая высокочастотные (ВЧ), ультравысокочастотные (УВЧ), сверхвысокочастотные (СВЧ) и излучения оптического диапазона).


11.2. СИЛОВАЯ (ЭНЕРГЕТИЧЕСКАЯ) ЭЛЕКТРОНИКА

11.2.1. ПЕРВЫЕ РТУТНЫЕ ВЫПРЯМИТЕЛИ

Силовая электроника была и остается наиболее энергоемким направлением развития промышленной электроники. Функции этого направления — регулируемое преобразование электрической энергии. Важнейшие виды преобразования энергии: выпрямление переменного тока, регулирование выпрямленного напряжения (тока), инвертирование постоянного тока, преобразование частоты, преобразование числа фаз. Основные задачи, которые решала и решает силовая электроника, — создание элементной и аппаратной базы; развитие схемотехники; создание теории вентильных цепей, методов анализа и проектирования преобразователей электроэнергии; развитие методов и технических средств управления преобразователями электроэнергии. Решение этих задач и составляет основные этапы развития и становления современной силовой электроники — важнейшей составной части промышленной электроники.

Эффект выпрямления переменного тока с использованием электрической дуги впервые был обнаружен и исследован В.Ф. Миткевичем в начале XX в. Им же были разработаны получившие широкое распространение двухполупериодная и трехфазная нулевая схемы выпрямления (1901 г.). Особенности работы схем при различных нагрузках исследовались А.Л. Гершуном (1901 г.), а одно- и двухполупериодное выпрямление с применением электронных вентилей — кенотронов — Н.Д. Папалекси (1911 г.) [11.1, 11.2].

Мощные выпрямители впервые были созданы на основе дугового разряда в парах ртути с холодным катодом. Патент на первый прибор был выдан в США Купер-Хюиту в 1901 г. Затем в течение 20 лет произошел скачок в преобразовании тока в промышленных масштабах. Во многих странах, в том числе и в СССР, быстро развивалась теория газового разряда, создавались конструкции мощных ртутных вентилей, разрабатывались специальные виды трансформаторов, защитной и коммутационной аппаратуры. Нашими учеными и инженерами в короткий срок были созданы мощные преобразовательные агрегаты, не уступавшие зарубежным. Без этих агрегатов было невозможно промышленное производство стратегических материалов (алюминия, цинка, титана), не могли работать прокатные станы, не могла осуществляться электрификация городского и магистрального транспорта. Большие государственные вложения в развитие силовой электроники затрагивали сферы науки, производства и образования.

Исследования процессов в дуговом разряде, определение свойств материалов, способных работать в условиях высокого вакуума и в газоразрядной плазме, разработка конструкции силовых вентилей — таковы важнейшие вопросы, которые решались в лабораториях заводов «Электросила», «Светлана» и в электровакуумных лабораториях ВЭИ.

Преобразование тока с применением газоразрядных (ионных) приборов оказалось наукоемкой областью электротехники. Создание мощных приборов, способных работать в широком диапазоне токов, при различных температурах окружающей среды стало возможным лишь на основе глубоких представлений о физических процессах. Среди советских ученых, чей вклад в исследования физики газового разряда особенно заметен, назовем В.А. Фабриканта, исследовавшего оптические свойства разряда [11.6], В.Л. Грановского, изучавшего процессы деионизации разрядного промежутка в ионных приборах, Б.Н. Клярфельда, занимавшегося свойства-

ми положительного столба разряда в приборах с накаленным и ртутным катодами. Их работы, впервые опубликованные в 1940 г., получили широкое признание во всем мире [11.5–11.8]. Автор ряда крупных работ в области ионных приборов и силовой схемотехники И.Л. Каганов обеспечил выпуск специалистов в области газового разряда, электротехники и импульсной техники [11.15].

Проектированием преобразовательных подстанций занимался проектный институт «Тяжпромэлектропроект». Важную роль сыграли работы Г. А. Ривкина — сотрудника этого института.

История развития преобразовательной техники в нашей стране начинается с создания первых стеклянных ртутных вентилей с ртутным катодом в Нижегородской лаборатории В.П. Вологдина в 1921 г. Стеклянные вентили выпускались для выпрямления напряжения промышленной сети; специальные конструкции высоковольтных вентилей использовались для питания радиопередающих устройств. Ртутные вентили зарекомендовали себя сравнительно надежными и долговечными. Конструкция ртутного вентиля подразумевала использование схем с общей нулевой точкой. Соединение трансформаторов в трехфазных схемах выполнялось по схеме звезда — звезда или звезда — зигзаг при больших мощностях [11.11].

Каскадные схемы выпрямительных агрегатов с последовательным включением отдельных изолированных выпрямителей, предложенные в 1921 г. В.П. Вологдиным, позволили разработать выпрямители высокого напряжения. На основе каскадных схем в 1926–1927 гг. был выполнен ртутно-выпрямительный агрегат мощностью 120 кВт и напряжением 12 кВ для питания радиостанций.

Ограниченные токи и напряжения стеклянного ртутного вентиля заставили искать пути увеличения единичной мощности вентиля. Важным этапом на этом пути стало создание в 1926 г. на ленинградском заводе «Электросила» металлического многоанодного ртутного вентиля РВ-5 на напряжение 600 В и ток 500 А (рис. 11.1). Это был разборный агрегат с непрерывно действующей двухступенчатой вакуумной откачной системой и с водяным охлаждением. Выпрямитель был оснащен электромагнитным устройством поджига дуги. На основе РВ-5 была создана серия агрегатов, которая позволила довести выпрямленный ток до 1,6–1,8 кА при напряжении 825 В. Это позволило отказаться от электромашинных преобразователей для питания тяговых сетей уже на первых линиях метрополитена в Москве. Дальнейшее повышение вентильной прочности дало возможность перевести на ртутно-выпрямительные агрегаты питание пригородных электропоездов напряжением 3,3 кВ [11.14–11.16].

Рис. 11.1. Ртутно-выпрямительиый шестианодный агрегат с водяным охлаждением на ток 500 А и напряжение 600 В (1926 г.) 

В 1923 г. А.Н. Ларионовым была предложена трехфазная мостовая выпрямительная схема, которая стала самой популярной в эпоху полупроводниковых силовых преобразователей [11.24]. С ростом мощности агрегатов стали актуальными вопросы влияния преобразователей на питающую сеть. В дополнение к известному показателю энергетической эффективности — углу сдвига добавились такие, как коэффициент искажений формы потребляемого тока и фазовая асимметрия. Работа управляемого выпрямителя сопровождается ухудшением косинуса угла сдвига и коэффициента искажений. Влияние этих факторов могло быть улучшено лишь на основе анализа энергообмена между питающей сетью, нагрузкой и всеми реактивными элементами, входящими в преобразовательную систему. Вопросы такого энергообмена в нашей стране были изучены О.А. Маевским, Ф.И. Бутаевым, Е.Л. Эттингером. Были предложены схемы, в которых с целью повышения коэффициента мощности сочетались фазовые методы регулирования напряжения (изменением угла регулирования) с методами переключения питающего напряжения, применения нулевых вентилей и использованием так называемого несимметричного управления.

Дальнейшее развитие преобразовательной техники показало перспективность и актуальность этих исследований. В послевоенные годы доля преобразовательной нагрузки в энергетическом балансе и ее влияние на работу энергосистемы возросли. Более жесткие требования национальных стандартов на качество энергии стало возможно выполнять лишь на основе схем с принудительной коммутацией и на основе схем с двухоперационными силовыми ключами. Помимо преобразователей, ведомых сетью, возросла роль автономных преобразователей. Среди них следует выделить две группы: автономные преобразователи для индукционного нагрева и трехфазные автономные инверторы для электропривода.

Инверторы с повышенной частотой (сотни — тысячи герц) использовались в качестве источников питания для мощных (сотни киловатт) установок индукционного нагрева либо в качестве промежуточного звена для преобразователей постоянного напряжения. Они выполнялись по схемам с параллельной, последовательной или комбинированной конденсаторной коммутацией. Принципиальной особенностью этих инверторов является необходимый для преобразователей на однооперационных вентилях опережающий характер тока. Первым подобную схему предложил в 1938 г. немецкий ученый В. Остендорф (W. Ostendorf), в последующие годы автономные инверторы на повышенные частоты в нашей стране исследовались И.Л. Кагановым, А.Е. Слухоцким, А.С. Васильевым.

Инверторы для электропривода интенсивно разрабатывались в 50-е годы. В эти годы в электроприводе стали очевидны как достоинства асинхронных двигателей, так и их принципиальное ограничение — необходимость изменения частоты питающей сети для регулирования скорости. В связи с этим большие надежды возлагались на трехфазные автономные инверторы с регулируемыми частотой и напряжением. Для асинхронного привода с глубоким регулированием характерно требование хорошего гармонического состава выходного напряжения. Принципы формирования трехфазного синусоидального напряжения методами широтно-импульсной модуляции потребовали разработки новых классов преобразователей, основанных на принудительной коммутации однооперационных вентилей.

11.2.2. УПРАВЛЯЕМЫЕ РТУТНЫЕ ПРЕОБРАЗОВАТЕЛИ

Важным качественным усовершенствованием ртутного выпрямителя стало появление управляющей сетки. Первоначальная (диодная) функция ртутных вентилей с повышением рабочих напряжений потребовала введения экранов, защищающих анод от интенсивной бомбардировки потоками ионов.

Развитие конструкции экрана и независимое управление его потенциалом позволило изменять момент возникновения дугового разряда на анод. Ртутный вентиль становится прибором с управляемым моментом отпирания. Первые публикации об исследованиях ртутных вентилей с сеточным управлением относятся к 1933–1935 гг. (М.М. Четверикова, Н.Н. Петухов, М.А. Асташев) [11.9, 11.10]. Они привлекли внимание к возможности регулирования напряжения и защиты агрегата в аварийных режимах. В 1935 г. появились первые работы по исследованию инверторного режима ионного преобразователя частоты (так стали называть управляемый преобразователь электрической энергии на основе дугового разряда в управляемом вентиле). Эти исследования связаны с именем И.Л. Каганова.

Расположение шести анодов по окружности вакуумного бака обусловило большие размеры, технологическую сложность обработки крышки на карусельных станках. Изоляция деталей осуществляется фарфоровыми кольцами с прокладками из вакуумной резины. Это дает дополнительные сложности при изготовлении, транспортировке, сборке выпрямителя с вакуумной двухступенчатой системой откачки. Сборка выпрямителей требует высокой степени чистоты, а следовательно, больших объемов помещения, оснащенного подъемным оборудованием. Наконец, помещение должно отвечать жестким требованиям по температуре, удалению ртути и ее паров. Все это повышало стоимость транспортировки, сборки, эксплуатации и ремонта ртутно-выпрямительного оборудования. Поэтому в дальнейшем процесс совершенствования ртутно-выпрямительных агрегатов шел по пути создания:

одноанодных вентилей, которые комплектовались в агрегаты по шесть штук для построения трехфазных систем «звезда — две обратные звезды с уравнительным реактором»;

неразборных безнасосных агрегатов, в которых вакуум создавался в процессе изготовления и поддерживался в течение всего времени эксплуатации благодаря тщательной предварительной

обработке деталей (обезгаживания) и проверке вакуумной плотности всех сварных соединений.

Разработанные комплекты одноанодных вентилей РМНВ200х6 и РМНВ500х6 (ртутный, металлический, насосный, с водяным охлаждением на токи соответственно 1200 и 3000 А) составили основу выпрямителей для электрической тяги и электрометаллургии в послевоенные годы (рис. 11.2).

На базе неразборных отпаянных (безнасосных) агрегатов с управляемыми выпрямителями оказалось возможным создание мощных реверсивных электроприводов постоянного тока. Преобразователь существенно упрощается, у него отсутствует вакуумная система; делаются успешные шаги к переходу от водяного охлаждения к воздушному. Таким образом, он становится конструктивно и функционально завершенным узлом регулируемой преобразовательной системы. На внешнем рынке лидирующее положение занимали фирмы «Westinghouse» (США), «Allis-Chalmers», ASEA и «Brown-Bowery», (Швейцария). Последние две ныне объединились в одну из крупных европейских фирм ABB.

Наряду с ртутными вентилями, в которых имеется постоянно горящая дуга возбуждения, получили развитие игнитроны — ртутные вентили, в которых катодное пятно возбуждается каждый период. Зажигание дуги производится путем пропускания импульса тока через опущенный в ртуть катода карборундовый полупроводниковый стержень — игнайтер (поджигатель) (рис. 11.3). Возникающий при этом высокий градиент потенциала в точке контакта поджигателя с ртутью инициирует возникновение дугового разряда при положительном аноде. Отсутствие постоянно горящей дуги возбуждения повышает вентильную прочность благодаря отсутствию плазмы в неработающем вентиле, дает возможность регулирования тока изменением угла запаздывания поджигающего импульса по отношению к моменту естественного отпирания.

Наиболее успешное применение игнитрона нашли в промышленных сварочных агрегатах для точечной и шовной сварки. Кроме того, предпринимались попытки решить с помощью игнитронов проблему тяговых выпрямителей электрифицированных железных дорог (токи 100–200 А на один анод, напряжение до 3 кВ, 1938–1942 гг.). Разработка преобразователей на основе игнитронов в нашей стране связана с именем Б.М. Шляпошникова. В 40-е годы игнитроны успешно использовались в установках для индукционного нагрева [11.22, 11.23].

Рис. 11.2. Одноанодный ртутный вентиль с водяным охлаждением (1946 г.)
Рис. 11.3. Игнитроны для однофазных сварочных машин (а) и игнитронный поджигатель (б) 

Помимо уже упомянутых ионных приборов с дуговым разрядом — ртутных выпрямителей появилось обширное семейство маломощных ионных приборов, получивших широкое распространение в преобразовательной технике и автоматике.

Основной целью применения ионных приборов в преобразователях малой и средней мощности было создание управляемых выпрямителей с более высокими технико-экономическими показателями, чем у вакуумных кенотронных преобразователей и двигатель-генераторных агрегатов. Основной возможностью повышения КПД в выпрямителях сравнительно низкого напряжения (на десятки — сотни вольт) является уменьшение прямого падения напряжения, что оказалось возможным благодаря компенсации объемного заряда электронов, эмитируемых накаленным катодом, зарядом положительных ионов, генерируемых в столбе разряда. Простейшие приборы этого класса — выпрямительные газотроны на напряжения в сотни вольт разрабатывались на заводе «Светлана» с 1929 г. (рис. 11.4). Совершенствование конструкции позволило к 1932 г. освоить выпуск газотронов для нужд радиопромышленности (питания мощных усилителей и радиопередатчиков) с предельными параметрами в несколько киловольт и токами до десятков ампер. Разряд существовал в парах ртути при относительно низком давлении, которое способствовало повышению вентильной прочности.

Рис. 11.4. Газотрон 

С 1932–1933 гг. завод «Светлана» начал серийный выпуск выпрямительных газотронов с наполнением аргоном и неоном при сравнительно высоком давлении (несколько миллиметров ртутного столба). Высокое давление газа позволило получить разряд при сравнительно низком падении напряжения (12–15 В). Приборы получили название «тунгар»: тунгстем (вольфрам)-аргон — такими были материалы одного из родоначальников этого класса приборов. На другом полюсе шкалы напряжений находятся разработанные «Светланой» многосекционные газотроны на 100–200 кВ и ток 1–2 А.

Несмотря на высокие энергетические показатели, газотроны были ненадежны и капризны в эксплуатации, где требовалось неукоснительное выполнение последовательности операций пуска: вначале включается цепь накала катода, через несколько минут эмиссия катода достигает значения, превышающего ток нагрузки, только после этого можно включать питание анодных цепей. Нарушение этого правила либо случайный обрыв цепи накала приводили к быстрому уменьшению тока эмиссии, возрастанию прямого падения напряжения и разрушению катода ионной бомбардировкой. Тем не менее в течение 40–50-х годов эти приборы занимали важную нишу массовых выпрямителей малой и средней мощности.

Большая потребность в управляемом газоразрядном приборе привела к созданию и быстрому росту промышленного выпуска других газоразрядных приборов — тиратронов, у которых в пространстве между анодом и катодом размещается управляющая сетка.

Рис. 11.5. Водородный импульсный тиратрон
а — общий вид; б — разрез; 1 — генератор водорода; 2 — анод; 3 — сетка; 4, 5 — электрические экраны; б — катод; 7 — тепловой экран 

Разработчиков аппаратуры сразу привлекла возможность выполнения различных средств управления и регулирования на основе тиратронов. В 50-х годах большие усилия были приложены к созданию ионных преобразователей частоты на основе тиратронов. По существу, большинство схемотехнических решений в области преобразователей родилось в эти годы. Вследствие того что время восстановления запирающих свойств сетки составляет сотни микросекунд, особое внимание было уделено автономным инверторам тока с рабочей частотой до сотен герц. Однако создание промышленных образцов преобразователей оказалось в те годы невозможным в силу несовершенства силовых приборов и устройств управления.

Потребности в мощных ключевых приборах с высоким быстродействием для нужд радиолокационной техники привели к разработке перспективного класса ионных приборов — импульсных водородных тиратронов (рис. 11.5). Малое время деионизации (доли микросекунды) позволило получить микросекундные импульсы тока в десятки и сотни ампер при напряжении несколько киловольт. Эти приборы разрабатывались на Московском электроламповом заводе (ныне объединение «МЭЛЗ»), в их создании важную роль сыграли работы Т.А. Ворончева.

Газоразрядные приборы заняли свою нишу не только в силовой электронике, но и в информационной технике. Ионные приборы на основе тлеющего разряда в инертных газах и парах ртути получили широкое распространение. Они до настоящего времени используются как средства индикации напряжения (сигнальные лампы), средства отображения цифровой информации. В послевоенные годы они широко использовались в качестве газоразрядных стабилизаторов напряжения — стабилитронов. Важным этапом в промышленной электронике стало появление трехэлектродных газоразрядных приборов с холодным катодом. Долговечные приборы с малыми габаритами и малым потреблением мощности в цепи управления, они стали важным средством автоматизации как управляемый логический элемент с памятью. На база этих приборов выполнялись бесконтактные реле, реле времени, пересчетные схемы и другие подобные узлы (рис. 11.6).

Рис. 11.6. Счетчик импульсов на тиратронах с холодным катодом (1960 г.) 

Массовым изделием стал разрядник — миниатюрный газоразрядный прибор, защищавший оборудование средств связи от перенапряжений. Промышленный выпуск разрядников с напряжением зажигания 280–430 В на ток до 30 А был освоен заводом «Светлана» в 1936 г.

11.2.3. УСИЛИТЕЛЬНЫЕ ГЕНЕРАТОРНЫЕ ЛАМПЫ

Наряду с газоразрядными приборами в промышленной электронике достаточно широко используются вакуумные электронные лампы. Изобретение электронной лампы как электровакуумного прибора, действие которого основывается на управлении потоком электронов в вакууме электрическими полями, связано с именами Дж. Флеминга (J. Flaming, Англия, 1904 г.), предложившего диод, и Ли де Фореста (Lee di Forest, США, 1906), предложившего ввести сетку в вакуумный диод, т.е. создать триод.

Реальные конструкции вакуумных диодов и триодов были разработаны и начали использоваться в начале 20-х годов и связаны в России с именами Н.Д. Папалекси, М.А. Бонч-Бруевича. Теория движения электронных потоков в вакууме в большой степени определялась работами С.А. Богуславского и несколько позднее Г.А. Гринберга, B.C. Лукошкова.

Все многообразие конструктивных решений электронных ламп можно разделить на три основные группы:

1) приемно-усилительные лампы (ПУЛ);

2) генераторные и мощные модуляторные лампы;

3) лампы сверхвысокочастотного (СВЧ) (свыше 100 МГц) диапазона.

По сложившейся классификации ПУЛ подразделяются на диоды, триоды, тетроды, пентоды и более сложные многосеточные лампы — гексоды, пептоды и октоды. Названия ламп содержат информацию о числе электродов. Двухэлектродные лампы этого класса имеют накаленный катод (прямого или косвенного накала), анод (диоды, кенотроны); для удобства пользователей выпускались двуханодные кенотроны. Управляемые лампы имели одну или несколько управляющих сеток, комбинированные лампы представляли собой комбинацию двух триодов с общим катодом либо комбинацию, например, триода — пентода. Лампы использовались как выпрямительные (детекторные) диоды; наиболее мощные — в источниках питания радиоаппаратуры (сотни миллиампер, сотни вольт). Триоды применялись в качестве регулировочных ламп в стабилизаторах напряжения (сотни миллиампер, сотни вольт); маломощные триоды с большим коэффициентом усиления использовались в балансных усилителях напряжения устройств промышленной электроники. Многосеточные лампы обычно применялись в усилителях радиочастотного диапазона, а также для усиления медленно изменяющихся сигналов (усилители постоянного тока). Для работы с особо малыми входными токами использовались электрометрические лампы. Для нужд радиотехники и радиосвязи выпускались пентоды с высокими показателями добротности; автоматическая регулировка усиления стала возможной благодаря использованию ламп с переменной крутизной.

Промышленные задачи потребовали увеличения максимальной выходной мощности ламповых усилительных каскадов для управления исполнительными механизмами (реле, контакторами, цепями возбуждения двигателей).

В промышленных электронных устройствах экранированные лампы (тетроды, пентоды) получили распространение благодаря более эффективному использованию напряжения источника питания. Желание улучшить энергетические характеристики мощных выходных усилительных каскадов стимулировало применение двухтактных каскадов, работающих в классе Б (каждая лампа выходного каскада формирует одну полуволну выходного тока при запертой другой лампе). Казалось бы, в наш век полупроводниковой электроники мощные ламповые усилительные каскады навсегда ушли в прошлое, но в последние годы появились сообщения, что любители особо высококачественного воспроизведения звука отдают предпочтение ламповым усилителям.

Генераторные и модуляторные лампы создавались в основном для радиовещания, телевидения и радиолокации. Уровень мощности, преобразуемой в этих лампах, уже на ранней стадии разработки составлял единицы и десятки киловатт, а в последующие годы вышли на уровень сотни киловатт — мегаватты. В отечественной электровакуумной промышленности эти разработки связаны наряду с уже упомянутыми учеными, с именами С.А. Векшинского, А.Л. Минца, С.А. Зусмановского, Б.М. Царева. Наиболее бурное развитие мощных ламп приходится на 30–40-е годы, когда были заложены основные принципы конструирования и технологии этих приборов [11.58, 11.59].

Завод «Светлана» в г. Санкт-Петербурге с начала создания электронной промышленности идо настоящего времени является основным разработчиком и изготовителем мощных генераторных ламп для радиовещания и индукционного нагрева в России.

Мощные импульсные модуляторные лампы, используемые в радиолокации, послужили основой для создания современных электронных ламп для систем питания высокого напряжения. Необходимость импульсной модуляции в радиолокационных системах на уровне потребления до 200 кВт привела к разработке модуляторных ламп на эти уровни напряжения при высоких значениях импульсного тока (до единиц килоампер). Достигнуты были подобные параметры в 50–60-х годах за счет использования эффективных термокатодов, формирования электронных пучков и введения ряда специфических технологических операций. Разработчиками конструктивных и технологических решений выступали ученые и конструкторы НПО «Исток» и «Торий».

Развитие в конце 60-х годов электронно-лучевой и лазерной технологий, а также строительство ускорителей привели к необходимости создания специальной категории ключевых ламп («Switching tubes» и «Schaltung Rohre») служащих для модуляции длинных импульсов вплоть до секундных импульсов стабилизации тока нагрузки, быстрого (в десятки микросекунд) защитного отключения источника питания с повторным включением. Основой для создания этих приборов послужили мощные модуляторные лампы с улучшенным отводом теплоты от электродов. В настоящее время разработаны и выпускаются ключевые лампы на напряжение 150 кВ и ток в непрерывном режиме 100 А фирмами «Thompson» (Швейцария), «Varian» в США, НПО «Торий» в России.

Необходимость использования электронных ламп в непрерывных режимах привела к созданию нового типа ламп — электронно-лучевых вентилей (ЭЛВ), предложенных и запатентованных Г.И. Будкером и В.И. Переводчиковым. Эти лампы, разработанные в ВЭИ, отличаются от традиционных тщательным формированием и торможением электронных потоков на аноде, что привело к уменьшению внутреннего сопротивления при большой коммутируемой мощности, а также «пентодной» вольт-амперной характеристике, обеспечивающей независимость тока от анодного напряжения. Позднее в НПО «Торий» были разработаны для этих целей специальные коммутирующие лампы — пролетные пентоды (титроны) [11.60].

11.2.4. СИЛОВЫЕ ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ

Качественный скачок в силовой электронике связан с появлением силовых полупроводниковых приборов. Они активно вторглись в средства разработки преобразовательных устройств, полностью вытеснив значительную часть газоразрядных приборов. Как и всякая новая элементная база, полупроводниковые вентили развивались многопланово: изменялись предельные параметры, функциональные возможности, динамические характеристики.

Более высокие возможности полупроводниковых приборов позволили ставить новые функциональные задачи: вместо традиционного выпрямления и инвертирования разрабатывать импульсные высокочастотные энергообменные устройства для реверсивной передачи энергии от одного объекта к другому.

В настоящее время силовые полупроводниковые вентили вытеснили все виды силовых приборов во всех областях применения, за исключением высоковольтных электротехнологических установок и установок большой мощности (десятки и сотни киловатт), работающих в радиочастотном диапазоне.

Созданию мощных полупроводниковых приборов (ППП) предшествовали весьма важные поначалу разрозненные шаги по изучению электрических свойств твердого тела, явлений на границах раздела материалов и сред.

На этом историческом пути отправными пунктами следует считать обнаружение в 1873 г. изменения проводимости селена под влиянием освещения — внутреннего фотоэффекта; открытие односторонней проводимости контакта металл-полупроводник (К.Ф. Браун, Германия, 1874 г.); открытие генерации и усиления электромагнитных колебаний контактом металл-полупроводник (О.В. Лосев, Россия, 1922 г.); изобретение в 1948 г. точечного транзистора (Дж. Бардин и У. Браттейн, США); последующая разработка теории p-n-перехода и создание плоскостного транзистора (У. Шокли, США, 1949–1951 гг.).

Рис. 11.7. Первые отечественные германиевые и кремниевые диоды (1960 г.)
а — точечный диод; 1 — корпус; 2 — иглодержатель; 3 — игла; 4 — кристалл германия; 5 — кристаллодержатель; 6 — выводы; б — плоскостной диод 

По сути дела, именно эти изобретения определили бурное развитие полупроводниковой электроники во второй половине XX в. Начиная с первых лет создания полупроводниковых приборов, определились две ветви полупроводниковой электроники: силовая и информационная.

В 50-е годы появились первые маломощные полупроводниковые диоды на базе германия и кремния (рис. 11.7).

Исследования по созданию отечественных мощных полупроводниковых диодов на основе германия были начаты в середине 50-х годов. Они базировались на фундаментальных исследованиях в области физики твердого тела, выполненных в нашей стране А.Ф. Иоффе и его школой. Первые расчеты и экспериментальные образцы плоскостных p-n-переходов были получены Физико-техническим институтом им. А.Ф. Иоффе, а затем продолжены ВЭИ и саранским заводом «Электровыпрямитель». Первые типы промышленных диодов (вентилей) были созданы С.Б. Юдицким (ВЭИ).

Методом сплавления германия с индием были созданы диоды серии ВГ — вентили германиевые на токи до 200 А (импульсные токи до 900 А) на напряжение до 200 В. Хотя прямые падения напряжения на таких диодах были около 1 В, принципиальная невозможность получения p-w-переходов на более высокие напряжения из-за недостаточной ширины запрещенной зоны и низкого удельного электрического сопротивления ограничила применение германия.

С начала 60-х годов выполнялись исследования и разработки силовых приборов на основе монокристаллического кремния. Результаты теоретического анализа физических явлений в p-n-переходах в полупроводниках к этому времени уже позволяли проектировать диоды для преобразовательных устройств промышленной электроники.

В конце 50-х годов в лабораториях ВЭИ были созданы первые отечественные кремниевые вентили на токи 200 А (ВК-200). Основные функциональные элементы — p-n-переходы формировались методом сплавления алюминиевой фольги с кремниевыми дисками диаметром 25 мм. Малая толщина рекристаллизованного p-слоя ограничивала пробивные напряжения таких p-n-переходов на уровне 300–400 В. Это сужало применение диодов серии ВК в сетях с промышленным уровнем напряжения и требовало их последовательного соединения, что диктовало применение выравнивающих RC-цепочек, усложняло электрические схемы и конструкции выпрямительных устройств.

Необходимость повышения рабочих напряжений стимулировала исследования по разработке диффузных методов формирования многослойных структур с p-n-переходам и (В.Е. Челноков, В.М. Тучкевич).

В 1961 г. были разработаны вентили серии ВКД (вентили кремниевые диффузионные) на 200 А (диаметр кремниевого диска 25 мм) на напряжения около 1000 В. Это уже позволило комплектовать ими выпрямители электровозов и мотор-вагонные секции электропоездов для эксплуатации на участках железных дорог, питаемых переменным напряжением около 25 кВ.

Уже через год (в 1962 г.) были созданы первые отечественные силовые тиристоры, называемые тогда управляемыми вентилями (например, ВКДУ-150 — вентиль кремниевый диффузионный управляемый на ток 150 А). Вскоре счет модификаций, типоразмеров, типономиналов и конструкций вентилей пошел на десятки и сотни.

Несомненно, что особой вехой в развитии силовых полупроводниковых приборов (СПП) стало создание в середине 60-х годов диодов и тиристоров таблеточной конструкции. Двусторонний отвод теплоты позволил практически удвоить нормальные токи приборов при тех же площадях выпрямительных элементов.

Специфика технологии производства СПП, их уникальные свойства (высокая коммутационная способность, быстродействие, простота обслуживания, высокие КПД, надежность и долговечность) привели к бурному развитию силового полупроводникового приборостроения. Оно стало особым звеном в полупроводниковой электронике.

Следует особо отметить, что развитие в 60–70-х годах методов диффузионного легирования кремния бором, алюминием, фосфором и др. происходило с учетом свойств отечественного монокристаллического кремния. Жесткие требования к параметрам и характеристикам СПП привели к необходимости совершенствования технологии и повышения качества кремния.

Выращивание монокристаллов кремния методом Чохральского не позволяет достичь удельного сопротивления выше 100 Ом?см. Кроме того, разброс значений удельного сопротивления на торцах и по длине таких монокристаллов составляет 10–30%. Все это существенно ограничило возможности проектирования и создания СПП с высокими параметрами.

Получивший распространение в технологии СПП метод бестигельной зонной плавки монокристаллов кремния дал возможность изготавливать исходный материал с высокими значениями удельного сопротивления. Появилась проблема однородности легирования монокристаллов кремния по их длине и сечению, которая была решена в 70–80-х годах радиационными нейтронными методами.

Ядерная реакция, приводящая при облучении кремния медленными нейтронами к превращению атомов одного из изотопов кремния w атомы фосфора, позволила изготавливать однородные монокристаллы «-типа (легированные фосфором) с заданными диапазонами удельных сопротивлений и достаточными временами жизни неосновных носителей. Именно радиационно-легированный кремний (РЛК) позволил обойтись без импорта основного исходного материала и создать СПП, необходимые преобразовательной технике.

11.2.5. ПРЕОБРАЗОВАТЕЛИ ЛИНИЙ ПЕРЕДАЧИ ПОСТОЯННОГО ТОКА

Линии передачи постоянного тока высокого напряжения предполагались как средство передачи энергии на большие расстояния. Первой опытно-промышленной линией была передача Кашира — Москва; до настоящего времени эксплуатируется линия Волгоград — Донбасс. Разрабатывалась линия Экибастуз — Центр. В этот проект были вложены огромные материальные и интеллектуальные ресурсы. И хотя коренная перестройка нашей хозяйственной системы сделала невозможной в настоящее время реализацию подобных проектов, передача энергии постоянным током нашла применение для асинхронной связи энергосистем с различными частотами либо различными стандартами параметров электроэнергии. Убедительным примером такого рода служит выборгская вставка постоянного тока для передачи энергии России в Финляндию.

Первые передачи постоянного тока высокого напряжения были сооружены в нашей стране на основе ртутных вентилей (рис. 11.8). Однако ненадежность этих преобразовательных аппаратов в значительной степени затруднила их реализацию.

Рис. 11.8. Откачной высоковольтный ртутный вентиль с водяным охлаждением на ток 300 А и напряжение 130 кВ (1960 г.)

С появлением силовых тиристоров, успешным опытом их применения появилась возможность создания высоковольтных тиристорных вентилей (ВТВ), которые имеют ряд преимуществ по сравнению с их ртутными предшественниками. Тиристорные вентили позволяют создавать преобразователи на широкий диапазон напряжений и токов, требуют минимального обслуживания. Начиная с середины 60-х годов в СССР развернулись научно-исследовательские работы и проектирование преобразовательных подстанций на основе ВТВ. За сравнительно короткое время были достигнуты значительные успехи, и уже в 1972 г. были прекращены работы по созданию ртутных вентилей.

Первоначально создаваемые ВТВ предназначались для замены ртутных вентилей на действующих линиях передачи. В 1969 г. впервые в инженерной практике было осуществлено включение в эксплуатацию тиристорного моста напряжением 100 кВ и мощностью 15 МВт на действующей линии электропередачи Кашира — Москва. Разработка была выполнена в ВЭИ. На этой же передаче прошли испытания вентили, разработчиками которых были Научно-исследовательский институт постоянного тока (НИИПТ) и Энергетический институт Академии наук (ЭНИН).

В дальнейшем работы по созданию ВТВ сосредоточились в основном в ВЭИ. Они были направлены на создание оборудования для проектируемой сверхмощной линии передачи постоянного тока Экибастуз — Центр напряжением 1500 кВ и мощностью 6000 МВт.

В рамках этой программы совместно с заводом «Уралэлектроаппарат» был создан тиристорный мост напряжением 100 кВ и мощностью 90 МВт, предназначенный для работы в каскадной схеме на высшем потенциале по отношению к земле. С 1974 г. началась его опытно-промышленная эксплуатация.

Одним из передовых технических решений было применение оптоэлектронной системы управления на линии передачи постоянного тока. Оптоэлектронные каналы радикальным образом решают проблемы изоляции и помехоустойчивости системы управления вентилем и тем самым прокладывают путь к созданию ВТВ на сверхвысокие напряжения. Основные элементы этих каналов (специально разработанный в нашей стране в НИИ «Полюс» крупнейший в мире полупроводниковый квантовый генератор световых сигналов мощностью свыше 200 Вт, световоды для работы на высоких напряжениях и длиной свыше 30 м) освоены отечественной промышленностью, и, как показала практика, имеют высокую эксплуатационную надежность. Эти элементы позволяют одновременно управлять сотнями тиристоров с потенциала земли. При этом источники света и системы регулирования преобразователей могут находиться в отдельном помещении и соединяться с вентильным залом лишь с помощью световодов.

Рис. 11.9. Вентильный зал преобразовательного устройства, параметры плеча мостовой схемы: ток 700 А, напряжение 120 кВ (1981 г.) 

Параметры разработанных управляемых тиристорных блоков по мощности и напряжению почти в два раза превышают все существующие зарубежные аналоги. Блоки предназначены для комплектации сверхмощных тиристорных мостов напряжением 375 кВ и мощностью до 750 МВт.

Проведенные в ВЭИ совместно с заводом-изготовителем работы позволили в короткие сроки создать ВТВ для выборгской вставки постоянного тока и укомплектовать ими преобразовательные установки суммарной мощностью 1065 МВт (рис. 11.9). Эта работа была удостоена Государственной премии СССР (В.П. Фотин, И.П. Таратута, Ю.М. Резов, Р.А. Лытаев).

11.2.6. РАЗВИТИЕ И ПЕРСПЕКТИВЫ СИЛОВОЙ ЭЛЕКТРОНИКИ

В последние годы усилия специалистов, занятых в силовом полупроводниковом приборостроении, были сосредоточены на исследовании и разработке новых типов СПП, технологических методов и процессов, оснастки, оборудования и материалов, необходимых для их реализации, а также на разработке физико-математических моделей СПП и наборов прикладных программ для проектирования различных модификаций приборов с учетом прогнозирования их параметров и характеристик, включая возможные изменения при воздействии внешних факторов.

Указанные направления работ позволили повысить параметры СПП, достигнув для быстро восстанавливающихся диодов токов до 2000 А и напряжений 4000 В, для тиристоров — 2500 А при 4400 В и 3500 А при 1000 В, для быстродействующих тиристоров — 2000 А при 2400 В и времени выключения 25–63 мкс и 3000 А при 800 В и времени выключения 8–25 мкс.

В последние годы специалисты силового полупроводникового приборостроения работают над созданием следующих СПП:

быстродействующих тиристоров с повторяющимся напряжением 2500 В на токи 100–1600 А и временем выключения до 16 мкс;

тиристоров на токи 160–200 А, напряжения 500–700 В с временем выключения 1–2 мкс;

быстродействующих тиристоров с повторяющимся напряжением 1400 В, работающих при повышенной рабочей температуре до 140–150 °С. Такие тиристоры позволят перевооружить электрифицированный транспорт, решить многие задачи топливно-энергетических отраслей;

запираемых тиристоров на импульсный ток до 1250 А, напряжение до 6000 В и запираемых тиристоров с полевым управлением на ток до 250 А, напряжение до 1200 В;

нового поколения полупроводниковых модулей на базе IGBT-структур (биполярные транзисторы с изолированным затвором) на токи до 1600 А, напряжение 1200 В;

полупроводниковых ключевых приборов с полевым управлением на основе СИ-транзисторов (транзисторов со статической индукцией) и МОП-транзисторов (полевых транзисторов) с комплексом параметров, не уступающих IGBT.

В схемотехнике силовых полупроводниковых схем сложились типовые узлы, которые служат «строительным материалом» для создания практически любых силовых электронных устройств. Эти типовые узлы выпускаются в виде силовых интегральных модулей, использование которых облегчает задачу инженеров-разработчиков, упрощает монтаж и повышает надежность преобразователей. Получили распространение диодно-диодные модули с последовательным соединением (полумостовые схемы); диодно-тиристорные модули и тиристорно-тиристорные модули (полумостовые управляемые и полууправляемые схемы); диодные и тиристорные группы из трех вентилей с общим анодом (катодом); однофазные и трехфазные мостовые структуры. Силовые модули имеют различное конструктивное решение. Существуют потенциальные и беспотенциальные исполнения; в первых активные элементы соединены с металлическим основанием, во вторых они электрически изолированы керамическими прокладками.

Следующим важным новшеством, упрощающим разработку преобразовательных устройств, стала унификация средств сопряжения силовых полупроводниковых вентилей (силовых ключей) с цепями управления. Таким средством сопряжения информационных маломощных устройств с уровнями сигналов в единицы вольт и единицы миллиампер с управляющими цепями силовых модулей служит драйвер, который не только выполняет функции усиления мощности управляющего сигнала, но и обеспечивает потенциальную развязку с помощью оптронов или разделительных трансформаторов, питание формирователей управляющих сигналов от изолированных источников, выполнение некоторых вспомогательных функций, например, формирование комплементарных (взаимно инверсных) сигналов управления, введение задержек между сигналами управления.

Система интегральных модулей: микроконтроллеры — драйверы — силовые интегральные модули — образует замкнутую технологическую цепь управляемого преобразования электрической энергии.

Следующим шагом в развитии элементной базы силовой электроники стали так называемые интеллектуальные (разумные) силовые модули.

Интеллектуальный силовой модуль представляет собой сложную интегральную силовую схему (размер корпуса соизмерим с размером калькулятора). Модуль содержит управляемую силовую схему, например трехфазный мост, систему драйверов силовых ключей, внутренние схемы защиты от перегрузок по току и от перегрева, узлы потенциальных развязок между управляющими цепями, силовыми цепями и элементами конструкции модуля.

Интеллектуальные модули комплектуются в силовой части биполярными транзисторами, оптотиристорами, транзисторами с полевым управлением, быстродействующими триристорами и т.д.

Современная силовая электроника развивается в направлениях, которые отражают общие тенденции высокотехнологичного производства. Преобразователь электрической энергии представляет собой одно из звеньев в системе управляемого преобразования энергии и информации. Он ориентирован на удовлетворение запросов пользователя и обычно должен отвечать следующим требованиям:

простое подключение к источнику питания, которым обычно служит одно- или трехфазная сеть напряжением 220–380 В, частотой 50 или 60 Гц;

микропроцессорное управление (автоматизация основных операций, наглядная индикация, защита от некорректных действий и пр.);

продуманная конструкция и дизайн, отсутствие опасных, отвлекающих или раздражающих факторов, простота обслуживания, ремонта, контроля и диагностики.

Применение интеллектуальных силовых модулей позволяет осуществить защиту наиболее дорогостоящих узлов внутренними средствами модуля, минуя внешнюю обработку информации в контуре обратной связи.

Практически все преобразовательные устройства в настоящее время представляют собой замкнутые системы с обратной связью по одному или нескольким существенным параметрам. Таким образом, в этих устройствах должны быть интегрированы узлы силовых и информационных систем. Силовые модули с драйверами, микроконтроллеры с датчиками контролируемых параметров и внешние управляющие устройства образуют тот набор функциональных узлов, на основе которого разработчик может создавать управляемые преобразовательные устройства самого различного назначения. В последние годы активно разрабатываются узлы силовой электроники для источников бесперебойного электропитания; локальных систем регулируемого электропривода (например, частотно-регулируемый асинхронный привод насосов, вентиляторов); корректоров коэффициента мощности для компенсации влияния реактивных и нелинейных нагрузок; преобразователей для источников возобновляемой энергии (солнце, ветер и пр.), а также для утилизации вторичных энергоресурсов; преобразователей для нового вида приводов Switched Reluctance Drive — вентильно-индукторного привода (SRD — ВИП). Этот перечень можно продолжать, однако в наши дни очевидно, что интегрированные силовые и интеллектуальные устройства характеризуются быстрыми темпами развития, расширением сферы применения.

Ведущими зарубежными фирмами в области силовой электроники, в частности силовых модулей последних поколений, являются «Motorola» (США), «Siemens» (Германия), «Mitsubishi» (Япония), «Semikron» (Германия), IR («International Rectifier», США).

Рынок средств силовой электроники в настоящее время оказался одним из наиболее динамичных в электротехнике и наиболее интегрированных с рынком микроэлектроники.


11.3. ТЕХНОЛОГИЧЕСКАЯ ЭЛЕКТРОНИКА

Под технологической электроникой обычно понимается совокупность методов и средств для создания и использования электронных и ионных пучков или электромагнитных волн с целью непосредственного воздействия на объект, подвергающийся обработке.

Для осуществления такого воздействия во второй половине XX в. уже создано и продолжает появляться множество разнообразных устройств, установок и комплексов, которые в целом следует отнести к категории «технологического оборудования» независимо от того, служит ли оно металлургии или медицине, получению новых веществ или обработке материалов, производству или приготовлению пищевых продуктов, изготовлению электровакуумных приборов или интегральных схем.

Общепринятой классификации установок технологической электроники пока не существует, однако все разнообразие рассматриваемого оборудования укрупненно можно разделить на несколько классов. Это установки, использующие энергию:

электронных и ионных потоков;

электромагнитного излучения оптического диапазона (некогерентного и когерентного излучения);

электромагнитного излучения СВЧ-диапазона;

высокочастотных колебаний (нагрев проводников и диэлектриков в высокочастотном электромагнитном поле).

Собственно технологические вопросы излагаются в гл. 7, в данной главе уделено внимание только источникам.

Установки указанных классов могут дополнительно характеризоваться общими и отличительными признаками, зависящими от того, что собой представляет сам объект, бомбардируемый потоком заряженных частиц или облучаемый электромагнитными волнами; какой результат должен быть получен в результате технологического процесса; в каком режиме (непрерывном, импульсном) и в какой среде (рабочей, защитной, окружающей) он проводится и, естественно, в какой конкретной отрасли применяется.

11.3.1. ИСТОЧНИКИ ЭЛЕКТРОННЫХ И ИОННЫХ ПОТОКОВ

Под электронно-ионной технологией в широком смысле понимают комплекс методов обработки материалов и объектов потоками электронов, ионов, плазмы и нейтральных атомов. Данные процессы широко используются в металлургии, машиностроении, производстве изделий электронной техники, приборостроении, плазмохимии, медицине, а так же в научных исследованиях. Электронно-ионные технологии, в которых электронные и ионные пучки используются в качестве носителей энергии, обладают рядом преимуществ перед традиционными способами обработки: широким диапазоном регулирования концентрации энергии в пучках заряженных частиц вплоть до значений, недоступных для ранее известных источников, локальностью и селективностью воздействия, проведением процессов в вакууме, доступностью безынерционного управления и автоматизации.

История электронно-лучевой технологии непосредственно связана с развитием физики электронных пучков, электронной оптики и вакуумной техники. Среди основных этапов на пути технологического применения электронных пучков следует отметить первые опыты по плавке тантала М. Пирани (М. Pirani, Германия, 1905 г.), работы М. фон Арденне (M.V. Ardenne, Германия) по сверлению и испарению металлов в 30-е годы, развитые в дальнейшем К. Штайгервальдом (К. Steigerwald, Германия, 1950 г.) в области прецизионной обработки поверхностей, а также работы Дж. Стора [(J.A. Stohr), США, 1958 г.] в области технического применения электронно-лучевой сварки. Особо следует выделить пионерские работы по формированию и выпуску в атмосферу концентрированных электронных пучков, проведенные в 30–40-х годах С.Т. Синицыным в ВЭИ (СССР).

К началу 60-х годов в ряде стран (СССР, Германия, США, Франция, Англия, Япония) в основном сформировалось данное направление, включающее методы и установки электроннолучевой технологии для испарения материалов и нанесения покрытий, плавки и литья металлов, сварки, термообработки.

Становление электронно-лучевой технологии в России, начиная с 60-х годов, связано с активной деятельностью профессора МЭИ М.Я. Смелянского, работами ВНИИЭТО по разработке комплексов электронно-лучевого технологического оборудования для переплава металлов, ВЭИ по созданию электронных пушек в комплекте с системами питания. В эти же годы ученые ИЭС им. Е.О. Патона начали интенсивно разрабатывать технологию нанесения высокотемпературных покрытий на лопатки турбин авиационных двигателей.

Примерно в это же время начала интенсивно разрабатываться электронно-лучевая аппаратура для сварки (ИЭС им. Е.О. Патона); НПО «Орион» и НИИ «Исток» начали разрабатывать электронно-лучевые установки технологических процессов в микроэлектронике.

Довольно быстро определились основные направления разработки электронно-лучевой технологической аппаратуры, которые сохранились и в настоящее время. К ним следует отнести прежде всего:

переплав металлов, особенно тугоплавких (W, Та, Mo, Nb) и высокореактивных, с целью рафинирования и придания им более высоких качеств;

литье тугоплавких металлов, которое нельзя было осуществлять до появления электроннолучевой технологии;

сварка;

размерная обработка, перфорация отверстий.

Все эти процессы основаны на использовании термического воздействия электронных пучков на объект обработки. Наряду с термическим воздействием начали разрабатываться также основы радиационно-химического воздействия (электронная литография, применяемая при изготовлении элементов микроэлектроники, а также отверждение тонкопленочных диэлектрических покрытий).

Каждый из перечисленных технологических процессов предъявляет свои специфические требования к создаваемой электронно-лучевой аппаратуре, поэтому разработка ее проводилась на совершенно различных конструктивных принципах и подходах к созданию методов формирования электронных потоков и способов управления ими.

Электронные пушки для переплава и литья металлов должны обладать огромной мощностью — от 50 до 1000 кВт в непрерывном режиме, что обусловлено большими объемами переплавленного материала и высокой производительностью процесса. Однако плотность мощности на расплаве не должна превышать 103—105 Вт/см2 во избежание испарения металла. Пушки работают в условиях интенсивного газовыделения, и давление в плавильной камере колеблется в пределах 10—1—10—3 Па. Поэтому наибольшей сложностью в создании подобных пушек является учет ионных и плазменных процессов и обеспечение стабильной работы. За рубежом наибольших успехов в разработке таких пушек достигли институт фон-Арденне и фирма «Leibold-Hereus» в Германии; в России работы этого направления выполняет ВЭИ.

В основном в электронных пушках для плавки используются термокатоды. Однако существуют оригинальные разработки с использованием высоковольтного тлеющего разряда (ВЭИ) или разряда Пеннинга (Ю. Е. Крейндель, Институт сильноточной электроники, г. Екатеринбург) в качестве источника электронов. Пушки с этими катодами обладают рядом положительных свойств, делающих их применение предпочтительным для некоторых технологических процессов.

Применение электронных пушек для нанесения высококачественных и коррозионно-стойких покрытий на детали авиационных двигателей и компрессоров потребовало создания относительно маломощных (1–20 кВт) пушек, скомпонованных в испарители, позволяющие вести одновременно напыление нескольких компонент (фирма «Leibold Hereus», Германия; Институт электросварки им. Е.О. Патона, СССР).

Электронно-лучевая сварка получила более широкое распространение в технике по сравнению с процессом переплава металлов. Для этого процесса требуется высокая удельная мощность (105–107 Вт/см2) при относительно небольшой общей мощности (от единиц до десятков киловатт), необходимо высокое качество формирования луча. Проблемы стабильности здесь менее важны. Особое внимание уделяется точности управления электронным лучом по местоположению, сигналам датчиков обратной связи, автоматизации процесса. В СССР практически каждая отрасль промышленности разрабатывала установки, соответствующие своим потребностям: для авиационной промышленности — НИАТ, космической — ЦНИИТМ, радиоэлектронной — НПО «Исток» и т.п. Следует особо отметить, большой вклад в разработку электронно-лучевой сварки, сделанный ИЭС им. Е.О. Патона. Наряду с установками, разработанными и освоенными в производстве для широкой номенклатуры изделий машиностроения, в ИЭС им. Е.О. Патона созданы такие оригинальные системы, как установка для сварки толстостенных деталей с глубиной шва 100 мм и более при уровне напряжения 100 кВ и мощности 100 кВт, устройство для сварки в открытом космосе, сварочные установки с выводом электронного пучка в атмосферу.

Особый раздел электронно-лучевой технологии представляют установки для микроэлектроники. Электронный луч, обладающий в принципе большей разрешающей способностью по сравнению со световой оптикой, широко используется в электронной литографии, а также для гравирования при производстве микросхем. Здесь при высоком уровне напряжения (30–150 кВ) используются очень слабые токи и основное внимание уделяется безаберрационным линзам и источникам питания с высоким уровнем (0,01%) стабилизации напряжения. Следует отметить определяющую роль в разработке подобной аппаратуры А.Н. Кабанова (НПО «Орион», Москва). Особое направление в электронно-лучевой технологии представляет собой использование электронных пучков, выведенных в атмосферу. Вывод пучков осуществляется или через фольговые окна большого сечения, или через газодинамические окна малого диаметра, обеспечивающие выход пучка из вакуума непосредственно в атмосферу. Электронные пучки в атмосфере используются в радиационно-химической технологии: для полимеризации лаков и изоляционных пленок, вулканизации резины, стерилизации медицинского инструмента, очистки вод и др. Следует отметить, что внедрение подобной аппаратуры происходит медленно из-за ее высокой стоимости и необходимости обеспечивать биологическую защиту обслуживающего персонала. По уровню напряжения условно можно разбить эту аппаратуру на две группы: электронные пушки (уровень напряжения 150–300 кВ) и промышленные ускорители (300–3000 кВ).

Ускорители разрабатываются в основном в Институте ядерной физики им. Г.И. Будкера (г. Новосибирск). Они имеют достаточно широкий диапазон возможных применений, однако высокий уровень используемого напряжения делает их дорогими и громоздкими. Установки с пушками, разрабатываемые в ВЭИ, значительно дешевле и более мобильны, но толщина обрабатываемых объектов здесь существенно ограничена. Следует заметить, что разработка установок с выпуском пучков большого сечения в атмосферу стимулировала в 70–80-х годах создание мощных электроионизационных лазеров, в которых электронные пучки использовались для стабилизации электрического разряда. В последние годы интенсивно изучается возможность использования выведенных в атмосферу пучков для связывания оксидов азота и серы путем образования солей с целью очистки газообразных выбросов предприятий от токсичных веществ.

Вскоре после начала разработки и освоения электронных пучков для технологии в 70-х годах начали изучаться возможности применения ионных пучков. Интерес к применению ионных пучков в технологии вызван прежде всего возможностью внедрения ионов в кристаллическую решетку обрабатываемого материала с целью придания ему новых качеств.

Источники ионов находят широкое применение в самых различных областях науки и техники. Их принципы действия основываются на различных методах получения ионов. Ионные источники можно разделить на две основные группы:

1) собственно ионные, в которых ионный пучок формируется и ускоряется в электрическом поле вне плазмы после соответствующего разделения зарядов на ее границе;

2) плазменные ускорители, которые создают поток ионов без предварительного разделения зарядов.

Начало развития эффективных ионных источников относится к 30-м годам. Совершенствование этих приборов стимулировали исследования в области ядерной техники, эксперименты по магнитному разделению изотопов, исследования в области термоядерного синтеза методом внешней инжекции мощных высокоэнергетичных ионных пучков, а также работы по использованию ионных и плазменных потоков для получения реактивной тяги. В СССР основополагающие результаты в данных областях были получены в основном в Институте атомной энергии (ИАЭ) им. И.В. Курчатова.

В промышленности ионные пучки широко используются для ионного распыления материалов, осаждения пленок, ионного травления микроструктур, ионного легирования материалов, ионной литографии. Информативными и чувствительными являются методы ионного анализа материалов, развиваемые в последнее время. Среди них вторичная ионная масс-спектрометрия, эффективно используемая на предприятиях электронной техники. С 70-х годов ионная имплантация широко применяется в производстве полупроводниковых приборов в США, Японии, СССР и других развитых странах. Среди отечественных разработчиков физико-технических процессов и установок ионной технологии следует отметить ИАЭ им. И.В. Курчатова, Московский авиационный институт, Томский политехнический институт и др.

В разработке электронно- и ионно-лучевой технологической аппаратуры существенным является создание комплекса, включающего в себя источник электронного или ионного луча, системы питания и управления. Иногда этот комплекс называют энергоблоком. Управление положением пучка в пространстве и обеспечение сложного частотно-импульсного режима определяет качественные возможности технологического процесса.

В некоторых системах, например электронных пушках для испарения, необходимо отклонение пучков на 90 и даже 180°. Необходимость в перемещениях пучка привела к использованию сложных систем позиционирования. В некоторых технологических установках, например для изготовления элементов микроэлектроники, эти требования чрезвычайно высоки. В большинстве случаев используются микропроцессорные системы управления. Особой сложностью характеризуется устройство, обеспечивающее информацию о положении электронного луча, для чего используются вторично-электронная эмиссия и рентгеновское излучение, возникающее при контакте луча с объектом обработки и прохождением его через газовую среду.

Установки ионного азотирования основаны на интенсивной очистке поверхности металла потоком ионов с целью образования на поверхности тонкого слоя вещества с повышенной твердостью, стойкостью к износу и иным воздействиям. Для создания мощного потока ионов с высокой энергией обрабатываемые изделия помещаются в атмосферу смеси газов (азот, водород), в которой зажигается сильноточный тлеющий разряд, причем катодом служат изделия. При напряжении в сотни вольт и при мощности в сотни киловатт поток ионов воздействует на обрабатываемые детали в течение нескольких часов, после чего срок службы деталей повышается в несколько раз. Одной из серьезнейших проблем при создании мощных установок ионного азотирования стала опасность перехода тлеющего разряда в дуговой вследствие локальных неоднородностей (загрязнений) на поверхности материала. Условия протекания тока разряда в месте загрязнения становятся предпочтительными, и ток начинает концентрироваться на малой площади изделия. При большой концентрации мощности возможно повреждение изделия, если защита, отключающая питание, будет недостаточно быстродействующей. Разработка источников для электротехнологии успешно выполнялась сотрудниками кафедры промышленной электроники МЭИ под руководством О. Г. Булатова.

Мощные установки ионного азотирования, выпускаемые объединением «Уралэлектротяжмаш», положили начало ряду новых электротехнологических установок, использующих принцип дозированной передачи энергии. Важное место среди них занимают установки типа «Булат», в которых методом ионной бомбардировки на электроинструмент наносятся упрочняющие покрытия.

Электротехнологические установки сосредоточивают в себе новейшие достижения в области физики, технологии, металлургии, вакуумной техники, автоматического регулирования и силовой электроники. Многие оригинальные технические решения являются заслугой кафедры промышленной электроники МЭИ, где создана школа, готовящая современных специалистов.

Таким образом, современные электронно-лучевые технологические комплексы являются сложными устройствами, основанными на использовании таких достижений промышленной электроники, как источники электронных пучков, системы управления несколькими объектами одновременно с использованием специфических датчиков систем обратной связи и источников питания высокого напряжения с уровнем мощности от 1 до 1000 кВт, оснащенных электронными стабилизирующими и коммутирующими устройствами.

Главными достоинствами таких комплексов являются широкие функциональные возможности и высокая производительность. Безусловно, это направление будет в дальнейшем интенсивно развиваться.

11.3.2. ЛАЗЕРНЫЕ ИСТОЧНИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ

За короткое время лазерные приборы нашли широкое применение не только в науке (физика, химия, биология), но и в промышленных технологиях. Рассмотрим преимущественно становление лазерной техники для резки, сварки и термообработки.

Развитие квантовой электроники берет начало от первых работ В.А. Фабриканта и его сотрудников, высказавших в 1951 г. идеи о возможности использования неравновесных квантовых сред (в частности, неравновесно возбужденных состояний атомов ртути). В 1953 г. советские ученые Н.Г. Басов и А.М. Прохоров в целях усиления и генерации электромагнитных колебаний СВЧ-диапазона предложили использовать излучение «активных» молекул аммиака NH3. Были заложены основы теории и создан действующий образец молекулярного генератора — мазера [Н.Г. Басов и A.M. Прохоров в СССР, Ч. Таунс (С. Townes), США, 1954 г.]. Важнейшей для реального создания квантовых приборов явилась идея использования открытых резонаторов [A.M. Прохоров, 1958 г. и независимо А. Шавлов и Р. Дикке (A. Shavlov, R. Dicke), США], составляющих в настоящее время основу конструкции всех лазеров.

Примерно в то же время в США велась активная работа в данном направлении. В 1958 г. были опубликованы теоретические работы Ч. Таунса и А. Шавлова о возможности создания квантового генератора оптического диапазона. В 1960 г. Т.Г. Мейманом (T.G. Meiman, США) был запущен первый лазер, а в 1961 г. разработана теория лазерного эффекта. В этом первом лазере в качестве активной среды использовался кристалл рубина. В том же году в США был создан первый гелий-неоновый газовый лазер [А. Джаван, У. Беннет, Д. Эрриот (A. Javan, W. Bennet, D. Erriot)].

Основополагающие работы в области квантовой электроники были отмечены в 1964 г. присуждением Нобелевской премии Н.Г. Басову, A.M. Прохорову (СССР) и Ч. Таунсу (США). Дальнейшие работы привели к созданию разнообразных типов лазеров: твердотельных; газовых (атомарных, ионных, молекулярных); на красителях; химических; полупроводниковых.

Для размерной обработки (резки, сварки, термообработки) наиболее подходящими оказались твердотельные и газовые молекулярные (в основном СO2) лазеры.

При воздействии сфокусированного мощного (сотни ватт и более) лазерного излучения на поверхность твердого тела вещество нагревается, плавится, частично испаряется и ионизируется. В неоднородно нагретом веществе возникают сложные течения жидкости, паров, плазмы и окружающего газа. Перемешивание вещества оказывает, в свою очередь, существенное влияние на распространение лазерного излучения, приводя к дополнительной фокусировке либо дефокусировке.

Экспериментальные и теоретические исследования воздействия сфокусированного лазерного излучения при обработке материалов позволили определить основные моменты, качественно влияющие на обработку.

Исследования процессов при воздействии сфокусированного лазерного излучения и оптимизации лазерных характеристик позволили реализовать в нашей стране определенный набор лазеров и лазерных технологических комплексов. Сегодня имеется отечественное промышленное технологическое оборудование, использующее газовые лазеры. Это, в частности:

одномодовый СO2-лазер мощностью 80 Вт (НПО «Исток»);

одномодовый СO2-лазер мощностью 1 кВт с быстрой аксиальной прокачкой (г. Кстово Нижегородской обл.). Накачка производится продольным самостоятельным разрядом. При использовании двух координатного стола с компьютерным управлением может быть применен для резки металлических листов (скорость до 3 м/мин при толщине 1 мм), а также для резки фанеры и древесины толщиной до 40 мм;

быстропроточные газовые лазеры (МНТК ТЛ, г. Шатура Московской обл.) мощностью 1–1,5 кВт. Накачка производится самостоятельным поперечным разрядом. При использовании координатного стола может быть применен для резки и сварки. Возможно использование лазера для очень скоростной (вплоть до 15–20 м/мин) резки тонколистовых металлов, лазерной сварки, термообработки.

В твердотельных лазерных комплексах накачка проводится излучением ксеноновой лампы, возбужденной либо импульсно-периодическим, либо непрерывным сильноточным разрядом.

Лучшими параметрами обладает твердотельный комплекс ГПТЛ-100/500 (НПО «Ротор», г. Черкассы), в котором лазер излучает импульсы длительностью 0,4–0,8 мс с частотой следования до 150 Гц при средней мощности до 100 Вт. Двухкоординатный стол, сопряженный с персональным компьютером, имеет рабочее поле 450x500 мм при скорости перемещения до 3 м/мин. Этот лазерный комплекс предназначен для прецизионной резки тонколистовых металлов толщиной до 3 мм (скорость резки до 400 мм/мин при толщине листов нержавеющей стали 1 мм).

На базе быстропроточного газового лазера ТЛ-5, модернизированного твердотельного лазерного излучателя со средней мощностью до 250 кВт и двухкоординатного стола с рабочим полем 3x4 м и скоростью перемещения до 3,5 м/мин в ВЭИ разработан универсальный лазерный комплекс.

11.3.3. ИСТОЧНИКИ СВЧ-ИЗЛУЧЕНИЙ

В силу исторической приоритетности потребностей военной техники уже в предвоенные (30-е годы) и особенно в последующие 40–80-е годы усилия многих ученых и инженеров, целых научных и производственных коллективов были сосредоточены на создании и выпуске различных СВЧ-приборов и устройств военного назначения (до 90% ламп закупалось военной промышленностью). Такая концентрация сил происходила как в СССР, так и за рубежом (главным образом в США, Великобритании, Франции). Это привело к значительным успехам в СВЧ-технике в целом и, в частности, в развитии СВЧ-приборов. Тем самым создавалась и развивалась база для использования СВЧ-энергии не только в традиционных радиотехнических направлениях, но и в промышленности.

В технологической СВЧ-электронике функция электромагнитных волн — энергетическое воздействие на объект, при этом важную роль играет правильный выбор рабочей частоты электромагнитных колебаний и уровня мощности их источника. Оптимизация взаимодействия электромагнитных полей СВЧ-излучения с объектом требует учета многих факторов, таких как форма и объем объекта, физико-химический состав и структура и др.

СВЧ-технологии — относительно молодые направления техники. Их развитие началось в середине 40-х годов и расширялось по мере создания источников СВЧ-колебаний: триодов, тетродов, магнетронов, пролетных клистронов. Сегодня, на рубеже XX и XXI вв., номенклатура объектов, обрабатываемых СВЧ-излучением, заметно растет, но результаты воздействия на различные микро- и макрообъекты изучены далеко не во всей полноте. Их принято разделять на тепловые и нетепловые, а объекты обработки — на неживые и живые (биологические). Доминирующим в развитии технологий СВЧ-обработки следует признать СВЧ-нагрев неживых объектов (материалов, продуктов). Это направление начало особенно интенсивно развиваться в 60-х годах и уже глубоко проникло в промышленную и бытовую сферы.

В промышленных установках СВЧ-нагрева используются как одиночные источники СВЧ-энергии с требуемой выходной мощностью, так и комбинации из двух, трех и более (до десятков) СВЧ-генераторов, работающих одновременно или по определенной пространственно-временной программе. В бытовых установках (например, в микроволновых печах), как правило, используется один магнетрон.

С конца 60-х годов и по настоящее время изучаются медико-биологические эффекты воздействия СВЧ-облучения на живые микро- и макрообъекты. В конце 90-х годов начато создание установок автономных и комплексных воздействий, например СВЧ- и УФ-облучений. Так, в 1997 г. специалистами ОАО «Плутон» создана портативная установка бактерицидной обработки проточных жидкостей, медицинских инструментов, отходов. В конце 90-х годов начинают применять импульсные, в том числе моноимпульсные режимы для мощного локального теплового и, возможно, «нетеплового» СВЧ-воздействия на микрообъект в целях деструктуризации или «угнетения» этого микрообъекта. Частным случаем такого технологического процесса является безнагревная антисальмонельная обработка сырых яиц домашней птицы.

В технологических СВЧ-установках в основном используются магнетроны. Однако находят применение и пролетный клистрон (например, в СВЧ-сушилках крупногабаритных материалов), ниготрон (например, в мощных плазмотронах), гиротрон (например, в установках нагрева плазмы). Однако магнетрон вряд ли утратит свои позиции в XXI в. По-видимому, первым из исследователей, поместившим вакуумный диод с коаксиальными электродами в продольное магнитное поле для управления отсечкой тока, был немецкий инженер К. Гадинг (К. Gading, 1910 г.), запатентовавший такой прибор, видя в нем конкурента изобретенному за 3 года до этого Ли де Форестом триоду.

Однако наиболее заметный интерес к диоду в магнитном поле был проявлен учеными и инженерами разных стран в период 1919–1939 гг. Из первых исследователей «магнитного диода» со сплошным анодом и нитевидным прямонакальным катодом следует выделить американца А. Халла (A. Hull), в 1921 г. описавшего движение электронов в пространстве между коаксиальными цилиндрическими электродами в присутствии однородного магнитного поля. А. Халлом был введен термин «магнетрон». При этом магнетрон отнюдь не рассматривался как генератор СВЧ-колебаний. Эффект генерирования электромагнитных колебаний в магнетроне открыли в 1924 г. независимо друг от друга чехословацкий инженер А. Жачек (A. Zacek) (циклотронные колебания с длиной волны больше 30 см) и немецкий физик Е. Хабанн (Е. Habann) (колебания типа «отрицательного сопротивления» в магнитном диоде с разрезанным на два сегмента анодом и с подключенным внешним LC-контуром).

В период 1926–1936 гг. магнетрон развивался уже как генератор электромагнитных колебаний. В 1927 г. А.А. Слуцкин и Д.С. Штейнберг (СССР) впервые создали магнетрон в диапазонах 60–30 и 7,5 см. Основная тенденция этого периода — увеличение мощности и продвижение в диапазон все более коротких волн — решалась в рамках использования магнитного диода с разрезным анодом и внешнего колебательного контура.

В 1929 г. А. Окабе (A. Okabe), Япония, добился генерирования колебаний в диапазоне волн 3–5 см магнетроном с четырехсегментным анодом, а в 1932 г. Е. Мегоу (E.C.S. Megaw), Англия, получил колебания с длиной волны 40–60 см на магнетроне с двенадцатисегментным анодом. Важной вехой в развитии теории и практики создания магнетронов явилось введение в 1934 г. К. Постумусом (К. Posthumous), Голландия, концепции вращающегося поля для электромагнитных колебаний типа «бегущей волны» и принципа синхронизма при взаимодействии электронов с электромагнитными волнами.

В русле упомянутой задачи наращивания мощности и увеличения частоты, пожалуй, наиболее весомым надо считать появление в 1936–1940 гг. магнетронов с цельномедным анодом, содержащим непосредственно в теле анода несколько полых СВЧ-резонаторов вместо внешних LC-контуров. Работы в 1935–1940 гг. в СССР проводились под руководством М.А. Бонч-Бруевича инженерами Н.Ф. Алексеевым и Д.Е. Маляровым. Были получены рекордные по тому времени мощности непрерывных колебаний — до 300 Вт с длиной волны 9 см. В дальнейшем во всем мире стали разрабатываться именно многорезонаторные магнетроны.

Одной из ранних проблем, возникших в мно-горезонаторных магнетронах, явилась неустойчивость генерации, а с увеличением уровней мощности этой проблеме сопутствовала не менее существенная — недолговечность тонкого катода. Первая из них была успешно решена введением в анодную резонаторную систему связок [Дж. Сэйерс (J. Sayers), Англия, 1941 г.], а позже использованием разнорезонаторных систем [Дж. Рэндол, X. Бут (J.T. Randall, H.A. Boot), Англия]; вторая — введением полого цилиндрического катода с подогревателем. В радиоламповой технике такой катод был предложен русским ученым А.А. Чернышевым (1918 г.), а для магнетронов в 1933 г. — американским инженером К. Хенселлом (К. Hansel).

В период 1941–1945 гг. преимущественно создавались импульсные магнетроны для радиолокаторов. В этот период появилось множество усовершенствованных конструкций и технологий, измерений и испытаний. Вплоть до 1946 г. лидерство во всех этих направлениях удерживали страны Запада. После войны значительные успехи были достигнуты и в СССР (С.А. Зусмановский, А.П. Федосеев, П.И. Седов, И.М. Гаврилин и др.).

В СССР в период 1946–1975 гг. также преимущественно развивались импульсные магнетроны различных частотных диапазонов и уровней мощности, хотя с 60-х годов стали появляться и магнетроны непрерывного действия. Тем не менее в мировой практике уже к середине 60-х годов лидирующее положение в создании и выпуске магнетронов для технологических установок заняла Япония, в настоящее время экспортирующая на мировой рынок не только микроволновые печи, но и магнетроны различных уровней мощности (500–900 Вт) для их изготовления. Значительный рывок в 1988–1990 гг. был сделан в Южной Корее. В США и России разработан ряд типов магнетронов непрерывного действия для технологических целей на частотах 915 и 2450 МГц. Достигнуты уровни мощности 100 Вт — 100 кВт и КПД до 85%.

Современные магнетроны непрерывного действия для различных технологических установок содержат в подавляющем большинстве связочные резонаторные системы и спиральные прямонакальные катоды. Эти приборы характеризуются устойчивостью к изменениям нагрузки, что существенно, например, для таких новейших технологий, как СВЧ-накачка безэлектродных газоразрядных источников оптического излучения — светильников и облучателей.

Различные типы магнетронов в зависимости от уровня мощности имеют конструкции с воздушным или жидкостным охлаждением.

В определенных технологических установках используются и другие типы СВЧ-приборов, в частности уже упоминавшийся пролетный клистрон, многолучевой клистрон, обращенный коаксиальный магнетрон.

Первые образцы пролетныхчслистронов созданы в 1938 г. американскими инженерами В. Ханом (W. Hahn) и Г. Метколфом (G. Metcalf) и независимо братьями Р. и 3. Вариан (R. and S. Varian). Базовые идеи, реализованные в клистроне, принадлежат советским физикам Д.А. Рожанскому (1932 г.), А. Арсеньевой и О. Хайлю (1935 г.). В 90-х годах клистроны непрерывного действия уже обеспечили выходную мощность от нескольких ватт до нескольких мегаватт. Лучшие достижения по КПД приближаются к 80%, но, как правило, составляют 40–70% на фиксированной частоте.

На развитие клистронов оказало заметное влияние создание отражательного клистрона в СССР (Н.Д. Девятков, Е.Н. Данильцев и, независимо от них, В.Ф. Коваленко) и появление теоретических работ (Я.П. Терлецкий, 1943 г., С.Д. Гвоздовер, 1944 г.). Следует заметить, что В.Ф. Коваленко в 1940 г. первый предложил и многолучевой клистрон, который может конкурировать с современными магнетронами.

Гиротрон является одним из возможных типов мазера на циклотронном резонансе (МЦР), задуманного как мощный источник СВЧ-колебаний главным образом в миллиметровом и субмиллиметровом диапазоне. МЦР предложен в 50-х годах А.В. Гапоновым-Греховым, В.В. Железновым (СССР), а также Р. Твиссом (R. Twiss), Австралия, и И. Шнайдером (J. Schneider), ФРГ. Термин гиротрон ввел в 1967 г. А.В. Гапонов-Грехов. К 1990 г. именно этот тип МЦР был практически реализован в СССР, и были получены импульсные мощности более 1 МВт при длинах волн 6–7 мм. В США достигнут уровень непрерывной мощности 200 кВт при длинах волн 5 мм.

В конце 90-х годов гиротроны непрерывного действия обеспечивают мощности от 22 до 340 кВт соответственно на волнах 2–10 мм при высоких рабочих напряжениях (60–80 кВ).

Ниготрон — один из самых мощных нерелятивистских генераторных СВЧ-приборов. Идея построения и первое осуществление принадлежат П.Л. Капице (1962 г.). При длинах волн 18–20 см и КПД 40–45% образцы, создававшиеся в 70-х годах опытным производством НПО «Торий», обладали непрерывной мощностью до 200 кВт.

Этот тип источника СВЧ-колебаний пока не нашел широкого применения, его возможности еще не исчерпаны.

Можно прогнозировать значительный рост использования СВЧ-энергии в технологических установках XXI в. как непосредственно в совмещенном с источником оборудовании, так и весьма удаленном, но питаемом от СВЧ-генератора посредством канализации СВЧ-энергии по волноводам или по лучу через свободное пространство.

Использование в качестве энергоносителей электромагнитных СВЧ-полей ставит перед создателями новых технологий и соответствующего оборудования ряд проблем, решение которых определяет перспективы на следующее столетие. В числе таких проблем следует отметить:

повышение полного КПД установок в целом и преобразования СВЧ-энергии в облучаемом объекте;

обеспечение возможностей комбинированных воздействий на объект различными видами излучений;

предотвращение непреднамеренного излучения СВЧ-энергии в окружающее пространство и обеспечение беспомехового и экологически чистого функционирования;

обеспечение передачи СВЧ-энергии по лучу через свободное пространство сторонним потребителям.

11.3.4. МОЩНЫЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ ИНДУКЦИОННОГО НАГРЕВА

Индукционный нагрев металлов (слитков, изделий) обусловлен выделением энергии в металле при протекании в нем токов, наведенных магнитной компонентой электромагнитного поля. Для создания поля необходим источник переменного напряжения и индуктор. Особенностью индукционного нагрева является зависимость глубины проникновения поля в металл от частоты тока и свойств металла. Поэтому при необходимости прогрева по всей толще массивных титановых изделий используются токи пониженной частоты (несколько герц — 50 Гц); для поверхностной закалки изделий (валков прокатных станов, подшипниковых колец, зубьев шестерен) используется повышенная частота (сотни герц — несколько килогерц); для обработки тонких листовых материалов требуются уже радиочастоты (сотни килогерц). Источники переменного напряжения в зависимости от массы обрабатываемого материала могут иметь мощности от нескольких ватт (распыление газопоглотителя в вакуумных лампах) до тысяч киловатт (плавка в особо чистых условиях без риска загрязнения).

Источники переменного напряжения, перекрывающие названный диапазон частот и мощностей, относятся к различным классам преобразователей.

Самые мощные установки для низкочастотного индукционного нагрева работают на частоте 50 Гц. Они наиболее просты функционально, не требуют преобразовательных устройств, так как работают от промышленной сети, и нуждаются лишь в средствах пуска, защиты и регулирования мощности.

Мощные низкочастотные преобразователи для нагрева массивных слитков и поковок работают на частотах от единиц до десятков герц. Они выполняются на основе тиристорных непосредственных преобразователей частоты по трехфазно-однофазной схеме с циклическим изменением угла регулирования и раздельным управлением группами вентилей для формирования положительной и отрицательной полуволн тока. Низкие частоты обусловливают воздействие на большие массы металла, а следовательно, требуют больших мощностей (до тысяч киловатт).

В области повышенных частот (от 500 Гц до 1–2 кГц) использовались преобразователи на игнитронах и экситронах производства ВЭИ с сеточным управлением (мощностью до 1000 кВт). Для улучшения условий работы преобразовательного оборудования практиковалось объединение нескольких преобразователей в так называемую преобразовательную станцию, которая в меньшей степени была подвержена воздействию технологической неравномерности энергии, потребляемой несколькими индукторами. После освоения промышленного выпуска тиристоров с улучшенными свойствами, в частности Таллиннского электротехнического завода, высокочастотные преобразователи выпускались на большие мощности по классическим схемам инверторов тока, а также по схемам с удвоением выходной частоты (рис. 11.10).

Рис. 11.10. Схемы силовых генераторов на тиратронах на частоту до 2500 Гц с питанием от сети 50 Гц (1960 г.)
а — с общим катодом; б — с изолированными катодами 

Преобразователи повышенной частоты разрабатывались в лаборатории высокочастотной электротехники ЛЭТИ — Ленинградского электротехнического института и во ВНИИТВЧ — Институте токов высокой частоты им. В.В. Вологдина. Мощные преобразователи выполнялись как по классическим схемам инверторов тока, так и по схемам с умножением частоты. Разработчики шли двумя путями при решении вопроса об увеличении мощности: использование параллельного и последовательного соединения вентилей для повышения параметров эквивалентного вентиля, а также разработка схем с возможностью параллельной работы преобразователей, имеющих общую нагрузку. Разработка мощных отечественных преобразователей повышенной частоты выполнена А.С. Васильевым, А.Е. Слухоцким. А.В. Донским и Г.В. Ивенским [11.31, 11.32].

В области высоких частот (десятки килогерц и выше) получение значительных мощностей (десятки и сотни киловатт) было возможно только при использовании ламповых генераторов. На частотах 60–400 кГц и мощности до 100 кВт генераторы выполнялись по одной из разновидностей трехточечных схем. Для улучшения энергетических показателей лампы работали в режиме с сеточными токами в классе С. Проблема расчета и наладки таких генераторов усложнялась тем, что нагрузка существенно изменялась в ходе процесса разогрева деталей, что вызывало изменение параметров контура.

Термообработка полупроводниковых материалов, в частности плавка кремния и нагрев диэлектриков, осуществляется на частотах единицы — десятки мегагерц, а единичная мощность генераторов составляет единицы — десятки киловатт, поэтому эта область применения до настоящего времени остается за ламповыми генераторами.


11.4. ИНФОРМАЦИОННАЯ ЭЛЕКТРОНИКА

Разработка информационных средств производилась структурами, для которых промышленные устройства были побочным продуктом, основные лежали в оборонной сфере. Это затрудняет восстановление исторических данных о творцах новой техники в этой сфере и местах их деятельности.

Поэтому представляется целесообразным выделить группу наиболее фундаментальных идей и способов преобразования информации, получивших всеобщее широкое признание, и проследить развитие средств для реализации этих идей.

Электронные средства обработки информации нашли наибольший спрос и развивались наиболее интенсивно в технике связи, вычислительной технике, автоматике и управлении. Областью применения и сферой человеческой деятельности, которая стимулировала развитие информационной техники и поставляла как заказы, так и средства их выполнения, стала оборонная промышленность.

О темпах развития электронных средств в информационной электронике говорят такие даты: первый транзистор появился в 1948 г.; с 1951 г. стало интенсивно развиваться производство электронных вычислительных машин на электронных лампах (их принято называть первым поколением ЭВМ), а с 1960 г. — ЭВМ второго поколения на транзисторах; в 1964 г. появляется новое — третье поколение ЭВМ на малых

и средних интегральных схемах; с некоторой условностью можно говорить о следующем — четвертом поколении ЭВМ, выполненном на больших интегральных схемах — БИС (1970 г.).

По-настоящему революционный сдвиг в схемотехнической микроэлектронике произошел в 1971 г., когда фирмой «Intel» был создан микропроцессор — большая интегральная схема, где на одном кристалле — чипе (от английского chip) методами интегральной технологии созданы все основные части ЭВМ: процессор, запоминающее устройство, порты ввода и вывода. Первый микропроцессор обрабатывал 4-разрядные двоичные слова и мог использоваться для программируемых (гибко перестраиваемых пользователем) устройств автоматизации. Степень интеграции быстро нарастает, в 1980 г. сверхбольшие интегральные схемы (СБИС) насчитывают до 3 млн. транзисторов на одном чипе — многослойном кристалле кремния.

В развитии промышленных средств будем опираться на общеизвестные классификации информационных устройств по видам сигналов (аналоговые, цифровые) и так называемым поколениям средств электроники и микроэлектроники. Следует отдавать себе отчет, что информационное направление промышленной электроники представляет лишь одну ветвь современных информационных средств.

Перечень устройств, которые исторически входили в сферу промышленных применений, включает:

аналоговые устройства: усилители низкой частоты, фазочувствительные ламповые и транзисторные схемы; аналоговые стабилизаторы напряжения и тока; схемы управления командо-аппаратами, реле, приводами исполнительных устройств;

ламповые и транзисторные импульсные и ключевые устройства;

аналогово-цифровые и цифроаналоговые преобразователи (АЦП и ЦАП);

средства отображения информации индивидуального и группового пользования;

средства управления и регулирования: аналоговые и цифровые регуляторы; логические управляющие устройства; цифровые автоматы; централизованные системы управления и контроля; автоматизированные системы управления;

управляющие ЭВМ; микропроцессоры и микропроцессорные средства управления;

промышленные микроконтроллеры; средства программирования, отладки, эмуляции, обучения персонала; системы автоматизированного проектирования средств автоматизации.

Последними на настоящий момент этапами развития микропроцессорных средств управления можно считать цифровую обработку сигналов в реальном времени с помощью цифровых сигнальных процессоров, использование экспертных оценок и принципов самообучения в управлении процессами. Одним из примеров применения нестрогих понятий для построения систем автоматического регулирования служит создание регуляторов на основе нечеткой логики. Элементная и аппаратная основа современных управляющих систем сделала огромный шаг навстречу потребителю — пользователю, заказчику.

11.4.1. ЭТАПЫ РАЗВИТИЯ

Информационная электроника представляет собой совокупность аппаратных средств и алгоритмов (способов обработки и преобразования информации), выполняющих функции сбора, обработки, хранения, отображения информации и ее использования в задачах управления промышленными объектами и устройствами. За очень короткое (исторически) время функции информационных устройств промышленной электроники расширились и усложнились, элементная база претерпела изменения, которые принято характеризовать числом сменившихся поколений электронных приборов. Изменились конструкция и технологии изготовления, вклад средств электроники в технико-экономические показатели оборудования. С целью систематизации объектов описания и изучения предлагается хронологически-объектный подход: зарождение и первые шаги информационной электроники; первые применения в энергетике и машиностроении; направления развития информационной электроники.

Несмотря на многообразие функций, выполняемых информационной электроникой, она основана на ограниченном наборе фундаментальных технических идей. Значительная их часть известна с начала столетия, они используются в различных областях техники, упоминание о них можно найти в различных частях настоящей книги. Реализация этих идей в промышленных технических средствах преобразования информации существенно зависела от состояния и уровня технологии. В области информационной электроники наиболее распространенные преобразования информации включают:

усиление электрических сигналов;

сканирование, развертывающее преобразование сигнала;

обратную связь, построение замкнутых систем;

дискретизацию (квантование) сигнала по времени и уровню.

Более новые способы, получившие развитие в середине века:

аппаратное преобразование Фурье, в том числе быстрое преобразование Фурье;

цифровая фильтрация сигналов.

11.4.2. УСИЛИТЕЛИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ

Первые шаги в применении информационных устройств в промышленности связаны с усилением слабых электрических сигналов. Исторически первым применением усиления стала передача сигналов по радио. Воспринятые слабые сигналы нуждались в усилении для того, чтобы они могли производить необходимый эффект — звуковой (усилители радиоприемников), электротехнический (радиоуправляемые устройства). Электронные устройства в промышленности нашли применение в двух сферах: измерительной (получение информации о состоянии объекта) и исполнительной (осуществление энергетического воздействия). Вторая сфера предполагает возможность применения в автоматических (без участия человека) устройствах управления, поэтому требует более высокой надежности. Неслучайно первые электронные средства играют роль осведомителей или советчиков, оставляя решение за человеком (оператором). Усилительные устройства оказались весьма полезными в связи с необходимостью получения электрических сигналов о значениях неэлектрических величин и их унификации. Основным стимулятором создания электронных промышленных приборов послужило развитие электро- и теплоэнергетики. С появлением первых электрических и тепловых сетей возникла необходимость централизованного контроля и регулирования расхода рабочего вещества (топлива и теплоносителя), уровня жидкости, температуры и других параметров веществ, участвующих в технологическом процессе. С развитием химической, пищевой, легкой и других отраслей промышленности, естественно, расширялся список параметров, подлежащих контролю. К нему добавились вязкость, оптические свойства, химический состав веществ и т.п. Однако наиболее многочисленными стали приборы для измерения, регистрации и регулирования температуры с термопарами и терморезисторами.

Структура всех средств содержит измерительный преобразователь (датчик) первичной информации, преобразующий измеряемую величину в электрический сигнал; электронный узел усиления и преобразования электрического сигнала; электромеханическое устройство регистрации и (или) исполнительный механизм для энергетического воздействия на контролируемый параметр.

Рис. 11.11. Автоматический компенсатор постоянного тока, запись на бумажной ленте шириной 275 мм (1960 г.) 

Усилители на электронных лампах характеризовались значительным разбросом параметров и нестабильностью во времени коэффициента усиления. Поэтому широкое распространение получили методы устранения влияния усилителя на качество работы прибора и системы в целом:

применение компенсационных методов измерения;

применение отрицательных обратных связей в усилителях.

Получившие широкое распространение электронные автоматические мосты и потенциометры преобразовывали измеряемую величину в перемещение движка потенциометра и связанное с ним перемещение стрелки показывающего прибора (рис. 11.11). Перемещение прекращалось, когда снимаемое с потенциометра напряжение полностью компенсировало входной сигнал. Электронный усилитель, на вход которого поступает разность измеряемого входного и компенсирующего сигналов, выполняет роль нуль-органа; к нему не предъявляется жестких требований стабильности, линейности в широком диапазоне измеряемых значений, поскольку в установившемся режиме он работает в режиме, близком к нулевому значению усиливаемого сигнала.

Для ослабления других дестабилизирующих факторов в усилителях широко использовались отрицательные обратные связи. Анализу и расчету усилителей и других схем на электронных лампах посвящены работы американского ученого Г. Боде по теории и проектированию усилителей с обратной связью (1948 г.), A.M. Бонч-Бруевича, Г.С. Цыкина, А.А. Ризкина, Г.В. Войшвилло (1956–1963 гг.) [11.33–11.37].

Одно из ранних применений электронных усилителей связано со стабилизацией источников питания. Стабилизаторы напряжения на электронных лампах представляют собой замкнутую систему с глубокой отрицательной обратной связью, с усилителями постоянного тока и пониженным минимальным остаточным напряжением. Разработка таких усилителей потребовала создания специальных мощных регулирующих ламп и исследования вопросов устойчивости и коррекции замкнутых систем.

Системы с обратной связью (замкнутым контуром регулирования) образуют весьма обширный класс. К ним относятся практически любые усилительные устройства, регуляторы, стабилизаторы и др. Изучение таких систем дало мощный стимул к созданию теории устойчивости, разработке систем с требуемыми параметрами быстродействия и качества регулирования. Анализу и синтезу систем с замкнутым контуром регулирования посвящена обширная литература.

Наиболее ощутимый вклад в методы расчета систем автоматического регулирования внесли работы советских ученых М.А. Айзермана, С.В. Емельянова, Л.С. Гольдфарба, B.C. Пугачева, Я.З. Цыпкина (1965–1975 гг.). Заложенные ими и многими другими исследователями теоретические основы позволили нашей стране занять лидирующее положение в мире в области авиационной техники и ракетно-космических систем [11.39–11.44].

11.4.3. ИМПУЛЬСНЫЕ УСТРОЙСТВА

Импульсными называют информационные и энергетические электронные устройства, основанные на работе переключающих элементов и управлении моментами включения и выключения этих элементов. В зависимости от закона управления различают системы с амплитудной, частотной, широтной и фазовой модуляцией. Первые электронно-ионные регуляторы, основанные на фазоимпульсном методе регулирования, были разработаны в СССР в 1937–1941 гг. Л.С. Гольдфарбом и Г.Р. Герценбергом. Они содержали все узлы, характерные и для современных систем импульсного регулирования: измеритель регулируемой величины, компаратор, усилитель рассогласования, импульсный модулятор и усилитель мощности для энергетического воздействия на объект управления.

Импульсные энергетические преобразовательные устройства, основанные на работе управляемых силовых вентилей и полупроводниковых ключевых элементов в замкнутых системах импульсного регулирования, являются основой быстро развивающегося направления силовой (энергетической) электроники.

Информационные импульсные устройства основаны на преобразовании информации с использованием одного из видов импульсной модуляции, дискретизации данных и изменении числа координат. Наиболее распространенные виды преобразования информации импульсными устройствами: развертка (сканирование), частотно- и широтно-импульсная модуляция, измерение временных характеристик сигнала (моментов перепада, периода, частоты).

Впервые идея сканирования как последовательного просмотра точек плоского объекта была запатентована в Германии в 1884 г. Паулем Нипковым. Диск П. Нипкова был основой первого телевизора с механической разверткой. Благодаря развертке плоский двумерный образ преобразовывался в одномерный сигнал яркости.

На принципе развертывания основано осциллографирование процессов, изменяющихся во времени. Привычная всем картина изменения сигнала в функции времени на экране электронно-лучевой трубки может быть получена при условии равномерного движения изображающего элемента (электронного луча, светящейся точки) по одной координате и отклонения этого элемента по другой координате на значение, пропорциональное сигналу. Идея развертки для наблюдения процессов была выдвинута Л.И. Мандельштаммом в России в 1907 г., применение электронно-лучевой трубки с этой целью предложено в России Б.Л. Розингом в том же году. Эта фундаментальная идея дала множество выдающихся технических решений.

Применение развертывающего преобразования можно пояснить несколькими примерами из арсенала средств промышленной электроники.

Определение местонахождения поврежденного участка основано на использовании отраженного эхосигнала и точном измерении времени между посланным зондирующим импульсом и принятым отраженным.

К этому классу приборов относятся искатели повреждений в линиях электропередачи. Искатель повреждений генерирует зондирующий импульс напряжения, который распространяется в линии, порождая отражения от различных неоднородностей. Измеряя время между зондирующим и отраженным импульсами, можно определять местонахождение аварийного участка.

К этому же классу приборов относятся импульсные ультразвуковые дефектоскопы. Источником зондирующих сигналов в них служит пьезопреобразователь, дающий акустический импульс; он же используется и для обратного преобразования отраженного акустического сигнала в электрический.

Точное измерение времени между зондирующим и отраженным импульсами производится одним из двух способов: измерением расстояния между импульсами на экране электронно-лучевой трубки или подсчетом числа меток времени, генерируемых с эталонной частотой. Второй из этих методов оказался более предпочтительным и получил широкое распространение и развитие.

Время — наиболее удобная физическая величина для эталонирования и прецизионного измерения. Кварцевые генераторы давно и прочно вошедшие в практику радиотехнических систем, продолжают до наших дней сохранять свое место и значимость, как простые и сравнительно дешевые эталоны частоты или интервалов времени с точностью порядка 10-6–10-7.

Приборы для ультразвуковой дефектоскопии и искатели повреждений широко распространены в энергетике, машиностроении, железнодорожном транспорте. Они не требуют мощных установок высокого напряжения, как рентгеновские промышленные аппараты, экологически безопасны в отличие от радиоизотопных дефектоскопов. При частоте ультразвуковых колебаний 2–4 МГц удается обнаруживать неоднородности в материале площадью до 1 мм2. В Советском Союзе промышленное производство дефектоскопов ведется с 50-х годов.

Промышленное применение развертывающего преобразования связано с измерением ширины листа прокатываемого металла. При большой скорости движения полосы горячего металла в условиях вибрации единственным способом измерения могло быть бесконтактное оптическое сканирование. Измеритель проката был разработан в лаборатории автоматики Института черной металлургии (Г.Х. Зарезанко). Два сканирующих измерительных устройства определяли координаты обеих кромок листа, разность координат в 1960 г. с помощью показывающих и регистрирующих приборов позволяли быстро измерить и зафиксировать ширину ленты проката. Создателю установки пришлось решить проблему оптических помех, точного и воспроизводимого измерения положения фронта импульсов при сравнительно низкой крутизне.

Развертывающее преобразование в промышленных устройствах было реализовано с помощью специально разработанного для таких устройств прибора — диссектора. Сравнительно низкая чувствительность компенсировалась большой яркостью источника света. Быстродействие диссектора оказалось существенно выше, чем у передающих телевизионных трубок с накоплением заряда.

Естественным следующим шагом на пути развития развертывающих и сканирующих устройств стали установки промышленного телевидения. Их основные функции — наблюдение за процессами в условиях, когда непосредственное нахождение оператора вблизи объекта невозможно, нежелательно или сопряжено с опасностью [11.45, 11.46].

На развитие импульсной техники решающее влияние оказало развитие радиолокации. Это направление способствовало, во-первых, формированию импульсов высокой энергии. Повышение мощности излучаемого импульса при разумных ограничениях на среднюю энергию установки стало возможным лишь благодаря импульсному характеру работы при отношении периода к длительности импульса порядка 1000. Во-вторых, разрешающая способность импульсного устройства во времени могла быть повышена только за счет увеличения крутизны фронтов используемых сигналов. Как и во многих других направлениях, промышленное использование импульсной техники стало вторичным результатом их применения в оборонных отраслях. Благодаря импульсному характеру сигнала удавалось получать импульсы высоких энергий от относительно маломощных устройств. Этому способствовало свойство электронных ламп с оксидными катодами давать огромные по сравнению со средними токи импульсной эмиссии. Электронная лампа со средним током в десятки миллиампер могла длительное время эксплуатироваться с импульсными токами в несколько ампер.

В отличие от радиолокационных систем технические средства промышленной электроники заняли полный диапазон возможностей и способов импульсной модуляции. Регулирование среднего и действующего напряжений осуществлялось путем изменения коэффициента заполнения при широтно-импульсном регулировании. Исторически первой была освоена разновидность импульсного регулирования, при которой синхронное с сетью отпирание вентиля осуществлялось с запаздыванием по отношению к моменту естественной коммутации. Широтно-импульсное регулирование постоянного напряжения получило распространение в высокоэкономичных импульсных стабилизаторах постоянного напряжения. Это стимулировало развитие и инженерное приложение теории замкнутых импульсных систем.

Анализу импульсных систем в 60-е годы посвящены фундаментальные работы Я.З. Цыпкина [11.39]. В промышленной электронике для решения задач регулирования мощности импульсная техника стала главным инструментом воздействия. Классические методы управления преобразователями, основанные на использовании угла запаздывания отпирания управляемых вентилей, вначале базировались на сдвиге фазы управляющего сеточного напряжения ртутных преобразователей (так называемый горизонтальный метод). Следующим и гораздо более перспективным стал вертикальный метод. Сущность его состояла в фиксации момента сравнения развертывающего (гармонического или пилообразного) сигнала с управляющим. Вертикальный метод фазосмещения стал основным инструментом широтно-импульсного, фазоимпульсного и (в соответствующем исполнении) частотно-импульсного регулирования.

Многоканальная система импульсно-фазового управления преобразователями служит для управления многофазными преобразователями. Система содержит несколько (по числу фаз) источников опорного напряжения, синхронных с напряжениями питания соответствующих фаз. Напряжения опорных источников сравниваются с помощью компараторов с единственным для всех фаз управляющим сигналом. Задержка срабатывания каждого компаратора дает запаздывание момента отпирания вентиля в соответствующей фазе. Форма опорного напряжения (косинусоидальная или пилообразная) дает разные регулировочные характеристики.

Для успешной реализации вертикального способа фазосмещения необходимо было решить вспомогательные задачи формирования опорного напряжения, сравнивания двух сигналов, формирования управляющего импульса определенной амплитуды и длительности в момент равенства двух сигналов. Для выполнения этих задач были разработаны специальные импульсные схемы: в 1918 г. М.А. Бонч-Бруевичем было предложено катодное реле; в 1919 г. американцы X. Абрагам и Е. Блох изобрели мультивибратор; в 1919 г. американцы В. Иклс и Ф. Джордан изобрели схему, без которой трудно представить себе современную компьютерную цивилизацию, — триггер. Были сделаны сотни изобретений различного рода формирователей импульсов, генераторов линейно изменяющихся напряжений и токов, блокинг-генераторов (мощных импульсных схем с глубокой положительной обратной связью).

Анализ схем с обратными связями, возникновение колебаний в нелинейных системах, решение задач об устойчивости таких схем стали предметом работ А.А. Андронова, А.А. Витта, С.Э. Хайкина (1959 г.) [11.38].

11.4.4. РАЗВИТИЕ ПОЛУПРОВОДНИКОВОЙ ИНФОРМАЦИОННОЙ ТЕХНИКИ

Создание транзисторов в 50-х годах положило начало развитию полупроводниковой информационной техники.

Первый отечественный точечный транзистор обладал усилительными свойствами, однако большой технологический разброс параметров и сильное влияние температуры на параметры прибора сделали его мало перспективным прибором для усиления. Расцвет полупроводниковой схемотехники начался с создания и широкого распространения плоскостных сплавных транзисторов. Такие привлекательные качества транзисторных устройств, как отсутствие цепей накала и мгновенная готовность к действию, малые габариты и высокая механическая прочность, неограниченный срок службы, были главными аргументами в течение первых лет развития полупроводниковой схемотехники в споре со сторонниками ламповой электроники. Те, в свою очередь, указывали на низкое входное сопротивление, температурную нестабильность, сравнительно низкую предельную частоту.

Так или иначе, вновь появившийся прибор — транзистор привлекал внимание специалистов разных направлений. Появилась система параметров, учитывающая, в отличие от ламповых каскадов взаимосвязь не трех, а четырех параметров: входных и выходных токов и напряжений.

Были разработаны схемы каскадов и методы расчета цепей смещения, обеспечивающие стабильность режима покоя. Значительная доля транзисторных усилителей промышленного назначения работает с сигналом сетевой частоты 50 Гц и представляет собой фазочувствительный усилитель с выходом на постоянном токе. Такие усилители использовались для управления контакторами, электромашинными и магнитными усилителями, а также в качестве промежуточных звеньев для управления тиристорными и иными мощными силовыми ключами.

Подобные фазочувствительные усилители нуждаются в уменьшении мощности потерь в выходных каскадах. Здесь важную роль играет не столько КПД каскадов, сколько решение проблемы охлаждения транзисторов. Снижение мощности потерь было достигнуто заменой постоянного питающего напряжения фазочувствительных каскадов пульсирующим, полученным непосредственно в результате выпрямления переменного напряжения сети.

Полупроводниковые приборы предоставили разработчикам схем новые возможности: наличие двух видов транзисторов — p-n-р- и п-p-n-типов дало новые решения балансных симметричных схем.

Успешно разрабатывались транзисторные стабилизаторы напряжения. Их показатели были очень высоки: хорошая стабильность, высокая эффективность, множество дополнительных функциональных возможностей (защита от перегрузок, плавный пуск). Неслучайно стабилизаторы стали теми функциональными узлами, которые одними из первых начали выпускать в виде конструктивно завершенных гибридных, а затем и монолитных интегральных схем.

Продолжением и естественным развитием идеи высокоэффективных преобразований сигналов является использование ключевых свойств транзистора. Кажущаяся очевидной мысль о нулевых потерях мощности в идеальном ключевом элементе не сразу получила свое практическое выражение. Одним из первых завершенных транзисторных преобразователей с использованием ключевого режима стал хорошо известный генератор Ройера (С.Н. Royer, 1955 г., США) — автогенератор с магнитной связью на основе материалов с прямоугольной петлей гистерезиса. Схемы на основе подобных генераторов быстро вытеснили контактные вибропреобразователи в источниках питания. Для того чтобы ключевые режимы транзисторов можно было использовать в целях обработки аналоговой информации требовалось глубокое понимание спектральных преобразований сигнала при различных видах импульсной модуляции и существенное повышение частотных свойств транзисторов.

Одним из первых теоретических положений о возможности передачи аналоговой информации с ограниченным спектром последовательностью импульсов следует считать теорему В.А. Котельникова (1933 г.); идеи спектральных преобразований модулируемых сигналов были развиты в классических работах А.А. Харкевича. Для реализации экономичных импульсных методов обработки сигналов потребовалось достижение предельных частот транзисторов на несколько порядков выше частоты передаваемого сигнала [11.52].

Практические достижения этого нового и перспективного направления применения транзисторов были реализованы О.А. Коссовым (1964 г.) и О.А. Хасаевым (1966 г.). Важную роль в распространении знаний о транзисторах, их практическом применении в промышленной электронике сыграли ставшие периодическими выпуски сборников статей «Полупроводниковые триоды в автоматике» под редакцией Ю.И. Конева.

Значительным успехом транзисторной электроники стало создание и широкое распространение кремниевых биполярных транзисторов. Благодаря физическим свойствам кремния эти транзисторы обладают более высокой стабильностью свойств при колебаниях температуры, значительно меньшими обратными токами переходов по сравнению с германиевыми. По мере совершенствования технологии и повышения чистоты исходного материала повысились предельные напряжения на переходах с 20–50 В у первых германиевых транзисторов до нескольких сотен вольт у современных кремниевых. Так же быстро росли частотные свойства приборов: от десятков и сотен килогерц у первых сплавных германиевых приборов до десятков мегагерц у современных кремниевых.

Изобретение в 50-е годы полевых (униполярных) транзисторов вначале не оставило заметного следа в полупроводниковой схемотехнике. Положение изменилось с разработкой новых технологий изготовления переходов. Современные полевые транзисторы не уступают биполярным по предельным значениям параметров и частотным свойствам и образуют самостоятельную группу с явно выраженными свойствами и областью применения.

Было бы несправедливо описывать развитие полупроводниковой электроники только с позиции совершенствования и обновления элементной базы. Создание новых устройств и систем промышленной электроники затронуло все сферы производства. Промышленность успешно освоила автоматизированное проектирование и производство печатных плат, беспроводной монтаж, методы входного и пооперационного контроля изделия. Тем не менее производство новых типов изделий проходило последовательно одни и те же этапы: задание на разработку, создание структурной и функциональной схем, разработка принципиальной схемы с использованием доступных и разрешенных комплектующих элементов; далее конструирования, подготовки производства и т.д. Каждая новая разработка проходила все этапы. В этих условиях было естественно для изделий массового производства автоматизировать все этапы разработки и изготовления. Так родились системы автоматизированного проектирования (САПР), системы изготовления печатных плат, системы размещения деталей и автоматической пайки, контроля плат и готовых изделий.

Новой сферой применения средств электроники стала обработка логических сигналов. До сих пор предполагалось, что любой сигнал содержит информацию, которая ставится в соответствие с количественной характеристикой сигнала: мгновенным значением аналогового напряжения, частотой гармонического носителя, длительностью импульса в последовательности.

Наряду с такими сигналами все большее применение находили логические сигналы, которые могли принимать фиксированное множество значений и отвечали на вопрос, принадлежит или не принадлежит данный сигнал к одному из подмножеств.

Общеизвестными стали двоичные (бинарные) сигналы, которые давали однозначный ответ на вопрос, истинно или ложно то или иное положение. Информация в таком сигнале содержалась не в уровне сигнала, а в его принадлежности к некоторому множеству. У бинарных сигналов это множество соответствует двум различным значениям, которые определяются как высокий (единичный) и низкий (нулевой) уровень. С логическими бинарными сигналами часто встречаются в технике, когда возникает необходимость отобразить состояние контакта (замкнут, разомкнут), транзисторного ключа (насыщен или находится в режиме отсечки). На основе логических переменных были введены логические функции. Примером логической функции может служить правило функционирования некоторого устройства: агрегат должен быть включен, если присутствует напряжение сети, температура не вышла из допустимых пределов, а с момента подачи сигнала на включение прошло не менее 5 с. На начальном этапе развития логических устройств в 50-е годы была осознана возможность реализации любых алгоритмов логического управления при ограниченном элементном базисе. Достаточно иметь весьма ограниченный набор типовых логических элементов, например, И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ, чтобы из них можно было создать электронное устройство любой сложности и любого функционального назначения.

Первые типовые логические элементы создавались на основе транзисторно-резисторных, диодно-транзисторных, транзисторно-транзисторных ячеек (РТЛ, ДТЛ, ТТЛ), выполняемых из дискретных компонентов навесным монтажем или на печатных платах. Конструктивно они выполнялись в виде компактного параллелепипеда в пластмассовом корпусе, иногда залитого эпоксидной смолой (рис. 11.12). Монолитный брусок с набором внешних выводов имел хорошие механические свойства. Слабым местом устройств были внешние выводы и соединения. Проектирование логических устройств означало полное, исчерпывающее описание функционирования на языке булевой алгебры, приведение к выбранному элементному базису и схемотехническое (топологическое) проектирование.

Рис. 11.12. Первые микромодули (1955–1960 гг.)
а — объемно-плоские; б — микроэлементы, собранные в «этажерки»; в — герметизированные; г — блок аппаратуры на микромодулях 

11.4.5. ИНТЕГРАЛЬНЫЕ ЛОГИЧЕСКИЕ И АНАЛОГОВЫЕ МИКРОСХЕМЫ

Интеграция в электронике проявилась как результат объединения нескольких элементов схем в один функционально и конструктивно завершенный узел. На этом этапе развития полупроводниковой схемотехники произошло удачное объединение микроэлектроники с развитым аппаратом логического проектирования. В 50–60-х годах было освоено массовое производство интегральных схем малой степени интеграции (до нескольких десятков логических элементов в одном корпусе). На их основе стало возможным проектирование устройств, выполняющих любые требуемые функции.

Переход от логических модулей на дискретных компонентах к интегральным логическим схемам ознаменовал начало победного шествия интегральной электроники и схемотехники.

Методы интегральной технологии позволили получить на одном кристалле — микроскопическом кусочке полупроводника — целое микроэлектронное устройство, содержащее диоды, транзисторы, резисторы. Выполнение функциональных узлов на таких микросхемах стало значительно менее трудоемким, надежность возросла благодаря меньшему числу внешних соединений. Дальнейшее развитие микросхемотехники шло по пути поиска компромисса между повышением степени интеграции и универсальностью микросхем. Методами интегральной технологии можно изготовить весьма сложную схему, однако она будет находить ограниченное применение в силу своей специфичности, а следовательно, ее производство станет нерентабельным, такая микросхема окажется дороже узла, выполненного на элементах малой степени интеграции. Наряду со схемами малой степени интеграции (до 10 логических вентилей на одном кристалле) получили распространение средние (до 100 вентилей) и большие интегральные схемы (до 1000 вентилей). Здесь логическим вентилем назовем минимальную структуру, имеющую один вход и один выход (внутренний или внешний). В 1980 г. интеграция достигла 3 млн. вентилей на одном кристалле (чипе) — так называемые сверхбольшие интегральные схемы (СБИС).

Наряду с логическими интегральными схемами начался массовый выпуск аналоговых микросхем, в первую очередь операционных усилителей. Первые операционные усилители с навесным монтажем и на дискретных компонентах были сложны, громоздки и годились для использования в дорогостоящем оборудовании. Освоение балансных симметричных интегральных операционных усилителей произвело радикальные перемены в усилительной технике и возможностях ее применения. Прежде всего усилитель перестал быть устройством в конструктивном отношении, он стал элементом, модулем со скромным набором выводов. Массовый спрос породил массовое производство; усилитель стал дешевым, доступным элементом. Области их применения резко расширились. Благодаря развитию современной теории электрических цепей появилась возможность синтеза схем с заданными частотными и переходными свойствами, втом числе активных фильтров, корректирующих звеньев и других средств, задающих амплитудно- и фазочастотные характеристики. Один из главных аргументов скептиков — низкое входное сопротивление интегральных схем — отпал с появлением каскадов на полевых транзисторах. Успехи в области аналоговых интегральных схем привели к тому, что интегральные полупроводниковые микросхемы превзошли своих ламповых предшественников по всем важнейшим параметрам: коэффициенту усиления, входному сопротивлению, шумовым свойствам, предельной частоте. Пожалуй, они уступают только в максимальном уровне выходного напряжения. Неслучайно по массовости выпуска почти у всех фирм-производителей операционные усилители занимали первую строку.

В годы расцвета интегральной электроники первого поколения (50-е годы) быстро возникали новые функциональные решения на основе аналоговых узлов с использованием их нелинейных свойств. Помимо традиционных сумматоров, интеграторов, инвертирующих и неинвертирующих каскадов были разработаны компараторы, дифференциальные каскады, ограничители амплитуды, схемы защит от перегрузок, восстановители постоянной составляющей, фиксаторы уровня, мультивибраторы, одновибраторы, триггеры Шмитта. Специалисты, накопившие большой опыт работы со старой, классической аналоговой схемотехникой, получили в свое распоряжение мощный арсенал технических средств интегральной электроники.

Наличие цифровых и логических средств, с одной стороны, аналоговых — с другой породило необходимость создания цифроаналоговых и аналого-цифровых преобразователей. На смену классическим преобразователям, выполняемым на навесных компонентах и реализующим принципы кодоимпульсного и времяимпульсного преобразования, пришли интегральные схемы. Современные преобразователи в составе интегральных схем имеют развитую управляющую часть. Работа такой интегральной схемы представляет собой достаточно сложную последовательность действий. Пример алгоритма аналогово-цифрового преобразования:

выборка аналоговой величины, т.е. запоминание и хранение отсчета, сделанного по команде таймера или по условию;

формирование компенсирующего сигнала, который набирается из серии нормализованных значений, обычно двоичных; число разрядов может быть различным, распространенное число 10, что обеспечивает предельную разрешающую способность 0,1%;

запись в выходной регистр результата и подтверждение готовности к выполнению следующего цикла.

В современных ЦАП и АЦП использованы как уже известные принципы, например поразрядного взвешивания, так и те способы, которые не могли быть успешно реализованы из-за схемотехнической сложности. К последним относится способ считывания, который не имеет себе равных по быстродействию, но требует большого числа быстродействующих компараторов. Число компараторов, определяемое разрешающей способностью аналогового канала, может достигать нескольких тысяч. Естественно, аппаратная реализация такого аналогово-цифрового преобразования возможна только на основе больших интегральных микросхем [11.53, 11.54].

11.4.6. ЭЛЕКТРОННЫЕ АВТОМАТЫ С ПАМЯТЬЮ

В развитии интегральной схемотехники заслуживает упоминания такой этап, как синтез автоматов с памятью. В 1961 г. появились ставшие классическими работы В.М. Глушкова по синтезу автоматов, имеющих конечное множество внутренних состояний. Этому классу цифровых (логических) устройств принадлежит множество средств промышленной электроники. Описать функционирование автоматов можно, разделив их (со значительной степенью условности) на следующие узлы:

собственно узел памяти, выполняемый на основе триггеров и обладающий способностью находиться в требуемом множестве состояний;

комбинационная логическая схема, преобразующая множество входных управляющих сигналов в сигналы, управляющие переходами автомата из одного состояния в другое;

комбинационная логическая схема, преобразующая информацию о состоянии автомата и о входных сигналах в сигналы выхода.

Концепция управляющего устройства с определенным объемом памяти состояний и способностью преобразования алфавитов дискретных входных сигналов, сигналов возбуждения автомата (сигналов переходов) и сигналов выходов оказалась достаточно плодотворной. На ее основе были созданы инженерные методы формализованного синтеза автоматов в заданном элементном базисе. Разработка схемы некоторого устройства, описанного на языке специалиста в данной профессиональной области, могла быть сведена к последовательности хорошо структурированных действий. Так, создание устройства трехкратного автоматического повторного включения агрегата означало, что вначале требовалось определить множество входных сигналов, вызывающих отключение агрегата (исчезновение фазного напряжения, перегрузка по току), затем надо было организовать счетчик числа неудачных попыток пуска, таймер для задания интервала времени между попытками включения и таймер, который подтверждал бы успешную реализацию последней попытки и сбрасывал бы счетчик неудачных попыток. Далее на одном из хорошо развитых языков автоматных описаний (язык графов, таблиц соответствия, формул, функций возбуждения или граф-схем алгоритмов) надлежало описать функционирование автомата, Одна из важнейших задач этого этапа — убедиться в полноте описания, т.е. проверить, не попадает ли автомат в одно из тупиковых состояний и не «зависает» ли он там до вмешательства персонала. Следующий этап — выбор элементной базы, т.е. набора интегральных схем, из которого можно создать требуемое устройство. Кончается творческая инженерная работа специалиста по автоматизации созданием топологии схемы, связывающей входные датчики и источники управляющих сигналов с автоматом. Принципиальная схема как результат этого этапа разработки устанавливает внутренние связи между выводами интегральных схем, выводами автомата и исполнительными органами, внешними источниками сигналов, средствами индикации и регистрации [11.47–11.51].

Методы синтеза дискретных (цифровых) автоматов были успешно освоены тем поколением инженеров-разработчиков, которое уже имело в своем распоряжении малые и средние интегральные схемы, но еще не имело микропроцессоров и промышленных микроконтроллеров.

Развитие методов и инженерных методик синтеза цифровых автоматов является заслугой А.Д. Закревского, С.И. Баранова, В.А. Склярова и других специалистов в области разработки цифровых схем (1966–1977 гг.).

Проектирование цифровых устройств на интегральных элементах получило дальнейшее развитие благодаря возможности сочетать микросхемы разной степени интеграции в поисках наиболее рационального и экономичного решения. Инженер-разработчик, получив задание на создание цифрового устройства с заданными функциональными характеристиками, мог пользоваться набором интегральных модулей разной степени интеграции. Процесс разработки состоял в выборе типов модулей, способов их соединения и алгоритма работы.

Этот путь конструирования, представляющийся наиболее естественным, получил широкое распространение («конструктор»). Помимо него был разработан и стал применяться другой путь (назовем его «скульптор»), который воспроизводит известное высказывание о том, как скульптор создает свои произведения: он берет глыбу материала и удаляет из нее все лишнее.

Исходный материал представляет собой большую интегральную схему с регулярной структурой, в которой можно удалять (разрушать) лишние связи и вводить новые соединения путем воздействия на исходную схему электрическими сигналами. Оба способа разработки имеют свои преимущества, однако второй (применение однородной структуры) менее распространен из-за сложности проектирования и технической реализации.

Поскольку любая логическая схема, автомат с памятью могут быть выполнены с использованием весьма ограниченного набора типов малых и средних интегральных схем, то нельзя ли поставить задачу о создании БИС, которая стала бы основой для создания любой заданной структуры? Положительный ответ на этот вопрос был в значительной мере предопределен разработанной к этому времени техникой программирования постоянных запоминающих устройств (ПЗУ) и программируемых логических матриц (ПЛМ).

Универсальная исходная матрица ПЗУ, программируемых пользователем, допускает запись на нее любой информации путем пережигания выбранных перемычек в кристалле. Для записи осуществляется поочередный перебор адресов ячеек; по заранее рассчитанным адресам осуществляется запись данных, т.е. такое энергетическое воздействие на выбранную ячейку, которое делает ее хранителем состояния, инверсного исходному. Описанная технология соответствует однократно программируемому пользователем ПЗУ. За последующие годы (1983–1990 гг.) разработаны различные типы ПЗУ, в том числе модули со стиранием записанной информации ультрафиолетовым излучением или модули, в которых стирание производится посредством электрического сигнала. Каждая ячейка, адрес которой выбран, позволяет прочитать записанные в ней данные: нуль или единица в каждом бите слова данных. Это вполне эквивалентно выполнению данной ячейкой логической функции. Таким образом, соответственно запрограммированная БИС памяти может выполнять те же переходы и формировать те же последовательности слов на выходе, что и специально разработанная схема. Значит, для некоторого, достаточно обширного класса задач нет необходимости разрабатывать множество схем, необходимо иметь единственный кристалл, а различие функций закладывать на этапе программирования содержимого памяти. Тогда вместо разработки аппаратуры можно разработать и записать в программируемую память соответствующее содержимое. Высокая технологичность этой операции удачно сочетается с высокой надежностью полученного устройства благодаря уменьшенному числу внешних проводников и паяных соединений.

Следующий шаг на пути перехода от разработки структур схем к разработке функций, выполняемых БИС, был сделан с изобретением ПЛМ. Матрица обладает более широкими функциональными возможностями по сравнению с программируемой памятью. Однако промышленный выпуск ПЛМ не стал сколько-нибудь заметной вехой в создании интегральных средств автоматизации.

11.4.7. МИКРОПРОЦЕССОРЫ И МИКРОКОНТРОЛЛЕРЫ

Создание цифровых средств управления на основе БИС стало возможным после появления микропроцессоров (МП). В 1971 г. американская фирма «Intel» выпустила первое устройство («Intel 4004»), предназначенное для выполнения вычислительных операций в средствах вычислительной техники. Считают, что это событие по значимости сравнимо с изобретением транзистора.

Микропроцессор — это программно-управляемое устройство, осуществляющее обработку цифровой информации, выполненное в виде одной или нескольких БИС.

По существу, все вычислительные средства имеют сходное устройство и близкие принципы выполнения операций. Поэтому современные БИС микропроцессоров воспроизводят те структуры и операции, которые хорошо известны разработчикам и пользователям вычислительных средств. Различают два класса микропроцессорных систем: микроЭВМ и микроконтроллеры. Первые предназначены главным образом для вычислительных работ высокой производительности. Микроконтроллеры — управляющие системы, используемые для автоматизации управления технологическими операциями. Контроллеры характеризуются сравнительно малым объемом памяти, специфичным набором команд, наличием встроенных устройств ввода-вывода (УВВ).

В качестве УВВ могут использоваться АЦП и ЦАП, фотосчитывающие устройства, средства отображения информации и ее регистрации, концевые выключатели, терморезисторы и термопары, датчики перемещения, угла поворота и иные подобные устройства.

До появления МП стратегия электронных устройств автоматики формулировалась так: одна функция или группа взаимосвязанных функций — одно устройство. Появление новых функциональных задач означало необходимость разработки новых устройств. МП и их функциональное продолжение — микроконтроллеры нарушили эту стратегию. Теперь она может формулироваться иначе: если устройство выполняет операцию или достаточно длинную последовательность операций, которые могут быть реализованы с помощью процессоров, то поочередное их выполнение позволит одному процессору обслуживать несколько устройств и решать различные задачи. Благодаря этому аппаратные затраты на автоматизацию существенно сокращаются. Поскольку быстродействие процессора велико (одна операция выполняется за долю микросекунды), то последовательный характер обработки информации разных источников может быть незаметным для пользователя. Управление процессорами в системе, которая обслуживается микроконтроллером, потребовало нового способа мышления от разработчиков средств автоматизации. Основные изменения в подходах связаны с цифровым способом представления и обработки информации; необходимостью представления любой операции в форме, которая может быть выполнена МП за конечное число машинных операций. Важнейшей частью разработки становится составление алгоритма выполнения операции. Возможность решения многих задач обусловлена тем, что полученный результат может быть превращен в соответствующий управляющий сигнал, который запоминается и поступает на выход в течение некоторого времени; в это время процессор освобождается для ввода данных других источников информации, обработки их по другим алгоритмам или программам и подачи сигналов управления на другие выводы контроллера.

Процесс управления, таким образом, практически не отличается от выполнения вычислений по программе; возможности микроконтроллера могут быть более скромными, чем у вычислительной машины, в отношении точности (разрядности) и объема памяти. Микропроцессорное управление промышленными объектами может строиться на иерархическом принципе: процесс управления реализует дерево целей — совокупность ярусов, где каждый ярус описывает управление на соответствующем уровне иерархии.

Наиболее ответственные задачи решает ЭВМ высшего уровня, которая описывает поведение частей системы в более общем виде; выходная информация этой ЭВМ воспринимается как задание контроллерам низших уровней. Таким образом, каждый ярус управления в иерархической системе подчиняется сигналам высших уровней и управляет поведением низших.

Примером подобных иерархических систем могут служить микропроцессорные средства управления лазерной технологической установкой. Такая установка содержит несколько подсистем (поддержания вакуума и обеспечения газовой среды; обеспечения скорости прокачки газа; электропитания для поддержания оптимальных параметров тлеющего разряда; перемещения обрабатываемой детали и т.п.). Каждая подсистема выполняет локальную задачу, совокупность их обеспечивает требуемое качество процесса в целом.

Крупносерийный выпуск интегральных схем микроконтроллеров со встроенными таймерами, АЦП и ЦАП имеющих режим ожидания с малым энергопотреблением, сделал рентабельным их применение даже в сравнительно простых устройствах бытовой техники, автомобилях и т.д.

Каждая из составных частей микропроцессорной системы должна быть связана с процессором. Принятая так называемая магистральная система связей обладает большой гибкостью, способностью к модификации структуры и ее наращиванию.

Успехи в развитии интегральной электроники привели к появлению интегральных схем цифровых сигнальных процессоров. Благодаря большому быстродействию и высокой разрядности они дают возможность, например, анализировать с высокой точностью форму тока энергетической установки и управлять компенсатором неактивной мощности. С этой целью за один период напряжения сети (20 мс) выполняются тысячи операций с многоразрядными числами и осуществляется управление силовым коммутатором с широтно-импульсной модуляцией с тактовой частотой до 10 кГц.

Современные микроконтроллеры используются, в частности, для комплексной автоматизации автомобиля. Сюда входит управление двигателем и оптимизация его режима, управление антиблокировочной системой, климатизация салона, управление многочисленными механизмами — от стеклоочистителей до локаторов опасного сближения.

СПИСОК ЛИТЕРАТУРЫ

11.1. Миткевич В.Ф. Алюминиевый выпрямитель переменного тока и его применение //.Электричество. 1901. № 2 и 3.

11.2. Гершун А.Л. Некоторые свойства выпрямленного переменного тока // Электричество. 1901. № 22.

11.3. Теория дуги переменного тока и ее применение (обзорная статья) // Электричество. 1906. №20 и 22.

11.4. Ртутные выпрямители переменного тока (обзорная статья) // Электричество. 1911. №5.

11.5. Капцов Н.А. Физические явления в вакууме и газах. М.: Гостехиздат, 1933.

11.6. Фабрикант В.А. К количественной теории возбуждения атомов в газовом разряде// ЖЭТФ. 1938. Т. 8. №5.

11.7. Крапивин В.К. Производство ртутных выпрямителей большой мощности на заводе «Электросила» // Электричество. 1925. № 10.

11.8. Клярфельд Б.Н. Потенциал зажигания гелия, неона и аргона в присутствии паров ртути // ЖТФ. 1932. Т. 2. № 7–8.

11.9. Четверикова М.М. Управляемая электрическим полем сетка в ртутном преобразователе // Электричество. 1933. № 12.

1.10. Петухов Н.Н. Асташев М.А. Опыты с ртутным выпрямителем, управляемым с помощью сеток // Электричество. 1934. № 3.

1.11. Вологдин В.П. Выпрямители. М.: ОНТИ, 1936.

1.12. Каганов ИЛ. Электронные и ионные преобразователи тока. М.: Госэнергоиздат, 1937.

1.13. Дроздов В.И., Кении И.М. Падение в дуге металлического ртутного выпрямителя // Электричество. 1937. № 7.

1.14. Крапивин В.К. Современные ртутные выпрямители // Электричество. 1939. № 6.

1.15. Каганов ИЛ. Электронные и ионные преобразователи. М.: Госэнергоиздат, 1940.

1.16. Антик И.В., Бутаев Ф.И., Эттингер Е.Л. Одноанодные ртутные выпрямители // Вестник электропромышленности. 1942. № 4–5.

1.17. Грановский В.Л. Распад плазмы электрического разряда низкого давления // ЖТФ. 1943. Т. 13. С. 1363.

1.18. Савицкий В.Л. Мощный одноанодный ртутный выпрямитель // Электричество. 1946. №11.

1.19. Капцов Н.А. Электрические явления в вакууме и газах. М: Гостехиздат, 1947.

11.20. Грановский В.Л. Электрический ток в газе. Ч. 1. М.: Гостехиздат, 1952.

11.21. Капцов Н.А. Электроника. М.: Госэнергоиздат, 1953.

11.22. Уайт Д.К. Шестианодный мощный игнитрон советского производства // Электричество. 1939. № 2.

11.23. Шляпошников Б.М. Игнитронные выпрямители для тяговых подстанций. М.: Трансжелдориздат, 1947.

11.24. Патент 765582. Трехфазная мостовая схема / А.Н. Ларионов // Открытия. Изобретения, 1923.

11.25. А.с. 41072. Схема с нулевым управляемым вентилем / Г.И. Бабат // Открытия. Изобретения, 1933.

11.26. Бабат Г.И., Румянцев Н.П. Инвертор с нулевым вентилем // Электричество. 1936. №12.

11.27. Завалишин Д.А., Шукалов В.Ф. Вентильные преобразователи частоты, предназначенные для частотного регулирования скорости асинхронных двигателей // Вестник электропромышленности. 1961. № 6.

11.28. Шевченко Г.И. Стабилизация выходного управления ионного преобразователя частоты // Электричество. 1953. № 5.

11.29. Ривкин Г.А. Преобразовательные установки большой мощности, 2-е изд. М.: Госэнергоиздат, 1959.

11.30. Лабунцов В.А., Ривкин Г.А., Шевченко Г.И. Автономные тиристорные инверторы. М.: Энергия, 1967.

11.31. Донской А.В., Рамм Г.С., Вигдорович Ю.Б. Высокочастотные электротермические установки с ламповыми генераторами. М.: Госэнергоиздат, 1957.

11.32. Нетушил А.В., Жуховицкий Б.Я., Кудин В.Н. Высокочастотный нагрев в электрическом поле. М.: Госэнергоиздат, 1961.

11.33. Боде Г. Теория цепей и проектирование усилителей с обратной связью. М.: Государственное изд-во иностр. лит., 1948.

11.34. Войшвилло Г.В. Усилители низкой частоты на электронных лампах. М.: Связьиздат, 1963.

11.35. Цыкин Г.С. Электронные усилители. М.: Связьиздат, 1963.

11.36. Эрглис К.Э., Степаненко И.П. Электронные усилители. М.: Физматгиз, 1961.

11.37. Бонч-Бруевич A.M. Применение электронных ламп в экспериментальной физике. М.: Гостехиздат, 1956.

11.38. Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. М.: Физматгиз, 1959.

11.39. Цыпкин Я.З. Основы теории автоматических систем. М.: Наука, 1977.

11.40. Емельянов С.В. Системы автоматического управления с переменной структурой. М.: Наука, 1967.

11.41. Айзерман М.А. Теория автоматического регулирования. М.: Наука, 1966.

11.42. Пугачев B.C., Казаков И.Е., Евланов Л.Г. Основы статической теории автоматических систем. М.: Машиностроение, 1974.

11.43. Теория автоматического управления / А.В. Балтрушевич, Л.С. Гольдфарб, А.В. Нетушил и др. М.: Высшая школа, 1972.

11.44. Айзерман М.А., Гантмахер Ф.Р. Абсолютная устойчивость автоматических систем. М: Изд-во АН СССР, 1963.

11.45. Zworykin V.K., Ramberg E.G., Flory L.E. Television in science and industry. N.Y.-L, 1958.

11.46. Полоник B.C. Прикладное телевидение. M. — Л.: Госэнергоиздат, 1962.

11.47. Шеннон К. Символический анализ релейных и переключательных систем: Сб. Работы по теории информации и кибернетике. М.: Изд-во иностр. лит., 1963.

11.48. Shannon С. The synthesis of two-terminal switching cicuits // Bell System Techn. Journal. 1949. Vol. 28. № 1.

11.49. Гаврилов М.А. Структурная теория релейных схем. М.: Изд-во АН СССР, 1950.

11.50. Поспелов Д.А. Логические методы анализа и синтеза схем. М.: Энергия, 1964.

11.51. Глушков В.М. Синтез цифровых автоматов. М.: Физматгиз, 1962.

11.52. Харкевич А.А. Спектры и анализ. М.: Физматгиз, 1962.

11.53. Analog-digital conversion hand book. Edi-tied by D.H. Sheingold, Norwood, Analog Devices, 1972.

11.54. Analog-digital conversion notes. Editied by D.H. Sheingold, Norwood, Analog Devices. 1977.

11.55. Степаненко И.П. Основы теории транзисторов и транзисторных схем. М.: Энергия, 1977.

11.56. Аналоговые и цифровые интегральные микросхемы / Под ред. СВ. Якубовского. М.: Радио и связь, 1985.

11.57. Шило В.Л. Популярные цифровые микросхемы: Справочник. М.: Радио и связь. 1987.

11.58. Царев Б.М. Расчет и конструкция электронных ламп. М.: Госэнергоиздат, 1961.

11.59. Клейнер Э.Ю. Основы теории электронных ламп. М.: Высшая школа, 1974.

11.60 А.с. 3412. Электронный высоковакуумный вентиль / Г.И. Будкер, В.И. Переводчиков // Открытия. Изобретения, 1969. Патенты: Англия, Италия, Канада, Франция, ФРГ, Швеция, Швейцария, Япония.

11.61. Переводчиков В.И. Электронно-лучевые вентили // Электротехника. 1980. № 6.

11.62. Электронно-лучевое оборудование для металлургии и модификации поверхности/ В.И. Переводчиков, В.Н. Шапенко, В.М. Стученков и др. // Электротехника. 1992. №1.

11.63. СВЧ-энергетика. Т. 1–3: Пер. с англ. / Под ред. Э.Д. Шлифера. М.: Мир, 1971.

11.64. Алексеев Н.Ф., Маляров Д.Е. Получение мощных колебаний магнетронов в см-диапазоне волн // ЖТФ. 1940. Т. 10. Вып. 15. С. 1297–1300.


Глава 12.
ЭЛЕКТРОИЗМЕРИТЕЛЬНАЯ ТЕХНИКА

12.1. ВВЕДЕНИЕ

Развитие электроизмерительной техники неразрывно связано с развитием смежных областей науки и техники: физики, электротехники, метрологии, радиотехники, электроники, вычислительной техники и др. Многие фундаментальные идеи и технические достижения, родившиеся в этих областях, привели к созданию принципиально новых средств измерений. Прогрессу электроизмерительной техники способствует также постоянный рост требований, предъявляемых наукой и производством к увеличению числа измеряемых величин (как электрических, так и неэлектрических), точности, скорости и диапазонов измерений.

С другой стороны, прогресс в области электрических измерений приводит не только к научным открытиям, но и к развитию производства, так как любое, особенно современное, производство немыслимо без точного, объективного контроля технологических процессов, осуществляемого с помощью средств измерений.

Электроизмерительную технику можно разделить на три основные группы средств измерений, зародившихся и эволюционировавших на определенных этапах:

электромеханические приборы разных систем (магнитоэлектрические, тепловые, электростатические и т.д.), а также приборы сравнения с ручным уравновешиванием (компенсаторы и мосты);

аналоговые электронные преобразователи и приборы, а также приборы сравнения с автоматическим уравновешиванием;

цифровые электронные преобразователи, приборы и системы.

Электромеханические приборы были изобретены в XIX в. практически одновременно с великими открытиями в области электротехники, однако основной этап их развития приходится на первую половину XX в.

Компенсационный и мостовой методы измерений были почти одновременно предложены в 40-х годах XIX в., однако потенциально высокая точность этих методов могла быть реализована только в самом конце XIX в., когда были разработаны прецизионные резисторы, делители напряжения и источники ЭДС — нормальные элементы. Как самостоятельные изделия компенсаторы и мосты начали выпускать в начале XX в.

Первые аналоговые электронные измерительные приборы и преобразователи появились в 20-х годах XX в. в связи с зарождением и развитием радиоэлектроники, а автоматические компенсаторы и мосты — в 30-х годах.

Цифровые средства измерений возникли во второй половине XX в.; их становление и развитие теснейшим образом связано с прогрессом в области микроэлектроники и вычислительной техники.

Рассмотрим теперь основные этапы развития указанных групп средств измерений более подробно.


12.2. ЭЛЕКТРОМЕХАНИЧЕСКИЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Первыми магнитоэлектрическими приборами были гальванометры с подвижным магнитом в виде магнитной стрелки, находящейся в поле катушки с измеряемым током. Более 100 лет, до 30-х годов XX в., они оставались наиболее чувствительными приборами постоянного тока и широко использовались в качестве лабораторных приборов. С целью увеличения чувствительности и улучшения других технических характеристик конструкции этих приборов непрерывно совершенствовались: для отсчета показаний использовались световые указатели, для компенсации магнитного поля Земли применялись вспомогательные магниты, вместо коконовых шелковых нитей для подвеса использовались кварцевые, обеспечивающие меньший дрейф нуля, вводились электромагнитные успокоители и магнитные экраны и т.д. Получили распространение также вибрационные гальванометры с подвижными магнитами — резонансные приборы, используемые в качестве нулевых индикаторов в цепях переменного тока при частотах от нескольких десятков до нескольких сотен герц.

В 30-е годы был достигнут пик развития гальванометров с подвижными магнитами. По чувствительности они превосходили все имевшиеся в то время приборы. Например, чувствительность по току гальванометра, выпускавшегося германской фирмой «Сименс и Гальске», составляла 50 мм/нА, а чувствительность по напряжению гальванометра, выпускаемого английской фирмой «Кембриджская компания», — 330 мм/мкВ. С середины XX в. данные гальванометры были постепенно вытеснены более совершенными электронными средствами измерений.

Непосредственным предшественником электродинамических и магнитоэлектрических приборов с подвижной катушкой был самопишущий прибор — телеграфный приемник, сконструированный в 1867 г. лордом Кельвиным (У. Томсоном). Вращающий момент, действующий на подвижную катушку, возникал в результате взаимодействия магнитного поля катушки, подключенной к источнику постоянного тока (примерно 1 мА), с полем сильного электромагнита. Посредством капиллярной трубки с чернилами, механически связанной с подвижной катушкой, приемник записывал знаки азбуки Морзе на бумажной ленте.

В 1881 г. французский ученый Ж. д'Арсонваль использовал аналогичную идею для создания магнитоэлектрического гальванометра, заменив электромагнит постоянным магнитом. Ж. д'Арсонваль и М. Депре (Франция, фирма «Карпантье») вскоре усовершенствовали конструкцию этого гальванометра, основы которой оставались неизменными более 100 лет: наличие постоянного магнита, полюсных наконечников и неподвижного ферромагнитного сердечника, обеспечивающих равномерное радиальное магнитное поле в зазоре; подвижной катушки, подключенной к источнику тока посредством нитей подвеса или спиральных пружин. В 1888 г., используя аналогичные идеи, Э. Вестон построил в США более точные приборы — первые стрелочные магнитоэлектрические амперметры и вольтметры.

В те же годы на основе гальванометра М. Депре был построен первый электроизмерительный прибор с регистрацией показаний. В нем на подвижной пластине кроме обыкновенного указателя находился вертикальный стержень, оканчивающийся пером с глицериновыми чернилами. Это перо упиралось в барабан, вращающийся при помощи часового механизма. В результате движений пера и барабана на бумажной ленте, намотанной на барабан, рисовалась непрерывная кривая — зависимость регистрируемого тока от времени.

До середины XX в. магнитоэлектрические приборы с подвижной катушкой были самыми распространенными средствами измерений на постоянном токе. Они использовались (и продолжают использоваться) в качестве гальванометров, амперметров, вольтметров, кулонметров, веберметров, омметров и других приборов.

К достоинствам этих приборов следует отнести равномерность шкалы, высокие точность и чувствительность, малое собственное потребление энергии, слабое влияние внешних магнитных полей на их показания, возможность изменений диапазонов измерений в широких пределах.

Конструкции магнитоэлектрических измерительных механизмов постоянно совершенствовались, что значительно расширяло область их применения. В 1894 г. Г. Бругером в Германии были разработаны приборы со скрещенными катушками — логометры, показания которых определяются отношением токов в катушках. На их основе были построены омметры, показания которых практически не зависели от напряжения питания. Омметры, в свою очередь, использовались, например, для измерений температур с помощью термометров сопротивления, измерений давления с помощью реостатных преобразователей и т.п.

На основе магнитоэлектрических измерительных механизмов начали строить приборы для магнитных измерений. Еще в 1872 г. А.Г. Столетов использовал баллистический гальванометр для определения кривой намагничивания ферромагнитных материалов. Позже были разработаны магнитоэлектрические веберметры (флюксметры) — первые измерительные приборы со шкалами, отградуированными в единицах магнитного потока.

С начала XX в. начали серийно выпускаться щитовые магнитоэлектрические приборы разнообразных конструкций: квадрантные, секторные, трубчатые, плоскопрофильные, выпукло-профильные (рис. 12.1); позже были разработаны миниатюрные приборы с внутрирамочным магнитом. Щитовые приборы нашли широкое применение для создания пультов управления распределением электроэнергии (рис. 12.2).

На основе магнитоэлектрических измерительных механизмов были созданы не только приборы для регистрации медленно изменяющихся величин (токов, напряжений, температур и т.д.), но и светолучевые (шлейфовые) осциллографы с частотным диапазоном от 0 до 10 кГц. В последних использовались миниатюрные осциллографические гальванометры с высокой частотой собственных колебаний подвижной части.

Светолучевые осциллографы появились в 20-х годах XX в. Для развертки изображения, проектируемого на матовый экран, в них использовался вращающийся зеркальный барабан; была также предусмотрена возможность записи на фотобумагу. В отличие от более поздних моделей в качестве источника света применялись мощные дуговые лампы или мощные лампы накаливания, автоматически перегружаемые в момент съемки; для создания магнитного поля использовался электромагнит.

Рис. 12.1. Профильные щитовые приборы
а — выпуклопрофильный прибор; б — выпуклопрофильнмй прибор с плоским стеклом; в — плоскопрофильный прибор утопленного типа; г — выпуклопрофильный прибор выступающего типа
Рис. 12.2. Пульт управления распределением электроэнергии с плоскопрофильными приборами фирмы «Сименс и Гальске» (20-е годы XX в.) 

Первые светолучевые осциллографы были очень громоздкими и дорогими. Так, например, шестишлейфовый осциллограф Сименс — Блон-деля был выполнен в виде трех блоков, смонтированных на металлической стойке; дуговая лампа потребляла ток 8 А от источника постоянного напряжения 220 В. Первый переносный осциллограф фирмы «Вестингауз» (США, 1923 г.) весил 50 кг и стоил 6000 дол.

Светолучевые осциллографы использовались в течение примерно 50 лет. Во второй половине XX в. они были постепенно вытеснены электронными осциллографами и компьютерными средствами измерений.

Жизнь магнитоэлектрических приборов была существенно продлена в связи с разработкой измерительных преобразователей различных электрических и неэлектрических величин в постоянное напряжение или ток. На их основе разработаны многочисленные средства измерений, в которых данные приборы использовались в качестве выходных.

Например, с начала XX в. начали применяться термоэлектрические приборы на базе термопреобразователей, позволявшие измерять переменные токи и напряжения. Эти приборы, работающие в частотном диапазоне 0–50 МГц, широко использовались и во второй половине века. В середине века появились выпрямительные преобразователи, на основе которых были созданы универсальные приборы для измерений постоянных и переменных напряжений и токов, а также сопротивлений — так называемые «тестеры» — одни из самых распространенных средств измерений. Нельзя не отметить также использование магнитоэлектрических приборов в качестве выходных в аналоговых электронных средствах измерений — вольтметрах, омметрах, фазометрах, веберметрах и т.д.

Первым средством измерений, позволявшим производить измерения как на постоянном, так и на переменном токе, был тепловой электроизмерительный прибор, который сконструировал в 1837 г. швейцарский физик Огюст де ла Рив. В нем использовался эффект удлинения проволоки при нагревании ее током.

В 1886 г. во Франции был построен первый технический тепловой прибор со стрелкой — амперметр Кардью. В нем использовалась проволока из сплава платины и серебра длиной около 3 м и диаметром 0,06 мм, которая располагалась в длинной трубе — насадке на круглом приборе. В дальнейшем конструкция таких приборов была усовершенствована. Например, в тепловом приборе германской фирмы «Гартман и Браун» была использована платинородиевая проволока длиной всего 17 см, что позволило резко уменьшить его габариты.

Тепловые приборы широко применялись в первой трети XX в. в качестве амперметров, вольтметров и ваттметров в частотном диапазоне от 0 до 3 МГц. Затем они были вытеснены из области низких частот другими, более простыми, точными и надежными электромеханическими приборами, а из области высоких частот — термоэлектрическими.

В конце XIX в. в связи с необходимостью измерений высоких напряжений вернулись к старой идее построения электростатических вольтметров. За основу были взяты квадрантный электрометр и многокамерный вольтметр Кельвина. В начале XX в. были разработаны лабораторные и щитовые электростатические вольтметры с пределами измерений 50 В — 400 кВ. Обычно изоляцией между металлическими пластинами, к которым прикладывалось измеряемое напряжение, служил просто воздух; в качестве материала для крепления использовались фарфоровые или стеклянные изоляторы.

Для точных измерений высоких напряжений были разработаны более сложные конструкции. Например, фирмой «Гартман и Браун» выпускался абсолютный вольтметр на напряжения до 300 кВ. В нем вращающий момент, создаваемый силами электростатического взаимодействия между заряженными пластинами, уравновешивался противодействующим, создаваемым электродинамическим притяжением между двумя катушками, обтекаемыми вспомогательным током. Значение этого тока являлось мерой измеряемого напряжения. Изолирующим веществом служил сжатый азот под давлением 12 ат. Наибольшая приведенная погрешность вольтметра не превышала 0,5%.

Английская Кембриджская компания в 1913 г. разработала электростатический осциллограф, предназначенный для исследования переходных процессов в цепях высокого напряжения. Роль магнитного поля обычного светолучевого осциллографа в нем выполняло электрическое поле, возникающее между неподвижными пластинами при включении исследуемого переменного напряжения. Петля с зеркальцем, помещенная в это поле, состояла из двух изолированных проводников, к которым прикладывалось вспомогательное постоянное напряжение.

Электростатические вольтметры использовались на протяжении всего XX в., однако область их применения даже в технике высоких напряжений постепенно уменьшалась.

Предпосылки для разработки электромагнитных приборов были созданы еще в 1825 г., когда английский ученый В. Стерджен изобрел электромагнит. Одним из первых приборов этого типа был прибор с железной иглой, выпущенный в 1880 г. фирмой «Карпантье» (Франция). В этой конструкции подвижная игла из магнитомягкого железа занимала определенное положение под действием двух магнитных полей, сдвинутых в пространстве на 90°: поля постоянного магнита и поля катушки, создаваемого измеряемым током. При изменении тока изменялось направление результирующего магнитного поля, за которым следовала игла, являвшаяся стрелкой прибора.

В 1881 г. немецкий инженер Ф. Уиппенборн изобрел электромагнитный прибор с эллиптическим сердечником, а в 1884 г. немецкий профессор Ф. Кольрауш (1840–1910 гг.) разработал конструкцию электромагнитного пружинного гальванометра. Примерно в то же время были предложены использовавшиеся в течение последующих 100 лет и ставшие классическими конструкции с круглыми и плоскими катушками, а также сделаны первые попытки применения магнитопроводов для увеличения вращающего момента. Последняя конструкция достигла своего совершенства в 60-х годах XX в., когда на основе электромагнитного механизма с замкнутым магнитопроводом удалось создать дешевые и надежные малогабаритные щитовые приборы с малым собственным потреблением энергии — наиболее распространенные в те годы приборы для измерений в цепях переменного тока промышленной частоты (амперметры, вольтметры, частотомеры).

В конце XIX в. были разработаны также электродинамические приборы — наиболее точные для своего времени средства измерений на переменном токе промышленной частоты. Они стали широко использоваться в качестве образцовых переносных амперметров, вольтметров и, главное, фазометров. Эти приборы обладали важным свойством: после градуировки на постоянном токе они могли использоваться как на постоянном, так и на переменном токе практически без потери точности.

Предшественниками этих приборов были электродинамические весы У. Кельвина, а также крутильные электродинамические приборы Сименса, выпускавшиеся с 1883 г. Ценными качествами последних являлись высокая точность и надежность. Поэтому крутильные электродинамические приборы были модернизированы и долгое время выпускались в качестве образцовых фирмами США, Англии, Франции и других стран.

В 90-х годах XIX в. появились первые стрелочные электродинамические приборы. В XX в. были предложены многочисленные конструкции этих приборов, обеспечивших измерения с высокой точностью токов, напряжений, мощности в однофазных и трехфазных цепях, фазовых сдвигов и частоты. До последнего времени выпускались амперметры, вольтметры и ваттметры класса 0,05, фазометры класса 0,1; однако наибольшее распространение получили электродинамические ваттметры класса 0,5.

Высокая точность электродинамических приборов связана с отсутствием магнитопровода в конструкции их измерительного механизма. Данная особенность объясняет и главный недостаток подобных механизмов: малый вращающий момент, что не позволяет строить щитовые приборы, работающие в сравнительно жестких условиях эксплуатации. Этот недостаток удалось преодолеть в ферродинамических приборах ценой потери точности (их класс точности обычно не выше 0,5).

Одним из первых получил патент на конструкцию ферродинамического ваттметра А. Лотц (Германия, 1902 г.), но его прибор не был внедрен в производство. Однако развитие электротехники ставило перед инженерами задачи, которые решались наиболее просто путем применения ферродинамических приборов. Например, необходимость разработки ферродинамических ваттметров встала перед фирмой «Сименс и Гальске» в начале XX в., когда при приемочных испытаниях двигателей постоянного тока для прокатных станов потребовались точные измерения мощности. Речь шла при этом о токах до 10 кА и напряжениях до 1 кВ. Первоначально задача решалась путем записи тока и напряжения двумя приборами с последующим вычислением мощности, однако это не обеспечивало требуемой точности. В конце концов было решено изготовить специальный ваттметр. В 1909 г. этот ваттметр с разомкнутой магнитной цепью и магнитным шунтом для компенсации погрешностей был создан. Примерно в те же годы различные конструкции ферродинамических ваттметров были запатентованы в Англии.

Один из первых патентов на ферродинамический прибор был получен в 1909 г. М.О. Доливо-Добровольским (Россия).

В последующие годы XX в. ферродинамические приборы получили широкое распространение в качестве щитовых и регистрирующих.

С появлением первых электростанций возникла потребность в счетчиках электрической энергии. В качестве одного из первых счетчиков электроэнергии постоянного тока Т. Эдисон использовал вольтаметр, предложенный еще М. Фарадеем для измерения количества электричества. В этом приборе 0,001-я часть измеряемого электрического тока пропускалась через раствор азотно-кислого серебра. Ежемесячно приходилось измерять приращение массы катода, по которому рассчитывали расход электроэнергии.

Через несколько лет в Европе и США были изобретены более совершенные динамометрические и магнитомоторные счетчики постоянного тока, а также индукционные переменного тока (счетчики Арона, Бореля, Томсона, Ферранти, Шалленбергера и др.).

Создание последних стало возможным после того, как в 1888 г. Г. Феррарису и Н. Тесла независимо друг от друга удалось получить вращающееся магнитное поле. Трехфазные счетчики строились на основе однофазных в соответствии со схемами измерения энергии в трехфазных цепях.

Идея вращающегося магнитного поля лежала также в основе создания «приборов Феррариса» — индукционных ваттметров, амперметров, вольтметров и других средств измерений. Вращающий момент в них пропорционален измеряемой величине, а противодействующий — углу поворота подвижной части, как в обычных стрелочных приборах. Оригинальные индукционные приборы — фазометр и измеритель реактивной мощности — одним из первых разработал и внедрил в фирме АЕГ М.О. Доливо-Добровольский, запатентовавший эти приборы в 1892 г. В конце прошлого века фирма АЕГ приступила к серийному производству стрелочных индукционных приборов различного назначения.

В 20-е годы XX в. индукционные приборы начали постепенно вытесняться электромеханическими приборами других систем; в настоящее время сохранились лишь индукционные счетчики электроэнергии.

Бурно развивающаяся электроизмерительная техника требовала соответствующего метрологического обеспечения. Первые попытки создания мер электрических величин относятся к середине XIX в. Ученые разных стран начали создавать свои меры, принимаемые ими в качестве эталонов, а затем производили измерения в единицах, воспроизводимых этими мерами.

Так, например, во Франции эталоном единицы сопротивления служила железная проволока диаметром 4 мм и длиной 1 км (единица Бреге). В России Б.С. Якоби предложил сделать аналогичный эталон из медной проволоки, а в Германии таким эталоном являлся столб ртути длиной 1 м и сечением 1 мм.

К 1881 г. насчитывалось 15 различных единиц сопротивления, 8 единиц ЭДС и 5 единиц тока. Естественно, что такое многообразие крайне затрудняло сопоставление результатов измерений. Требовалось введение общепринятых международных единиц измерения электрических и магнитных величин.

В 1881 г. в Париже собрался 1-й Международный электротехнический конгресс. Он принял две системы единиц: электростатическую (СГСЭ) и электромагнитную (СГСМ), которые ранее были разработаны и приняты в 1862 г. Британской ассоциацией развития наук. При этом в дополнение к уже принятым Британской ассоциацией практическим единицам — ому, вольту и фараде — конгресс ввел еще ампер и кулон. На 2-м конгрессе в 1889 г. в список практических единиц были включены еще три: джоуль, ватт и квадрант (позже последней единице было присвоено наименование «Генри»).

На 3-м Международном электротехническом конгрессе (Чикаго, 1893 г.) были приняты спецификации для создания эталонов ома и ампера, которым было суждено на многие годы стать основой унификации электрических измерений. Конгресс постановил, что ом следует воспроизводить при температуре таяния льда с помощью столба ртути длиной 106,3 см и массой 14,4521 г, а ампер — с помощью вольтаметра, в котором из раствора азотно-кислого серебра должно выделяться серебро со скоростью 1,118 мг/с. Эти единицы были названы международными в отличие от абсолютных, теоретических единиц, принятых ранее.

Вслед за омом и ампером появились международные вольт, кулон, ватт, джоуль и др. В 1908 г. определения международных ома и ампера были уточнены Лондонской международной конференцией в связи с возрастающими требованиями к точности: длина ртутного столба была принята равной 106,300 см, а скорость выделения серебра — 1,11800 мг/с. В таком виде определения единиц электрических и магнитных величин действовали до 1 января 1948 г., когда был сделан переход от международных единиц к абсолютным.

Для технических измерений и поверки электроизмерительных приборов непосредственно использовались не эталоны, а периодически сличаемые с ними и между собой образцовые и рабочие меры: прецизионные источники ЭДС — нормальные элементы, измерительные катушки сопротивления четырехзажимной конструкции с сопротивлениями 0,0001 Ом и более, магазины сопротивлений, катушки индуктивности и взаимной индуктивности, измерительные конденсаторы, магазины емкостей и т.д. Для расширения диапазонов измерений были разработаны делители напряжения, шунты, добавочные сопротивления, измерительные преобразователи тока и напряжения.

Эти средства измерений начали создаваться в конце XIX в. В 1872 г. появился нормальный элемент Кларка, а в 1893 г. — более точный элемент Вестона, погрешность которого не превосходила 0,001%. Американский ученый Э. Вес-тон предложил также в 1885 г. медно-марганцевый сплав с высоким удельным сопротивлением и малым температурным коэффициентом — родоначальник манганина, до сих пор используемого для производства образцовых мер сопротивления и делителей напряжения.

Разработка прецизионных источников ЭДС, резисторов и делителей напряжения позволила приступить с начала XX в. к выпуску в качестве самостоятельных изделий компенсаторов постоянного тока, которые стали широко использоваться для поверки вольтметров, амперметров и ваттметров, а также для измерений ЭДС, токов, сопротивлений и функционально связанных с ними неэлектрических величин. Компенсаторы переменного тока с вибрационными гальванометрами в качестве нуль-индикаторов появились в 20-е годы XX в.

В те же годы начали выпускаться мосты постоянного и переменного тока для точного измерения параметров электрических цепей. Позже идеи компенсационного метода измерения напряжения, а также мостовые схемы легли в основу создания ряда аналоговых и цифровых приборов с автоматическим уравновешиванием.

Первые измерительные трансформаторы, появившиеся в самом начале XX в., удовлетворяли весьма скромным техническим требованиям и должны были градуироваться вместе с соответствующими приборами на рабочей частоте. Однако уже в 20-е годы это были вполне современные средства измерений разнообразных конструкций. Трансформаторы тока изготавливались на токи до 50 кА при рабочем напряжении до 250 кВ; трансформаторы напряжения выпускались на напряжения до 100 кВ.

С конца XIX в. началось бурное развитие самопишущих приборов, предназначенных для измерения и записи медленно изменяющихся величин: тока, напряжения, мощности, частоты, угла сдвига фаз, а также неэлектрических величин: температуры, давления и др. Первые самопишущие приборы использовали магнитоэлектрический измерительный механизм. Однако вскоре в них стали применяться, кроме того, ферродинамические, индукционные и электромагнитные механизмы, а также компенсационные и мостовые измерительные схемы.

В 20-е годы самопишущие приборы в конструктивном отношении были доведены до высокой степени совершенства. Например, при записи пером и чернилами использовались капиллярные перья с отверстием 0,07 мм, позволяющие при расходе 0,5 г чернил сделать линию длиной 300 м. Использовалась также точечная регистрация с помощью цветных лент (до шести различных красящих лент в многоканальных приборах). Применялись также искровые, световые и другие способы записи. Чаще всего запись осуществлялась на протягиваемую перфорированную бумажную ленту с полезной шириной от 60 до 250 мм.

В многоканальных самопишущих приборах использовалось либо несколько измерительных механизмов, либо один механизм с механическим коммутатором каналов; применялась также комбинация этих способов. Например, фирма «Гартман и Браун» выпускала прибор с двумя стоящими рядом измерительными механизмами, который писал 12 точечных кривых.

Та же фирма выпускала мультитермограф — прибор для записи температур в нескольких местах (рис. 12.3). Этот прибор был шестиканальным, в нем использовалось шесть различных цветных красящих лент. Одновременно с переключением красящих лент происходило переключение подвижной катушки магнитоэлектрического механизма на очередное измерительное устройство. В приборе использовалась точечная запись. Все шесть каналов опрашивались циклически за 108 с (18 с на канал).

В большинстве случаев продвижение бумаги в самописцах осуществлялось равномерно. Однако получили распространение и другие способы регистрации. Так в некоторых самопишущих максимальных ваттметрах — приборах, предназначенных для регистрации суточных колебаний в потреблении электроэнергии, — бумага продвигалась пропорционально активной мощности, а стрелка — пропорционально реактивной, так что за каждый период записи вычерчивался прямоугольный треугольник, гипотенуза которого пропорциональна полной мощности.

Рис. 12.3. Мультитермограф фирмы «Гартман и Браун» 

Самопишущие приборы с автоматической компенсацией — мосты и потенциометры — одной из первых начала выпускать фирма «Лидс и Нортруп» (США). Вместо электронного усилителя, применяемого в современных приборах этого типа, в них использовался гальванометр, с помощью которого могли замыкаться контакты в обмотках любого из двух реле («минимального» и «максимального»). При срабатывании реле приводился в действие часовой механизм, с помощью которого схема уравновешивалась, при этом стрелка гальванометра отклонялась от контакта в среднее положение. Конструкция прибора обеспечивала практическое отсутствие нагрузки на подвижную часть гальванометра.

В подобных приборах достигалась весьма высокая чувствительность. Автоматические потенциометры, например, выпускались на напряжение полного отклонения I мВ. Количество каналов от 1 до 16; быстродействие 1 мин на канал; основная приведенная погрешность не превышала 0,5%.

Одним из недостатков первых самопишущих приборов было использование для протягивания бумажной ленты механических часов, которые создавали небольшой вращающий момент и требовали периодического завода (обычно на 8–30 сут). Однако уже с конца 10-х годов XX в. в США для этой цели начали применять синхронный микродвигатель X. Уоррена. Этот двигатель при малых габаритах (его ротор в виде железного диска с намагниченными стальными иглами весил всего 1 г) и потребляемой мощности всего 3 Вт создавал вращающий момент почти в 1000 раз больше, чем у часов с заводом на 8 сут.

Применение электрических двигателей, а затем начиная с 30-х годов электронных усилителей позволило значительно улучшить технические характеристики самопишущих приборов и повысить их надежность.

По мере роста протяженности электрических сетей все больше и больше выступала на первый план проблема электрических измерений на расстоянии — телеизмерений. Весьма часто энергия дальних источников была значительно дешевле, чем местных, поэтому местные станции использовались только для покрытия пиков нагрузки. Для экономичного распределения мощности между электростанциями и потребителями электроэнергии необходимо иметь центральный пункт управления, находясь в котором, можно было знать о напряжении и мощности на каждом объекте, производящем или потребляющем электроэнергию.

С начала XX в. подобные диспетчерские пункты начали строиться в США, а затем и в Европе. Для обеспечения быстрой реакции на аварийные ситуации предпочтение отдавалось непрерывным измерениям на расстоянии с одновременной их записью. До 30-х годов показания электроизмерительных приборов передавались почти исключительно по проводам; проблема беспроволочной передачи хотя и ставилась, но не получила еще практического осуществления.

В первых телеизмерительных устройствах передача измерительной информации осуществлялась с помощью вспомогательного источника постоянного тока. Последовательно включались источник напряжения, реостат, линия связи и выходной прибор магнитоэлектрической системы. Оператор наблюдал за показаниями прибора и перемещал движок реостата вдоль шкалы, градуированной в единицах измеряемой величины. При этом соответственно изменялся ток в выходном приборе, находящемся на приемной стороне и градуированном в тех же единицах. Данный метод нетрудно было автоматизировать, связав механически подвижную часть прибора на передающей стороне с движком реостата. Подобные приборы выпускала, например, фирма «Сименс и Гальске».

Аналогичная идея использовалась для суммирования показаний кило ваттметров. Каждому прибору соответствовал свой реостат; все реостаты включались последовательно с источником напряжения и задавали ток в выходной прибор, находящийся на расстоянии до 300 км.

Для телеизмерений на переменном токе использовались преобразователи переменного тока в постоянный, расположенные на передающей стороне. При этом передача велась постоянным током. Так, для измерения переменного тока в телеизмерительном устройстве Кембриджской компании вторичная обмотка трансформатора тока замыкалась на нагреватель термопреобразователя. Постоянный ток, пропорциональный термоЭДС, использовался для передачи. Для телеизмерений мощности использовались два термопреобразователя, включенных по схеме, реализующей суммарно-разностный метод. Из-за малости термоЭДС (десятки милливольт) информация могла передаваться лишь на небольшие расстояния (до 20 км).

Другой способ преобразования мощности в напряжение постоянного тока предложил в 1911 г. А. Лотц. Известно, что в индукционном счетчике активной или реактивной энергии частота вращения диска пропорциональна мощности. А. Лотц предложил связать с подвижной частью счетчика генератор постоянного тока; напряжение, создаваемое этим генератором, пропорционально частоте вращения, а следовательно, измеряемой мощности. В 20-х годах подобные телеизмерительные устройства выпускались во Франции и Германии.

Существенным недостатком телеизмерительных устройств с передачей информации постоянным током является влияние изменений сопротивления линии связи на точность измерений. Поиски путей преодоления этого недостатка привели к созданию в 20-х годах импульсных методов телеизмерений.

Одну из первых времяимпульсных систем создала в 1928 г. германская фирма «Телефонверк». В этой системе угол отклонения стрелки любого прибора преобразовывался с помощью специального электромеханического устройства в длительность импульсов, поступающих на самописец. Для передачи информации не требовалось специальной линии связи, а можно было использовать существующие линии, в частности телефонные.

Примерно в то же время германская фирма «Телефункен» построила первую числоимпульсную телеизмерительную систему, предназначенную для передачи показаний счетчиков электроэнергии. Частотно-импульсный метод реализовала в своей системе фирма «Вестингауз» (1924 г.). Для передачи информации фирма использовала существующие телефонные линии, причем передаваемые импульсы тока практически не влияли на качество телефонной связи.

В нашей стране производство электроизмерительной техники начало интенсивно развиваться с 20-х годов XX в. В 10-е годы в России было только два небольших завода электроизмерительных приборов в Санкт-Петербурге (фирм «Гейслер» и «Сименс-Гальске»). На них производилась сборка приборов из импортных деталей. Кроме того, в небольших количествах средства измерений изготавливались в мастерских некоторых университетов и научных учреждений. Более чем на 90% потребности страны в электроизмерительной технике удовлетворялись за счет импорта.

Однако к тому времени наша страна уже располагала научным потенциалом, необходимым для быстрого развития электроприборостроения. Исследования выдающихся физиков А.Г. Столетова и П.Н. Лебедева до сих пор могут служить образцами постановки измерительных экспериментов. А.Г. Столетов представлял Россию на Первом Международном электротехническом конгрессе.

Огромный вклад в развитие метрологии внес Д.И. Менделеев, возглавивший в 1892 г. Главную палату мер и весов в Санкт-Петербурге, где в 1900 г. было организовано специальное отделение для поверки электроизмерительных приборов. Там в 1909 г. А.Н. Георгиевский и М.Ф. Маликов приступили к созданию эталонов ома и вольта.

В начале XX в. отечественными учеными был предложен ряд оригинальных средств измерений электрических величин. Например, в 1909 г. М.А. Шателен и А.А. Чернышев создали один из первых образцов электронно-лучевого осциллографа; в 1910 г. А.А. Чернышев разработал высоковольтные вольтметры и ваттметры.

В середине 20-х годов в Ленинграде на базе заводов «Сименс-Гальске» и «Гейслер» было налажено производство лабораторных и щитовых амперметров и вольтметров магнитоэлектрической и электромагнитной систем, четырехплечих мостов постоянного тока, а также счетчиков электрической энергии. В 1927 г. там же вступил в строй новый завод «Электроприбор», начавший массовое производство электроизмерительных приборов.

С 1929 г. Ленинградский политехнический институт начал подготовку инженеров — специалистов по электроизмерительной технике. Большой вклад в разработку методов проектирования электромеханических измерительных приборов и подготовку инженерных кадров внесли Н.Н. Пономарев и Е.Г. Шрамков.

В 30-х годах во многих городах страны были построены научно-исследовательские институты, конструкторские бюро, заводы по разработке и производству электроизмерительной техники (ЗИП в Краснодаре, «Точэлектроприбор» в Киеве и др.). Со второй половины 30-х годов постепенно начали складываться новые научно-педагогические школы специалистов в области электроизмерительной техники. Становление этих школ тесно связано с именами К.Б. Карандеева, Л.Ф. Куликовского, М.И. Левина, П.П. Орнатского, А.В. Талицкого, А.В. Фремке, P.P. Харченко, В.М. Шляндина и др.


12.3. АНАЛОГОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ

Начало качественно нового этапа развития электроизмерительной техники связано, в первую очередь, с зарождением и развитием радиоэлектроники. Проникновение элементной базы и научных идей радиоэлектроники в измерительную технику привело к созданию радиоизмерительных приборов: электронно-лучевых осциллографов, электронных вольтметров, омметров, частотомеров, фазометров и ваттметров, измерительных усилителей и генераторов, анализаторов спектра и т.д. Применение радиоизмерительных приборов позволило резко расширить динамический и частотный диапазоны измерения электрических и магнитных величин, а также создать разнообразные измерительные преобразователи неэлектрических величин в электрические с высокими метрологическими характеристиками.

Первые научные открытия, положившие начало современной осциллографии, были сделаны в конце XIX в. Однако прежде чем осциллограф стал широко распространенным средством измерений, должно было пройти полвека. Нужно было преодолеть массу трудностей, связанных с получением требуемого вакуума, фокусировкой электронного луча и управления им, обеспечением достаточной яркости изображения, построением генераторов развертки, усилителей и т.д.

Одним из первых был построен осциллограф с тлеющим светом, запатентованный в 1904 г. немецким ученым Г. Герке. В нем использовалась стеклянная трубка длиной 275 диаметром 35 мм, заполненная азотом, в которой помещались два электрода длиной по 60 и шириной 10 мм. Было эмпирически установлено, что над электродом, который в данный момент служит катодом, появляется свечение в виде тонкой линии, длина которой пропорциональна мгновенной силе тока. Длина светящегося отрезка при токе 60 мА составляла примерно 50 мм. За счет снижения яркости можно было повышать чувствительность путем уменьшения давления газа в трубке.

Развертка изображения осуществлялась с помощью вращающегося зеркала; частота вращения достигала 200 об/с. Позже были разработаны другие конструкции данного осциллографа с частотным диапазоном до 1 МГц. Однако из-за низкой точности и ряда других серьезных недостатков этот прибор не выдержал конкуренции с катодным осциллографом — будущим аналоговым электронно-лучевым осциллографом.

Первые катодные осциллографы строились на основе трубки Брауна. Электронно-лучевые приборы с термоэлектронными катодами появились существенно позже, в 30-х годах XX в. Для обеспечения развертки в первых электронных осциллографах применялся вращающийся зеркальный барабан или движущаяся фотопленка, как в светолучевых (шлейфовых) осциллографах.

Однако вскоре начали использовать современные методы: развертку с помощью вспомогательного синусоидального или линейно изменяющегося напряжения соответствующей частоты.

Так, в 1924 г. фирма «Вестерн электрик» (США) в своем осциллографе применила в качестве генератора развертки генератор линейно изменяющегося напряжения на основе неоновой лампы с параллельно включенным конденсатором; при этом использовалось электростатическое отклонение луча как по вертикали, так и по горизонтали, как в большинстве современных осциллографов. Линейность развертки с помощью такого генератора оставляла желать лучшего. Позднее было предложено осуществлять заряд конденсатора, включенного параллельно горизонтально отклоняющим пластинам, через источник постоянного тока с высоким выходным сопротивлением, построенный на базе электронной лампы. Эта идея нашла широкое применение в генераторах развертки с высокой линейностью изменения выходного напряжения. Кроме того, в таких генераторах весьма просто решались вопросы синхронизации и осуществлялся режим ждущей развертки.

Малая интенсивность электронного пучка в осциллографах с трубкой Брауна не позволяла производить фотографирование экрана при исследовании быстро протекающих процессов, например блуждающих волн в электрических сетях. Эта трудность была преодолена в 1923 г. в осциллографе Дюфура, производство которого организовала фирма «Ш. Будуен» (Франция). В нем фотографическая пластинка помещалась в вакуум и подвергалась прямому воздействию электронного луча без посредства фосфоресцирующего экрана.

Осциллограф Дюфура (рис. 12.4) по внешнему виду мало напоминал современный. Это был громоздкий прибор без экрана, с вакуумной камерой в бронзовом корпусе, соединенной с трубкой Брауна. К нему подсоединялся вакуумный насос, приводившийся в действие после каждой смены фотопластинки. Тем не менее он позволил исследовать процессы с частотами до 1 ГГц; скорость записи достигала 10 мм/нс. Для экономного использования фотопластинки применялось два развертывающих напряжения: синусоидальное горизонтально отклоняющее и сравнительно медленно изменяющееся вертикально отклоняющее (сметание). При отсутствии исследуемого напряжения луч вычерчивал на фотопластинке несколько периодов синусоиды. Исследуемое напряжение высокой частоты, но сравнительно малого значения, записывалось на этой синусоиде.

Рис. 12.4. Осциллограф Дюфура (модель 1927 г.)

Некоторые технические характеристики осциллографа Дюфура были улучшены в двух осциллографах, разработанных в то же время в Германии, однако не выпускавшихся серийно. В первом из них в вакуумной камере можно было размещать несколько фотопластинок или фотопленку, что позволяло делать до 20 снимков. Пленка передвигалась с помощью электромагнитного устройства, так что откачивать камеру приходилось лишь после использования всей пленки. Процесс откачивания диффузионным насосом длился примерно 15 мин. Этим осциллографом удалось получить осциллограммы процессов пробоя изоляции длительностью от 1 до 10 не при напряжениях до 20 кВ.

Второй осциллограф был предназначен для регистрации естественных блуждающих волн, возникающих в случайные моменты времени, как это происходит в линиях электропередачи при атмосферных разрядах. Задача была решена в 1924–1926 гг. путем применения режима ждущей развертки, который осуществлялся с помощью электронного переключающего реле, собранного на двух электронных лампах.

Следует заметить, что для исследования блуждающих волн применялись не только осциллографические методы. Были построены специальные приборы — клиндографы (волнописцы).

Работа клиндографа основывалась на том, что при ударе искры, вызванной блуждающей волной, о фотографическую пластинку в ней возникает кистеобразная фигура, анализ которой позволяет получить информацию о параметрах волны. Эффект образования подобных фигур был известен с XVIII в., однако первые клиндографы были изготовлены только в 1924 г. фирмой «Вестингауз».

Конструктивно клиндограф представлял собой корпус, в который вставлялись три или четыре изолированных острия (по числу проводов линии электропередачи). Острия касались светочувствительной пленки, которая медленно передвигалась с помощью часового механизма. Для регистрации напряжений свыше 20 кВ использовались внешние делители напряжения.

С помощью клиндографов оказалось возможным устанавливать время появления, полярность и значения перенапряжений, форму фронта и направление блуждающей волны, промежутки времени между непосредственно следующими друг за другом разрядами. Технические характеристики клиндографов позволили, например, исследовать перенапряжения до 2 MB в трехфазной линии электропередачи напряжением 220 кВ. Разрешение по времени составляло 1 пс, что было недостижимо для осциллографов того времени.

Между тем электронные осциллографы продолжали совершенствоваться. Были разработаны электронно-лучевые трубки с термоэлектронными катодами, люминесцентными экранами, высококачественными магнитными и электростатическими линзами. Повышенная яркость изображения позволила отказаться от фотосъемок в вакууме. Применение измерительных усилителей и генераторов развертки привело к созданию осциллографов с калиброванными усилением и разверткой, ставших полноценными средствами измерений мгновенных значений напряжений и интервалов времени. Первый такой осциллограф (модель 511) был разработан в США Дж. Мердоком и X. Воллумом и выпущен в 1946 г. фирмой «Тектроникс» («Tektronix»).

В течение последующих 50 лет было разработано большое число осциллографов различного назначения: универсальные, скоростные, стробоскопические, запоминающие, многоканальные, многолучевые и др. И только в 80-х годах аналоговые осциллографы начали постепенно вытесняться цифровыми, а также компьютерными средствами измерений.

Элементная база, необходимая для создания аналоговых электронных вольтметров, возникла и стала быстро развиваться с начала XX в.

Одной из первых электронные (катодные) вольтметры выпустила в 1922 г. Кембриджская компания. Эти приборы предназначались для измерений переменных напряжений на двух диапазонах: либо от 0 до 1,5 В, либо от 0 до 10 В. Чуть позже появились вольтметры Сименса, построенные на тетроде. В конце 20-х годов вольтметр Сименса строился уже на четырех электронных лампах; его шкала была практически равномерной в диапазоне 20–300 мВ; приведенная погрешность не превышала 2% в частотном диапазоне 0,5–15 кГц. Главным преимуществом первых электронных вольтметров перед электромеханическими были высокое входное сопротивление при хорошей чувствительности на переменном токе; немаловажное значение имела также их высокая перегрузочная способность.

Для дальнейшего улучшения метрологических характеристик и расширения функциональных возможностей электронных вольтметров и осциллографов требовалась разработка измерительных преобразователей и, прежде всего, измерительных усилителей. Первые такие усилители удалось построить в конце 20-х годов XX в. американскому ученому Х.С. Блэку.

Х.С. Блэк работал над созданием усилителей для протяженных телефонных линий связи. Из-за большого ослабления полезного сигнала в таких линиях приходилось включать последовательно много усилителей. Однако применение известных в то время усилителей на базе электронных ламп приводило к ограничению полосы пропускания и большим нелинейным искажениям сигнала.

Рис. 12.5. Структурная схема усилителя с последовательной отрицательной обратной связью по напряжению 

В 1927 г. Х.С. Блэк предложил усилитель с отрицательной обратной связью (ООС), построенный по общеизвестной в настоящее время схеме (рис. 12.5), согласно которой усилитель с коэффициентом усиления К охватывается звеном обратной связи с коэффициентом передачи ?. При больших значениях К? коэффициент усиления такого усилителя равен примерно 1/?, т.е. свойства такого усилителя, например его точность и частотный диапазон, определяются свойствами цепи ООС и мало зависят от значения K.

Идея ООС, глубоко изученная специалистами по теории автоматического управления, была известна очень давно. Еще в III в. до нашей эры идея ООС была описана Архимедом применительно к регулированию водяных часов. Однако изобретение Х.С. Блэка было признано с большим трудом.

Дело в том, что задолго до Х.С. Блэка для увеличения коэффициентов усиления усилителей и генерации колебаний широко использовалась положительная (регенеративная) обратная связь. Отрицательная (вырождающаяся) обратная связь уменьшала коэффициент усиления и считалась безусловно вредной. Поэтому к патентной заявке Х.С. Блэка эксперты отнеслись так же, как к заявке на вечный двигатель, и вынесли положительное решение только спустя 9 лет; первая публикация об изобретении появилась лишь в 1934 г. Очевидно, было очень трудно преодолеть психологический барьер, связанный с тем, что ООС уменьшает и без того малый коэффициент усиления, который практически достигался в то время в схемах на электронных лампах.

Действительно, первый операционный усилитель, т.е. усилитель постоянного тока с высоким коэффициентом усиления, позволяющий строить измерительные преобразователи, функции и технические характеристики которых определяются в основном свойствами цепи ООС, был построен только в 1942 г. в США. Более совершенный операционный усилитель, выпускаемый как самостоятельное изделие, был разработан в США лишь в 1948 г.

Несмотря на непонимание и трудности начального этапа, теория усилителей с ООС, основы которой начали формироваться в 30-х годах в работах американских ученых Х.С. Блэка, X. Найквиста и Г.В. Боде, стала широко использоваться при разработке измерительных преобразователей, аналоговых, а затем и цифровых измерительных приборов и систем.

Проникновение идей теории автоматического управления и радиоэлектронной элементной базы в электроизмерительную технику позволило резко повысить качество и расширить номенклатуру средств измерений.

Были разработаны автоматические мосты и потенциометры (компенсаторы) постоянного и переменного тока для измерения электрических и неэлектрических величин, телеизмерительные системы, многофункциональные электронные измерительные приборы: мультиметры, осциллографы различного назначения, анализаторы спектра, электронные ваттметры, частотомеры и фазометры, измерительные усилители и генераторы, измерители параметров электрических цепей, приборы для измерения магнитных величин и т.д. В 30–50-х годах это были аналоговые электрорадиоизмерительные приборы и системы, построенные на базе электронных ламп, мировое производство которых достигало сотен миллионов штук в год.

В разработку этих приборов большой вклад внесли отечественные ученые К.Б. Карандеев, Л.Ф. Куликовский, Ф.Е. Темников и многие другие.

Использование радиоэлектронной элементной базы позволило увеличить чувствительность и точность средств измерений, существенно расширить их функциональные возможности. Например, был разработан ряд приборов, основанных на использовании эффекта Холла, которые позволили измерять магнитную индукцию не только в постоянных, но и в переменных, в том числе импульсных, магнитных полях. Без радиоэлектронной элементной базы было бы невозможно создание и других приборов для магнитных измерений, например приборов, использующих дифференциальные ферромодуляционные или ядерно-резонансные измерительные преобразователи.

Дальнейшее развитие аналоговой электроизмерительной техники было тесно связано с прогрессом в области электроники.

Появление в 50-х годах новой элементной базы — полупроводниковых приборов, начавших постепенно вытеснять электронные лампы, позволило уменьшить габариты и собственное потребление энергии, повысить надежность, улучшить метрологические характеристики аналоговых средств измерений. Этот процесс еще более усилился с развитием микроэлектроники и появлением интегральных схем. В середине 50-х годов были разработаны первые гибридные интегральные схемы, а в начале 60-х — монолитные интегральные схемы.

В те же годы в США была разработана планарная технология, которая позволила существенно улучшить технические данные транзисторов и легла в основу современных технологий изготовления интегральных схем.

Прогресс в области полупроводниковой электроники быстро отразился на электроизмерительной технике. Уже в 1959 г. американская фирма «Бур-Браун» («Burr-Brown») продавала первые операционные усилители на германиевых транзисторах. В 1960 г. в США был построен первый портативный полупроводниковый осциллограф, а в 1963–1965 гг. созданы первые монолитные интегральные схемы операционных усилителей (модели 702 и 709), явившиеся базой для создания многих узлов аналоговых и цифровых средств измерений.

Аналоговые электронные электроизмерительные приборы, отличающиеся надежностью, хорошими метрологическими характеристиками и низкой стоимостью, широко использовались в течение нескольких десятилетий и продолжают применяться в настоящее время. Так, ламповый мультиметр НР412А с прибором магнитоэлектрической системы на выходе оставался широко распространенным измерительным прибором до конца 70-х годов, а выпущенный в 1966 г. фирмой «Хьюлет-Пакард» («Hewlett-Packard») универсальный полупроводниковый осциллограф типа HP 180А оставался в производстве до 1986 г. Однако с 60-х годов аналоговые средства измерений стали постепенно вытесняться цифровыми.


12.4. ЦИФРОВЫЕ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Цифровые электроизмерительные преобразователи, приборы и системы возникли в результате проникновения идей технической кибернетики, компьютерной техники и радиоэлектронной элементной базы в измерительную технику.

Важную роль при этом сыграл постоянный рост требований к средствам измерений в связи с усложнением, интенсификацией и автоматизацией производства и научных исследований. Новые задачи требовали получения и использования не результатов отдельных измерений, а потоков измерительной информации. Зачастую необходимо получать информацию о тысячах однородных и разнородных измеряемых величин и обрабатывать ее в реальном масштабе времени по сложным алгоритмам. Для решения подобных задач со второй половины XX в. стали создаваться наиболее сложные цифровые средства измерений — информационно-измерительные системы и измерительно-вычислительные комплексы, строящиеся на базе ЭВМ, а также аналоговых, аналого-цифровых и цифровых приборов и преобразователей.

Отличительным признаком цифровых средств измерений является наличие в них измерительных преобразователей аналоговых сигналов измерительной информации в цифровые — аналого-цифровых преобразователей (АЦП).

Эти преобразователи осуществляют дискретизацию сигналов по времени, квантование по значениям и кодирование. Поиск и изучение структур и алгоритмов работы АЦП, создание на их основе все более совершенных цифровых средств измерений шли в тесной связи с развитием радиоэлектроники и вычислительной техники.

Первые цифровые вычислительные машины с программным управлением были построены в 40-х годах. В 1942 г. К. Цюзе в Германии, а в 1944 г. Г. Айкен в США построили такие машины на базе электромагнитных реле с управлением от перфокарты. В 1945 г. идея программного управления вычислительным процессом была четко сформулирована и развита американским математиком Дж. фон Нейманом. А в 1946 г. впервые была публично продемонстрирована ЭВМ на базе электронных ламп, которая строилась в США во время второй мировой войны для военных целей.

Первая отечественная ЭВМ — малая электронная счетная машина — была построена под руководством С.А. Лебедева в 1949–1951 гг., а в 1952–1954 гг. была создана быстродействующая электронная счетная машина (БЭСМ). Эта машина, для построения которой потребовалось около 5000 электронных ламп, выполняла 8000 операций в секунду и была в свое время одной из самых быстродействующих.

С начала их появления ЭВМ стали использоваться не только для решения математических задач, но и для построения систем автоматического управления. Для работы таких систем требуется получение измерительной информации от объектов управления и представление ее в цифровой форме, «понятной» ЭВМ.

На пути к ЭВМ эта информация подвергается ряду преобразований. Так, при измерениях неэлектрических величин они обычно преобразуются сначала в электрические с помощью чувствительных элементов (первичных измерительных преобразователей, датчиков), затем в стандартные аналоговые сигналы (например, в постоянное напряжение от 0 до 10 В) с помощью аналоговых измерительных преобразователей и только потом в цифровые сигналы с помощью АЦП. Этот канал аналого-цифрового преобразования может содержать еще целый ряд преобразователей: усилители, устройства линеаризации, фильтры, преобразователи кодов и т.д. Некоторые из перечисленных преобразователей могут в канале отсутствовать, но наличие АЦП обязательно. Это обстоятельство явилось мощным стимулом для создания и совершенствования этих преобразователей.

Управление объектами обычно производится с помощью аналоговых сигналов, в то время как ЭВМ вырабатывает цифровые сигналы. В связи с этим потребовалась разработка нового класса измерительных преобразователей — цифроаналоговых преобразователей (ЦАП). Разработка ЦАП стимулировалась потребностями не только систем автоматического управления. Они нашли широкое применение в различных областях техники, в том числе и при разработке различных средств измерений: цифровых мультиметров, измерительных генераторов, калибраторов напряжения и т.д. Кроме того, ЦАП начали применяться для построения АЦП.

Таким образом, АЦП и ЦАП легли в основу создания нового класса средств измерений — цифровых измерительных приборов (ЦИП) и информационно-измерительных систем. ЦИП в отличие от АЦП предназначены для самостоятельного применения и представляют результат измерения в форме, пригодной для восприятия человеком. Поэтому все ЦИП имеют цифровые отсчетные устройства, построенные на базе цифровых индикаторов различных видов: газоразрядных, электролюминесцентных, жидкокристаллических, светодиодных и др. Однако неотъемлемой частью всех ЦИП является АЦП.

Создание ЦИП и информационно-измерительных систем началось в 50-е годы. К тому времени в различных областях науки и техники имелись достижения, значительно упростившие и ускорившие этот процесс. Были разработаны основы теории линейных, нелинейных и импульсных систем, модуляции и кодирования, анализа и синтеза логических схем, передачи сигналов. Накоплен опыт разработки и эксплуатации первых ЭВМ и телеизмерительных систем. Темпы создания средств цифровой электроизмерительной техники определялись в основном скоростью развития радиоэлектронной элементной базы.

Одними из первых были созданы АЦП и ЦИП последовательного счета. В этих приборах измеряемая величина преобразуется в число импульсов (числоимпульсный код), которое может высвечиваться на цифровом отсчетном устройстве. Подобная операция наиболее просто осуществляется по отношению к двум физическим величинам: частоте и интервалу времени.

Действительно, для преобразования частоты импульсного напряжения в число достаточно подсчитать число импульсов N за заданный известный промежуток времени Т. Отношение N/T и есть искомая частота, причем операцию деления можно свести к переносу запятой в цифровом отсчетном устройстве, выбрав значение Т равным 10n с, где n — целое число. При измерении частоты синусоидального напряжения она преобразуется в частоту импульсов (одному периоду должен соответствовать один импульс), что делается весьма просто. Для измерения интервала времени достаточно заполнить его импульсами с известной частотой f и подсчитать получившееся число импульсов N. Отношение N/f равно искомому интервалу времени.

Для технической реализации ЦИП, основанных на этой идее (методе последовательного счета), таких как частотомеры, измерители интервалов времени, фазометры, имелась готовая элементная база на основе электронных ламп: логические схемы, счетчики, ключи и т.д. Поэтому данные цифровые приборы появились одними из первых. Для их реализации позже были разработаны и специальные электронные приборы — декатроны, которые выполняли одновременно функции счета и индикации.

Описанный метод применим для измерения любой физической величины, если имеется измерительный преобразователь этой величины в интервал времени или частоту.

Рис. 12.6. Временная диаграмма работы преобразователя напряжения в интервал времени

В числе первых были разработаны преобразователи электрического напряжения в интервал времени, которые строились на основе метода динамической компенсации, предложенного в 1935 г. Ф.Е. Темниковым. Принцип действия таких преобразователей заключается в следующем (рис. 12.6). Измеряемое напряжение Ux сравнивается с компенсирующим его линейно изменяющимся напряжением uк, вырабатываемым специальным генератором. Момент Тx равенства напряжений определяется с помощью электронного компаратора. Интервал времени с начала процесса компенсации до срабатывания компаратора оказывается при этом пропорциональным мгновенному значению измеряемого напряжения в момент компенсации.

Для построения цифровых вольтметров рассмотренный метод практически не использовался из-за сравнительно низкой точности и плохой помехозащищенности. Однако благодаря простоте технической реализации он применялся в 60-е годы в информационно-измерительных системах.

Более перспективным для создания цифровых вольтметров постоянного тока оказался метод двухтактного интегрирования. В нашей стране данный метод был предложен в 1958 г. А.К. Заволокиным и Г.И. Курахтановым; в 1960 г. В.Г. Беляков и Е.В. Добров построили цифровой вольтметр с двухтактным интегрированием. Примерно в это же время различные схемы таких вольтметров были запатентованы в США, Японии и других странах.

В данных вольтметрах измеряемое напряжение интегрируется за фиксированный интервал времени — первый такт интегрирования. На втором такте интегрируется эталонное напряжение противоположного знака. Момент перехода напряжения на выходе интегратора через нуль — момент окончания второго такта — фиксируется компаратором. Можно показать, что среднее значение измеряемого напряжения на первом такте интегрирования пропорционально длительности второго такта, который измеряется по методу последовательного счета.

Очень скоро выяснилось, что цифровые вольтметры с двухтактным интегрированием обладают рядом существенных преимуществ перед вольтметрами других систем. Прежде всего это высокие линейность, точность и помехозащищенность, а также простота схемы и сравнительно низкая стоимость. Уже первые такие вольтметры (например, японской фирмы «Такеда Рикен» («Takeda Riken») в 60-е годы обеспечивали приведенную погрешность, не превышающую 0,01%, и имели гальваническое разделение между входными и выходными цепями с электростатическим экранированием, обеспечивающим подавление помех.

Главный недостаток данных вольтметров — низкое быстродействие; время измерения составляет обычно от 50 до 250 мс. Однако этот недостаток не является серьезным для автономных ЦИП, не работающих в составе информационно-измерительных систем. Поэтому с 70-х годов до нашего времени цифровые вольтметры с двухтактным интегрированием являются наиболее распространенными цифровыми приборами для измерений постоянных напряжений. Конечно, со временем в связи с развитием технологии эти приборы существенно модернизировались. В настоящее время основная часть цифровой и аналоговой схем подобного прибора обычно выполняется в виде одной микросхемы (например, типа ICL7106 американской фирмы МАКСИМ (MAXIM). Встроенные измерительные преобразователи позволяют использовать прибор в качестве мультиметра, измеряющего постоянные и переменные напряжения, токи, сопротивления, а иногда и другие физические величины.

О технических характеристиках современных АЦП с двухтактным интегрированием дает представление 22-разрядный преобразователь типа AD1175 фирмы «Аналог Дивайсис» («Analog Devices»). Это модуль размерами 11x13x1,3 мм, сопрягаемый с персональным компьютером. Осуществляя 20 преобразований в секунду, он обеспечивает интегральную нелинейность не более 0,0001%, а дифференциальную — не более 0,000013%.

Начиная с 60-х годов наряду с цифровыми вольтметрами с двухтактным интегрированием стали выпускаться вольтметры с предварительным преобразованием измеряемого напряжения в частоту. Такие приборы производила, в частности, английская фирма «Солартрон» («Solartron»). По свойствам и техническим характеристикам эти вольтметры близки к вольтметрам с двухтактным интегрированием, однако последние благодаря простоте и сравнительно низкой стоимости получили более широкое применение.

С появлением и быстрым совершенствованием ЦИП совершился переворот в представлениях о возможностях электроизмерительной техники. Например, измерение напряжения постоянного тока цифровым вольтметром с восьми- и даже девятизначным цифровым отсчетным устройством, с автоматическим выбором поддиапазона из ряда 0,1; 1; 10; 100; 1000 В и значением единицы младшего разряда 10 нВ на первом поддиапазоне, с входным сопротивлением более 1 ГОм на первых трех поддиапазонах несравнимо с измерением того же напряжения электромеханическими или электронными аналоговыми вольтметрами высших классов точности. По точности подобный цифровой вольтметр может конкурировать с наилучшими компенсаторами (потенциометрами) с ручным уравновешиванием, но существенно превосходит их по скорости и автоматизации процесса измерения.

Еще более разительный пример дает цифровое измерение частоты. Все аналоговые частотомеры основаны на каком-либо косвенном методе измерений; например, в них может использоваться эффект влияния частоты на сопротивление цепи с реактивными элементами. Погрешность аналоговых частотомеров составляет обычно десятые доли процента. Цифровые частотомеры, измеряющие частоту в соответствии с ее определением, т.е. измеряющие число периодов за заданный промежуток времени, имеют несравненно более высокую точность. Применение кварцевых резонаторов для стабилизации интервала времени счета позволило обеспечить погрешность, не превышающую нескольких миллионных долей процента; лучшие цифровые частотомеры имеют 10 десятичных знаков на цифровом отсчетном устройстве.

Большой вклад в развитие цифровой электроизмерительной техники внесли отечественные ученые: Ф.Б. Гриневич, В.Ю. Кнеллер, В.Н. Малиновский, П.П. Орнатский, В.Н. Хлистунов, В.М. Шляндин М.П. Цапенко и многие другие.

С 60-х годов начался процесс постепенного вытеснения аналоговых электромеханических и электронных измерительных приборов цифровыми. Уже к 1970 г. в США на долю цифровых вольтметров приходилось 75% всего объема выпуска приборов для измерения напряжения, а на долю цифровых частотомеров — 95%. Были разработаны цифровые мосты постоянного и переменного тока, фазометры, ваттметры, термометры, весы и многие другие ЦИП. Щитовые ЦИП стали конкурировать с аналоговыми приборами, традиционно размещавшимися на щитах диспетчерских пунктов. Цифровые тестеры к настоящему времени практически вытеснили аналоговые.

Скорость вытеснения аналоговых электроизмерительных приборов цифровыми определялась в основном скоростью развития и стоимостью микроэлектронной элементной базы. В начале 60-х годов ЦИП создавались на дискретных полупроводниковых приборах. Например, в первых цифровых вольтметрах фирмы «Такеда Рикен» («Takeda Riken») каждый триггер строился на дискретных транзисторах. С 70-х годов в ЦИП стали широко использоваться аналоговые и цифровые микросхемы, а в 80-х — микропроцессорная техника.

Применение микропроцессоров в ЦИП позволило еще более улучшить технические характеристики этих приборов. Появилась возможность автоматизации процессов калибровки, коррекции погрешностей, диагностирования неисправностей, выбора диапазона измерений. Использование сложных алгоритмов обработки измерительной информации привело к улучшению метрологических характеристик и расширению функциональных возможностей ЦИП.

Например, современные цифровые частотомеры позволяют измерять не только частоты и интервалы времени, но и отношения частот и интервалов времени, их сумму и разность, длительность фронта и среза импульса, длительность каждого импульса в серии, определять среднее, максимальное и минимальное значения результатов в серии измерений, производить математическую обработку результатов измерений по различным программам и т.д. При этом такие приборы могут работать в жестких условиях эксплуатации, автономно или в составе информационно-измерительных систем, с сигналами различной формы и уровня; использование идеи «обратного счета» позволило при заданной разрешающей способности уменьшить время измерения низких частот.

Таким образом, применение микропроцессоров позволило создать качественно новые ЦИП. Их точность увеличилась за счет уменьшения влияния помех и шумов путем цифровой обработки сигналов измерительной информации (в простейшем случае путем усреднения отсчетов, при котором происходит «обмен» быстродействия на точность), а также за счет самокалибровки и введения поправок в результат измерения. Появилась возможность накопления в памяти ЦИП большого массива результатов измерений, осуществления разнообразных математических операций над этим массивом; автоматическая самодиагностика ЦИП и переход от «жесткой логики» к программному управлению существенно упростили работу с такими приборами.

Безусловные преимущества ЦИП перед остальными приборами поставили вопрос о дальнейшем существовании последних. Доживают ли аналоговые электроизмерительные приборы свой век? В их пользу говорят простота, надежность, низкая стоимость, удобство и привычность считывания информации с помощью шкалы со стрелкой; простейшие из них не требуют источников питания. В настоящее время в связи с развитием ЦИП эти преимущества становятся все менее существенными. Практически перестали существовать светолучевые осциллографы, аналоговые электронные частотомеры; цифровые вольтметры и мультиметры сделали ненужными приборы сравнения с ручным уравновешиванием (компенсаторы и мосты); цифровые тестеры и осциллографы вытесняют аналоговые и т.д. Объем выпуска аналоговых электроизмерительных приборов имеет явную тенденцию к снижению, однако процесс этот довольно медленный; эти приборы, несомненно, войдут в XXI в.

Уменьшение объема выпуска аналоговых приборов не следует понимать как уменьшение значимости аналоговых средств измерений. Аналоговые измерительные преобразователи, такие как термопары, термометры сопротивления, тензодатчики, датчики Холла, измерительные трансформаторы, делители напряжения, измерительные усилители, емкостные, индуктивные, индукционные, пьезоэлектрические и многие другие преобразователи, применяются долгие годы, совершенствуются и будут использоваться в обозримом будущем. Более того, идет постоянный поиск новых физических эффектов для построения более совершенных измерительных преобразователей и мер электрических и магнитных величин. Например, эффекты Керра и Зеемана используются соответственно для измерения электрических и магнитных полей, квантовые эффекты Джозефсона и Холла — для создания эталонов напряжения и сопротивления и т.д.

Но вернемся к цифровым электроизмерительным приборам и преобразователям. Рассмотренные выше ЦИП имеют существенный недостаток: большое время измерения (десятки или сотни миллисекунд). Этот недостаток в ряде случаев не является существенным; например, когда оператор считывает результаты измерений с цифрового отсчетного устройства, воспринять показания прибора, обновляющиеся каждую секунду или чаще, он просто не сможет. Однако для регистрирующих приборов или средств измерений системного применения, когда результаты измерений вводятся в ЭВМ, малое быстродействие ЦИП накладывает серьезные ограничения на скорость изменения информативного параметра исследуемого сигнала измерительной информации.

Среди быстродействующих АЦП, используемых для кодирования сигналов измерительной информации, наибольшее распространение получили преобразователи напряжения в код. Рассмотрим историю создания и развития этих преобразователей более детально.

Первые АЦП с высоким быстродействием реализовывали метод последовательного приближения (поразрядного уравновешивания, кодоимпульсный). Становление данного метода было связано с многочисленными попытками автоматизировать работу компенсаторов постоянного напряжения, известных с конца XIX в. и обеспечивающих чрезвычайно малую погрешность измерений (порядка 0,001%). Автоматические компенсаторы не обеспечивали ни требуемого быстродействия, ни сохранения высокой точности; их погрешность в лучшем случае составляла десятые доли процента. Для реализации метода требовалось создание источника компенсирующего напряжения на основе быстродействующего кодоуправляемого делителя эталонного напряжения, быстродействующих электронных ключей с высокими метрологическими характеристиками и электронного компаратора напряжений, который заменил бы в качестве нуль-индикатора традиционный гальванометр.

Ключи, используемые в кодоуправляемых делителях напряжения, неизбежно снижают их точность. Это связано с тем, что каждый замкнутый ключ имеет нестабильные остаточное сопротивление и ЭДС, а разомкнутый не обладает бесконечно большим сопротивлением. Поэтому еще в 40-х годах начался поиск схем делителей, точность которых мало зависит от параметров ключей. Прежде всего пришлось отказаться от традиционного последовательного соединения декад, применяемого в компенсаторах постоянного напряжения. В нашей стране еще в 1947 г. О.А. Горяинов и Г.М. Жданов предложили использовать для формирования двоичного кода АЦП параллельное соединение резисторов; в 1949 г. подобную идею использовал B.C. Уманцев.

В 50-х годах были разработаны более сложные и эффективные схемы делителей, управляемых двоичным или двоично-десятичным кодом (соответственно для системных АЦП и цифровых вольтметров). В 1956–1957 гг. был получен ряд английских и американских патентов на такие делители, схемы которых систематизировал и детально описал А.К. Саскинд (A.K. Susskind, США, 1958 г.). Некоторые из этих схем, например делитель типа R-2R (рис. 12.7), широко применяются до настоящего времени.

В качестве ключей в первых кодоимпульсных цифровых вольтметрах использовались реле, что существенно ограничивало их быстродействие и снижало надежность. Такие приборы выпускались до конца 60-х годов. Последний подобный отечественный цифровой вольтметр типа Щ1512 обеспечивал приведенную погрешность не более 0,01% и имел разрешающую способность 10 мкВ, время измерения составляло 500 мс.

В 60-х годах в кодоимпульсных вольтметрах начали широко использовать транзисторные ключи. При этом удалось повысить не только быстродействие. и надежность, но и точность приборов. Например, цифровой вольтметр типа DM2023 английской фирмы «Дайнамко» («Dynamco») обеспечивал приведенную погрешность не более 0,006%, имел разрешающую способность 10 мкВ; время измерения составляло 20 мс. Переход от резисторных делителей напряжения к индуктивным позволил еще более увеличить точность. Вольтметр типа DM2010 обеспечивал приведенную погрешность не более 0,001% при времени измерения 440 мс.

Рис. 12.7. Функциональная схема ЦАП с делителем типа R-2R
Uo — опорное напряжение; Rо.с. — сопротивление резистора обратной связи; Uвых — напряжение на выходе ЦАП 

Опыт эксплуатации кодоимпульсных цифровых вольтметров очень быстро показал, что их высокую точность и хорошую разрешающую способность практически нельзя использовать из-за низкой помехозащищенности. Поэтому с конца 60-х годов они перестали использоваться в «чистом» виде. Получили распространение приборы, реализующие комбинацию метода последовательных приближений в сочетании с одним из двух методов, обладающих высокой помехозащищенностью: двухтактного интегрирования или с преобразованием напряжения в частоту. В этих приборах измеряемое постоянное напряжение не полностью компенсировалось прецизионным напряжением, вырабатываемым кодоимпульсным ЦАП, а нескомпенсированная разность напряжений измерялось, например, по методу двухтактного интегрирования.

Подобные цифровые вольтметры обладают высокой точностью и высокой помехозащищенностью. Уже один из первых таких приборов — модель TR6567 японской фирмы «Такеда Рикен» — имел хорошие метрологические характеристики: 1299999 точек на шкалу при разрешающей способности 1 мкВ, приведенную погрешность не более 0,004%, входное сопротивление не менее 10 ГОм; время измерения 1,1 с. В дальнейшем эти характеристики были улучшены.

Метод последовательных приближений способствовал не только улучшению характеристик цифровых вольтметров. Применение его в АЦП позволило повысить их точность и быстродействие, что было особенно важно для широкого использования этих преобразователей в информационно-измерительных и измерительно-вычислительных системах.

Большинство таких АЦП строится на основе ЦАП с резисторной матрицей R-2R и транзисторных ключей. С момента своего появления в конце 50-х годов до настоящего времени АЦП последовательных приближений прошли длительный путь развития. В 60-х годах основная часть АЦП представляла собой плату, на которой размещались дискретные транзисторы и другие элементы схемы; в 70-х годах это был уже микромодуль или гибридная интегральная схема, а с 80-х — монолитная интегральная схема, которая к 90-м годам включала в себя все большее количество элементов АЦП: источник эталонного напряжения, задающий генератор, интерфейсную часть, устройство выборки-хранения, буферный усилитель и т.д.

К началу 80-х годов АЦП последовательных приближений имели от 8 до 16 двоичных разрядов и высокие метрологические характеристики. Так, например, 16-разрядный АЦП типа HS9516 (фирма «Гибрид Системе» (Hybrid Systems), США, 1983 г.), выполненный в виде гибридной схемы, обеспечивал нелинейность не более 0,0008% при времени преобразования 100 мкс.

Повысить быстродействие рассматриваемых АЦП при сохранении точности удалось путем перехода к двухкаскадной структурной схеме и двухтактному режиму работы. Первый каскад такого АЦП преобразует измеряемое напряжение в код с помощью малоразрядного (6–8 разрядов), но быстродействующего вспомогательного АЦП. Этот код поступает на вход «почти идеального» ЦАП, вырабатывающего прецизионное компенсирующее напряжение. Разность между измеряемым и компенсирующим напряжениями измеряется вторым малоразрядным АЦП. Выходной код формируется в виде суммы кодов двух вспомогательных АЦП.

Такую схему одной из первых начала применять фирма «Зелтекс» (Zeltex, США, 1979 г.). Ее 16-разрядный АЦП типа ZAD7400, выполненный в виде модуля с размерами 76x102x9,5 мм, обеспечивал нелинейность не более 0,0015% при времени преобразования 10 мкс. В дальнейшем время преобразования удалось уменьшить. Например, фирма «Аналогик корп.» (Analogic Corp., США, 1985 г.) выпустила 16-разрядный АЦП типа ADAM-826–3 с временем преобразования 1,5 мкс, обеспечивающий дифференциальную нелинейность не более 0,0004%.

Высокое быстродействие АЦП последовательных приближений позволило широко использовать их в многоканальных измерительных системах для обработки быстро изменяющихся напряжений, несущих измерительную информацию.

Еще большее быстродействие обеспечивают АЦП, реализующие метод считывания (параллельные АЦП).

Идея построения этих преобразователей довольно проста, но сложна их техническая реализация. Количество компараторов в таком АЦП равно числу квантов, на которое разбит диапазон преобразования. Например, в 10-разрядном параллельном АЦП нужно иметь более 1000 компараторов. На один из входов каждого компаратора подается измеряемое напряжение, а на второй — компенсирующее, соответствующее номеру кванта. Компенсирующие напряжения снимаются с выходов делителя эталонного напряжения, представляющего собой набор одинаковых резисторов, включенных последовательно, причем число резисторов равно числу квантов.

Каждому измеряемому напряжению соответствует вполне определенная комбинация состояний компараторов, которая преобразуется в выходной код АЦП. Быстродействие такого преобразователя, определяемое, в основном, быстродействием компараторов и логических схем, гораздо выше, чем у АЦП последовательных приближений.

В связи с тем, что параллельные АЦП с числом разрядов 8 и более содержат чрезвычайно большое количество элементов, их серийное производство и широкое применение стало возможным только в 80-х годах, когда интегральная технология достигла необходимого уровня развития. Об их технических возможностях дает представление преобразователь типа RDT710, выпущенный в 1987 г. фирмой «Сони-Тектроникс» (Sony-Tektronix) — совместным предприятием фирм «Сони» (Япония) и «Тектроникс» (США). Это был 10-разрядный АЦП, обеспечивающий 200 млн. преобразований в секунду.

Параллельные АЦП в настоящее время широко применяются для обработки высокочастотных сигналов, например, в цифровых осциллографах.

Успехи интегральной технологии способствовали также созданию многих других разновидностей АЦП: быстрого интегрирования, с плавающей запятой (с программируемым усилителем), алгоритмических, с дельта-сигма модуляцией и др.


12.5. ТЕНДЕНЦИИ РАЗВИТИЯ ЭЛЕКТРОИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ

Использование достижений микроэлектроники и вычислительной техники в электроизмерительной технике определяют в настоящее время одну из основных тенденций ее развития, для которой характерна компьютеризация средств измерений. Рассмотрим характерные формы проявления этой тенденции.

Прежде всего, она проявляется в постепенной замене аналоговых средств измерений цифровыми, которые, в свою очередь, становятся все более универсальными и «интеллектуальными».

В качестве примера рассмотрим этапы развития производства осциллографов на фирме «Хьюлет-Пакард» — одной из ведущих в этой области. Свои первые ламповые осциллографы НР130А и НР150А фирма выпустила еще в 1956 г., а первый полупроводниковый (НР180А) — в 1966 г. К 80-м годам этой и другими фирмами было выпущено огромное количество аналоговых осциллографов различного назначения, причем многие из них обладали прекрасными техническими характеристиками. Однако уже в 1980 г. фирма «Хьюлет-Пакард» пришла к выводу, что цифровая техника может предложить лучшее и более дешевое решение задачи регистрации, отображения и обработки аналоговых сигналов, а с 1986 г. вообще прекратила выпуск аналоговых осциллографов, заменив их цифровыми. В 1992 г. фирма выпускала уже целую серию цифровых осциллографов; в эту модульную серию 54700 входит, в частности, сменный блок 54721 А с полосой 1 ГГц и частотой дискретизации 4 Готсчет/с.

Аналогичный процесс прошел на фирме «Голд» (Gould, США). Свой первый цифровой осциллограф фирма выпустила в 1975 г., а в 1988 г. прекратила выпуск аналоговых. В 1992 г. фирма выпускала 15 моделей цифровых осциллографов с полосой от 7 до 200 МГц и частотой дискретизации от 0,02 до 1,6 Готсчет/с.

Если для визуального наблюдения исследуемых процессов достаточно разрешения 8 бит, то для более сложного и точного анализа этого часто недостаточно. Поэтому постоянно ведется работа по повышению точности цифровых осциллографов. Например, фирма «Николь Инструмент корп.» (Nicolet Instrument Corp., США) предлагает осциллографы серии 400 с разрешением по вертикали 14 бит, что, конечно, недостижимо для аналоговых осциллографов.

Цифровые осциллографы не просто заменяли аналоговые, но и предоставляли потребителям новые возможности, связанные со способностью новых приборов хранить, выводить, обрабатывать и сравнивать параметры наблюдаемых сигналов. Современные цифровые осциллографы выполняют множество функций анализа сигналов, включая анализ спектра с использованием алгоритмов быстрого преобразования Фурье. В них может быть встроен принтер или плоттер, позволяющие получать твердую копию протокола или графика. Наличие узлов стандартных интерфейсов позволяет подключать цифровой осциллограф к персональному компьютеру и вычислительной сети; более того, он сам обладает возможностями небольшого компьютера. Подобные осциллографы одними из первых начали выпускать японские фирмы «Хиоки» (Hioki, модель 8850) и «Иокогава» (Yokogawa, модели 3655 и 3656).

На примере цифровых осциллографов можно проследить одно из направлений компьютеризации электроизмерительной техники. Создаются новые средства измерений с цифровой обработкой сигналов измерительной информации и возможностью построения на их основе измерительно-вычислительных систем различного назначения. В эти измерительные приборы и системы встраиваются элементы компьютерной техники, обеспечивающие цифровую обработку сигналов, самодиагностику, коррекцию погрешностей, связь с внешними устройствами и т.д.

Другое направление связано с появлением в начале 80-х годов и широким распространением персональных компьютеров (IBM PC и других). Если у потребителя есть такой компьютер, то у него фактически есть многие узлы компьютерного средства измерений: вычислительное устройство, дисплей, устройство управления, корпус, источники питания и др. Недостает лишь устройств ввода измерительной информации в компьютер (аналоговых измерительных преобразователей, устройств гальванического разделения, масштабирования, нормализации и линеаризации, АЦП и др.), ее предварительной обработки (если желательно освободить от этой работы компьютер) и специального программного обеспечения.

Поэтому в 80-х годах устройства ввода аналоговой измерительной информации в персональные компьютеры (ПК) начали серийно выпускаться в виде плат, встраиваемых в кросс ПК, в виде наборов модулей, встраиваемых в общий корпус (крейт) расширяемых шасси ПК, или в виде автономных функциональных модулей, подключаемых к ПК через внешние разъемы.

Эффективная предварительная обработка информации в такого рода устройствах стала возможной с появлением специализированных больших интегральных схем — цифровых процессоров сигналов (ЦПС). Первые однокристалльные ЦПС выпустила в 1980 г. японская фирма «НИСи корп.» (NEC Corp.), с 1983 г. аналогичную продукцию начали выпускать фирмы «Фуджицу» (Fujitsu, Япония) и «Техас Инструменте» (Texas Instruments, (США)); позднее к ним присоединились «Аналог Дивайсис» (США), «Моторола» (Motorola, США) и др.

Нужно отметить по меньшей мере две особенности компьютерных средств измерений. Во-первых, они могут быть весьма просто приспособлены для измерений различных величин; поэтому на их основе строятся универсальные средства измерений. Во-вторых, все большую долю в их себестоимости занимает стоимость программного обеспечения, освобождающего потребителя от выполнения многих рутинных операций и создающего ему максимум удобств при решении основных задач измерений.

Примером могут служить так называемые виртуальные средства измерений. В них программным путем на дисплее ПК формируется изображение лицевой панели измерительного прибора. Этой панели на самом деле физически не существует, а сам прибор состоит, например, из ПК и встроенной в него измерительной платы. Тем не менее у потребителя создается полная иллюзия работы с обычным прибором: он может нажимать на клавиши управления, выбирая диапазон измерения, режим работы и т.д., получая, в конце концов, результат измерения.

Дальнейшая микроминиатюризация электронных компонентов привела, начиная с 80-х годов, к развитию еще одного направления компьютеризации средств измерений — к созданию не только «интеллектуальных» приборов и систем, но и «интеллектуальных» датчиков.

Такой датчик содержит не только чувствительный элемент, но и сложное электронное устройство, состоящее из аналоговых и аналого-цифровых преобразователей, а также микропроцессорных устройств с соответствующим программным обеспечением. Конструкция «интеллектуального» датчика позволяет устанавливать его в непосредственной близости от объекта исследований и производить ту или иную обработку измерительной информации. При этом в центр сбора данных, который может находиться на значительном расстоянии от объекта, информация передается с помощью сигналов, обладающих высокой помехоустойчивостью, что повышает точность измерений.

В качестве примера рассмотрим технические возможности «интеллектуального» датчика абсолютного давления, выпускаемого японской фирмой «Фуджи» (FUJI, модель FKA), который обеспечивает измерение давления жидкости, газа или пара в диапазоне от 0,16 до 30 бар с погрешностью не более 0,2% в диапазоне рабочих температур от -40 до + 85°С. Он состоит из емкостного чувствительного элемента и электронного устройства, смонтированного в стальном корпусе объемом со спичечный коробок. Его питание осуществляется от внешнего источника постоянного тока с напряжением от 11 до 45 В, который может располагаться в нескольких километрах от датчика в центре сбора данных. Измерительная информация передается по проводам источника питания (двухпроводный датчик) в аналоговой форме — постоянным током от 4 до 20 мА, а также цифровым сигналом, наложенным на аналоговый.

Датчик может быть легко превращен в измерительный прибор путем установки на нем четырехразрядного цифрового жидкокристаллического индикатора или аналогового милливольтметра. Такими датчиками можно управлять с помощью специальных пультов и объединять их в измерительную систему. Каждый датчик осуществляет операции самодиагностики, линеаризации функции преобразования, масштабирования, установки диапазона измерений, температурной компенсации и т.д.

Наряду с компьютеризацией электроизмерительной техники интенсивно развивается ее метрологическое обеспечение, причем эталоны высокой точности становятся доступными промышленности. Например, еще в 1982 г. фирма «Флюк» (Fluke, США) выпустила калибратор напряжения для поверки 6,5- и 7,5-разрядных мультиметров. Этот прибор (модель 5440А), построенный на базе ЦАП с широтно-импульсной модуляцией, обеспечивает относительную погрешность не более 0,0004% при работе непосредственно в цехе.

Для построения современных средств измерений с наиболее высокими метрологическими характеристиками, включая эталоны вольта и ампера, решающее значение имеет использование квантовых эффектов Б. Джозефсона и Холла.

Эффект Б. Джозефсона был предсказан в 1962 г. английским физиком Б. Джозефсоном и экспериментально обнаружен в 1963 г. американскими физиками П. Андерсоном и Дж. Роуэллом. Одно из проявлений данного эффекта состоит в следующем. При облучении контакта Б. Джозефсона — тонкого слоя диэлектрика между двумя сверхпроводниками — высокочастотным электромагнитным полем, на вольт-амперной характеристике такого контакта возникают скачки напряжения, пропорциональные частоте. Высокая точность воспроизведения скачков напряжения на контактах Б. Джозефсона позволила в 80-х годах построить эталоны вольта с погрешностями не более 0,0001%.

Использование эффекта Б. Джозефсона и явления квантования магнитного поля в односвязных сверхпроводниках привело к созданию чрезвычайно чувствительных сверхпроводящих квантовых интерференционных приборов — СКВИДов, измеряющих магнитные потоки. Применение измерительных преобразователей различных физических величин в магнитные потоки позволило создать на основе СКВИДов измерительные приборы и устройства различного назначения, обладающие рекордно высокой чувствительностью: гальванометры, компараторы, термометры, магнитометры, градиентометры, усилители. На основе эффекта Б. Джозефсона строятся и другие устройства, служащие для обработки измерительной информации, например, АЦП и цифровые процессоры сигналов с тактовыми частотами свыше 10 ГГц.

Квантовый эффект Холла был открыт в 1980 г. К. фон Клитцингом (ФРГ). Эффект наблюдается при низких температурах (около 1 К) и проявляется в виде горизонтального участка на графике зависимости холловского сопротивления полупроводниковых датчиков Холла от магнитной индукции. Погрешность сопротивления, соответствующего этому участку, не превышает 0,00001%. Это позволило использовать квантовый эффект Холла для создания эталонов электрического сопротивления.

Использование квантовых эффектов Б. Джозефсона и Холла позволило разработать эталоны постоянного электрического тока, превышающие по точности эталоны на основе токовых весов, применявшихся почти всю вторую половину XX в. В нашей стране новый государственный первичный эталон введен с 1992 г. Он воспроизводит ампер с погрешностью не более 0,00002% (токовые весы обеспечивали погрешность не более 0,0008%).

Рассмотренные эффекты проявляются при низких температурах, что служит главным препятствием для их широкого использования. Однако открытие в 1986 г. высокотемпературных сверхпроводников позволяет ожидать создания средств измерений, построенных на интегральных схемах и работающих при температурах около 100 К. Это был бы новый качественный скачок в развитии электроизмерительной техники.

СПИСОК ЛИТЕРАТУРЫ

12.1. Депре М. О гальванометре, показания которого пропорциональны силе тока // Электричество. 1884. № 24.

12.2. Шателен М. Счетчики электрической энергии // Электричество. 1893. № 20.

12.3. Жерар Эрик. Курс электричества. Т. 1. Санкт-Петербург, 1896.

12.4. Чернышев А. Методы измерений высоких напряжений и новый абсолютный высоковольтный вольтметр // Электричество. 1910. №15.

12.5. Ферингер А.Б. Новейшие измерительные приборы (обзор) // Электричество. 1912. №1.

12.6. Маликов М.Ф. Основные электрические единицы в их современном состоянии // Электричество. 1924. № 3.

12.7. Грун К. Электротехнические измерительные приборы. М.: Гостехиздат, 1927.

12.8. Банденбургер В.И. Электрические телеизмерения // Электричество. 1931. № 17.

12.9. Шумиловский Н.Н. Электрические счетчики: теория, расчет, конструирование. Л.: Кубуч, 1932.

12.10. Стекольников И.С. Катодный осциллограф для контактного фотографирования // Электричество. 1933. № 12.

12.11. Городецкий С.С. Измерения на высоком напряжении. М.-Л.: Энергоиздат, 1934.

12.12. Конструкции электроизмерительных приборов / Под ред. Н.Н. Пономарева. Л. — М.: Энергоиздат, 1935.

12.13. Кейнат Г. Электроизмерительная техника. Т. 1. Л.: Ленинградский индустриальный институт, 1935.

12.14. Кейкат Г. Электроизмерительная техника. Т.2. Л.: Ленинградский индустриальный институт, 1937.

12.15. Кузнецов Б.Г. История энергетической техники. М.: Гостехиздат, 1937.

12.16. Электрические и магнитные измерения / Под ред. Е.Г. Шрамкова. М.-Л.: ОНТИ, 1937.

12.17. Темников Ф.Е., Харченко P.P. Электрические измерения неэлектрических величин. М.-Л.: Госэнергоиздат, 1948.

12.18. Шкурин Г.П. Электроизмерительные приборы: Справочник-каталог М.: Машгиз, 1948.

12.19.Туричин A.M. Электрические измерения неэлектрических величин. М.-Л.: Госэнергоиздат, 1951.

12.20. Карандеев К.Б. Методы электрических измерений. М.-Л.: Госэнергоиздат, 1952.

12.21. Белькинд Л.Д., Конфедератов И.Я., ШнейбергЯ.А. История техники. М.: Госэнергоиздат, 1956.

12.22. История энергетической техники СССР. Т.2. Электротехника. М.: Госэнергоиздат, 1957.

12.23.Веселовский О.Н. Михаил Осипович Доливо-Добровольский. М.: Госэнергоиздат, 1958.

12.24. История энергетической техники / Л.Д. Белькинд, О.Н. Веселовский, И.Я. Конфедератов, Я.А. Шнейберг. М.: Госэнергоиздат, 1960.

12.25. Темников Ф.Е. Теория развертывающих систем. М.-Л.: Госэнергоиздат, 1963.

12.26.Веселовский О.Н., ШнейбергЯ.А. Энергетическая техника и ее развитие. М.: Высшая школа, 1976.

12.27.Стил Р. Принципы дельта-модуляции. М.: Связь, 1979.

12.28. Арутюнов В.О. Избранные труды в области электрических измерений, теории и прикладных вопросов метрологии. М.: Изд-во стандартов, 1979.

12.29. Бароне А., Патерно Д. Эффект Джозефсона: физика и применения. М.: Мир, 1984.

12.30. Сиберт У.М. Цепи, сигналы, системы. Ч. 1.М.:Мир, 1988.

12.31. Электроника: Энциклопедический словарь / Гл. ред. В.Г Колесников. М.: Сов. энциклопедия, 1991.

12.32. Волшебство аналоговой схемотехники // Электроника (русский перевод). 1993. № 11/12.

12.33. Уилер Р. Испытания и измерения за 40 лет // Электроника (русский перевод). 1993. № 11/12.

12.34. Веселовский О.Н., Шнейберг Я.А. Очерки по истории электротехники. М.: Изд-во МЭИ, 1993.

12.35.Герасимов В.Г., Орлов И.Н., Филиппов Л.И. От знаний — к творчеству. М.: Изд-во МЭИ, 1995.


Глава 13.
ПЕРСОНАЛИИ

13.1. КРАТКИЕ СВЕДЕНИЯ О РОССИЙСКИХ И ЗАРУБЕЖНЫХ УЧЕНЫХ, ВНЕСШИХ ЗНАЧИТЕЛЬНЫЙ ВКЛАД В РАЗВИТИЕ ЭЛЕКТРОТЕХНИКИ

Алексеев Александр Емельянович (1891–1975 гг.) — российский ученый, профессор, доктор технических наук, член-корреспондент АН СССР, заслуженный деятель науки РФ, лауреат государственных премий. Основное направление деятельности — разработка научных принципов конструирования электрических машин различного типа; руководил конструкторскими работами по созданию электросварочных агрегатов, затем разрабатывал конструкции первых отечественных турбо- и гидрогенераторов, в частности гидрогенераторов Волховской ГЭС; руководил разработками первых тяговых электродвигателей; занимался теоретическими и конструкторскими разработками перевода железных дорог с постоянного на переменный ток. А.Е. Алексеев обобщил вопросы конструирования, выбора вентиляционных схем, тепловых расчетов электрических машин общего назначения и тяговых электродвигателей в монографиях: «Конструкция электрических машин» и «Тяговые электродвигатели».

Ампер Андре Мари (1775–1836 гг.) — выдающийся французский ученый, основатель электродинамики. Родился в г. Лионе в семье аристократа, получил хорошее домашнее образование. Благодаря огромному трудолюбию стал одним из образованнейших людей своего времени. Его энциклопедические знания ярко проявились в физике и математике, астрономии и химии, зоологии и философии. Первую научную работу по математике он представил в Лионскую академию наук, когда ему было всего 13 лет. Первые открытия в области электромагнетизма в 1819–1820 гг. настолько увлекли A.M. Ампера, что уже весной 1820 г. он сделал первые шаги на пути создания электродинамики. В течение нескольких недель подряд он выступал на заседаниях Парижской академии наук, сообщая о своих исследованиях по взаимодействию токов и магнитов. Он впервые четко объяснил, что все явления магнетизма объясняются электрическими явлениями. A.M. Ампер придумал оригинальный «станок Ампера», наглядно иллюстрировавший взаимодействие проводников с током. Блестяще владея математикой, он вывел известный закон электродинамики, носящий его имя, а наблюдаемые явления предложил называть «электродинамическими» в отличие от электростатических. Все его теоретические и экспериментальные исследования были обобщены в известном труде «Теория электродинамических явлений, выведенная исключительно из опытов» (Париж, 1826–1827 гг.). A.M. Ампер впервые ввел в науку термин «электрический ток» и понятие о его направлении. Огромной заслугой A.M. Ампера является разработанная им теория «молекулярных токов»: магнетизм любой самой малой частицы обусловлен круговыми электрическими токами, расположенными в плоскостях, перпендикулярных к ее оси. Это был новый прогрессивный шаг в толковании природы магнитных явлений, отрицавший представление об особых «магнитных жидкостях». Научный вклад A.M. Ампера получил высочайшую оценку: в 1891 г. на Международном конгрессе электриков в Париже единица тока получила название «Ампер». Он был членом Парижской академии наук с 1834 г., избирался также членом многих академий мира, в том числе и Петербургской академии наук (1839 г.). Его по праву называли «Ньютоном электричества».

Апаров Борис Петрович (1899–1950 гг.) — русский ученый-электротехник, профессор, доктор технических наук, родился в Москве, учился в Московском высшем техническом училище, которое окончил в 1923 г. Свою научную и педагогическую деятельность Б.П. Апаров начал в 1924 г. на кафедре электрических машин под руководством К.И. Шенфера и на кафедре основ электротехники под руководством К.А. Круга. Тогда же он начал работать научным сотрудником в Государственном электротехническом экспериментальном институте (ныне ВЭИ). В 1928 г. Б.П. Апаров был утвержден в звании доцента, а в 1934 г. — в звании профессора Московского энергетического института. В 1937 г. после успешной защиты диссертации Б.П. Апарову была присуждена ученая степень доктора технических наук. До 1941 г. Б.П. Апаров работал на кафедре электрических машин МЭИ. Во время войны Б.П. Апаров был назначен заведующим кафедрой авиационного и автотракторного электрооборудования МЭИ, которую возглавлял до конца своей жизни. Б.П. Апарову принадлежит более 50 научных статей и монографий. В 1924 г. Б.П. Апаров опубликовал результаты исследований влияния зубчатости статора и ротора на рабочий процесс индукционных машин. В 1932 г. Б.П. Апаров предложил формулы для рационального выбора зубцов асинхронных двигателей. Ряд его работ посвящен вопросам влияния насыщения на рабочие свойства электрических машин. Им впервые была показана возможность каскадного соединения синхронных машин. Б.П. Апаровым была предложена схема двигателя двойного питания. Под руководством Б.П. Апарова были выполнены важные работы для авиационной промышленности по генераторам переменного тока, регуляторам напряжения и системам зажигания.

Араго Доменик Франсуа (1786–1853 гг.) — французский ученый, академик; отличался разносторонней эрудицией и широтой научных исследований: астрономия и электричество, оптика и геофизика, артиллерия и железные дороги, литературная и общественно-политическая деятельность. Будучи секретарем Парижской академии наук, он написал всемирно известную трехтомную монографию, посвященную трудам знаменитых физиков, астрономов и геометров. Родился в небольшом селении в Восточных Пиренеях в семье скромного адвоката и землевладельца. Д.Ф. Араго с детства проявил необычайные способности в области точных наук, блестяще закончил Политехническую школу в г. Тулузе. В 1806 г. был направлен в Испанию для продолжения работ по измерению меридиана. Когда началась война в Испании за независимость, Д.Ф. Араго, живший в горах, принятый за французского шпиона, был ранен и чудом избежал смерти. Сидя в каземате, он прятал под одеждой рукописи с результатами измерений. Лишь в конце 1808 г. он вернулся во Францию, где его считали погибшим. Рукописи были переданы в Академию наук, и Д.Ф. Араго вскоре избирается академиком. После открытия Г.Х. Эрстедом действия тока на магнитную стрелку, Д.Ф. Араго повторил его опыты перед академиками и показал, что проволока с током притягивает железные опилки (как магнит), а если свернуть проволоку в виде спирали и поместить внутри нее иглу, то она намагничивается. Опыты Д.Ф. Араго дали первое указание на электрическую природу магнетизма. В 1824 г. Д.Ф. Араго открывает еще одно явление, названное «магнетизмом вращения» (или «явлением Араго»): при вращении магнитной стрелки медный диск, сидящий на оси, и находящийся над стрелкой (или под ней) также приходит во вращение. Его впервые объяснил М. Фарадей, указав, что вращаемое магнитное поле наводит в диске токи (вихревые), которые взаимодействуют с магнитом. Д.Ф. Араго был последовательным сторонником волновой теории света. Он установил связь между полярными сияниями и магнитными бурями. Широко была известна и активная общественно-политическая деятельность Д.Ф. Араго: он был членом парламента, а в 1848 г. во время революции был назначен морским министром.

Аркадьев Владимир Константинович (1884–1953 гг.) — российский физик, член-корреспондент АН СССР. Научная деятельность В.К. Аркадьева связана с Московским государственным университетом (МГУ), профессором которого он был. Начинал он ее в 1907 г. с исследований электромагнитных явлений в металлах в лаборатории П.Н. Лебедева, который был его научным руководителем. В 1913 г., исследуя железо и никель, он впервые в мире наблюдал гиромагнитный (ферромагнитный) резонанс — явление, изучение которого позднее составило основное содержание целого научного направления — гиромагнитной электроники и электродинамики. В 1919 г. он создал в МГУ магнитную лабораторию, ставшую на долгие годы центром исследований в области электромагнетизма. В.К. Аркадьев создал общую теорию массивных спектров, под его руководством получены кратчайшие радиоволны, что позволило «сомкнуть» электромагнитный спектр. Широкую известность получили его работы по методам магнитной спектроскопии, радиоскопии. Он является одним из основоположников теории приборов СВЧ и современной магнитодинамики. В.К. Аркадьев автор более 300 научных работ.

Белл Александр Грейам (1847–1922 гг.) — изобретатель телефона. Родился в Эдинбурге, с 1870 г. профессор физиологии речи Бостонского университета, В это же время он заинтересовался идеей многократного телеграфирования по одному проводу. После многих экспериментов в 1876 г. получил патент на телефон и по 12-метровому проводу передал по телефону первую фразу. В тот же день только на 2 ч позднее А.Г. Белла заявку на «устройство для передачи и приема вокальных звуков» подал известный американский электротехник Э. Грей. Но А.Г. Белл подал заявку на конкретное устройство, а Э. Грей лишь на намерение создать устройство с указанием возможного принципа его действия. Уже в июне 1876 г. телефон А.Г. Белла демонстрировался на выставке в Филадельфии и быстро получил широкое распространение. Двенадцать университетов мира удостоили А.Г. Белла степени доктора наук и многими наградами.

Белькинд Лев Давидович (1896–1969 гг.) — российский ученый, один из основоположников отечественной светотехники, специалист в области истории электротехники, профессор, доктор технических наук, заслуженный деятель науки и техники РСФСР. Окончил в 1919 г. Харьковский технологический институт, с 1923 г. он ведущий инженер промышленного отдела Главэлектро ВСНХ. В 1926 г. участвует в разработке первой серии осветительных приборов, которые стали изготавливаться отечественной промышленностью, а в 1930 г. он назначен техническим директором завода «Электросвет». С 1933 г. он профессор кафедры светотехники МЭИ, которую возглавлял в течение 17 лет. В 1934 г. вышла книга Л.Д. Белькинда «Электрические осветительные приборы ближайшего действия». В 1946 г. был создан курс «Теоретические основы светотехники». Л.Д. Белькинд был одним из организаторов и первым деканом нового в МЭИ электрофизического факультета. Он основатель и главный редактор (с 1932 по 1938 г.) журнала «Светотехника»; под его редакцией было издано 12 иностранно-русских политехнических словарей. Л.Д. Белькинд также был основателем и в течение 15 лет (с 1947 г.) руководителем кафедры истории техники МЭИ. Он возглавлял авторский коллектив первого в нашей стране учебника «История энергетической техники». Им написаны монографии о многих выдающихся отечественных и зарубежных электротехниках, получившие широчайшее признание. Им опубликовано более 40 монографий и учебных пособий и более 50 книг и статей по светотехнике и истории электротехники.

Бенардос Николай Николаевич (1842–1905 гг.) — выдающийся российский изобретатель, первым применивший электрическую дугу для электросварки металлов. Родился в Херсонской губернии, получил домашнее образование. Затем учился в Киевском университете и Петровской земледельческой и лесной академии в Москве. В 1867 г. получил отпуск для поездки на Парижскую всемирную выставку, увлекся изобретательской деятельностью в различных областях техники, но особые достижения его творчества относятся к области электричества. С 1881 г. начинает работать над совершенствованием электрических аккумуляторов и впервые в 1884 г. осуществляет электросварку свинцовых аккумуляторных пластин, а в 1885 г. получает привилегию на способ электрической сварки металлов, названный им «электрогефестом», который произвел настоящую революцию в технологии соединения металлов и положил начало новой отрасли производства. Этот способ получил широчайшее применение на машиностроительных заводах России, Англии, Германии, Франции, Америки. Во всех этих странах Н.Н. Бенардосом были получены патенты. Заслуги Н.Н. Бенардоса были высоко оценены: он был удостоен медали Русского технического общества, а Петербургский электротехнический институт присвоил ему звание инженера-электрика. Н.Н. Бенардос проявил удивительные изобретательские способности в разных областях техники: он построил действующую модель «парохода-вездехода», разработал проект снабжения Санкт-Петербурга «дешевым электрическим током», предложил метод электролитического покрытия больших поверхностей и многое другое. В 1890 г. Н.Н. Бенардос уехал на Украину, где продолжил разнообразные эксперименты. Во время одного из опытов он отравился парами свинца и в 1905 г. скончался в г. Фастове.

Био Жан Батист (1775–1862 гг.) — французский физик. Родился в Париже, с 1801 г. профессор Колледж де Франс, а в 1808–1849 гг. — Парижского университета. Занимался исследованиями по оптике и акустике, теплоте и электромагнетизму. В 1811–1815 гг. открыл явление поляризации света при преломлении и ряд других поляризационных эффектов. Особую известность приобрели его работы по электромагнетизму. В 1820 г. вместе с Ф. Саваром экспериментально доказал один из законов электромагнитного поля, носящий их имя. Этот закон позволяет математически оценить силу воздействия постоянного электрического тока, проводника, на магнит, находящийся на известном расстоянии от его середины. Ж.Б. Био автор известных учебников по физике, был избран членом Лондонского Королевского общества и Санкт-Петербургской академии наук.

Блати Отто Титус (1860–1939 гг.) — венгерский электротехник, создавший в 1885 г. вместе с К. Циперновским и М. Дери однофазные трансформаторы нескольких модификаций (кольцевой, броневой, стержневой) с замкнутым шихтованным магнитопроводом, конструкции которых наиболее близки к современным. Совместно с М. Дери, О. Блати предложил в 1885 г. использовать в качестве однофазного электродвигателя машину постоянного тока с последовательным возбуждением: при подключении двигателя к однофазной цепи направление магнитного потока будет одновременно изменяться как в обмотке полюсов, так и в обмотке якоря и последний будет вращаться.

Болотов Андрей Тимофеевич (1738–1833 гг.) — российский ученый-энциклопедист, создатель первых электростатических машин для медицины. Родился в родовом имении Дворяниново Тульской губернии, получил хорошее домашнее образование, самостоятельно изучал естественные науки, математику, географию, иностранные языки, посещал лекции по естественным наукам и философии в Кенигсбергском университете. Изучая труды по электричеству, проводил множество экспериментов с целью его практического применения. В 1803 г. в Петербурге вышел фундаментальный труд А.Т. Болотова «Краткие и на опытности основанные замечания о електрицизме и о способности електрических машин к помочению от разных болезней». В отличие от многих современников, занимавшихся электрическими опытами ради забавы, А.Т. Болотов создал первую стационарную электролечебницу с разнообразным набором оригинальных инструментов. Его электролечебница с успехом действовала более 10 лет. В 1792 г. Болотов написал «Историю моего електризования и врачевания разных болезней оным» в трех томах, а также «Краткий електрический лечебник» (1793 г.). Он по праву считается пионером отечественной электромедицины. А.Т. Болотов прославился также как крупнейший агроном, много сделавший для рационализации сельского хозяйства, интенсификации земледелия и садоводства. Он известен и как видный экономист и философ. Результаты исследований составили гигантский рукописный труд — более 350 томов.

Бонч-Бруевич Михаил Александрович (1888–1940 гг.) — один из пионеров российской электротехники и радиотехники, член-корреспондент АН СССР. С 1918 по 1928 г. руководил Нижегородской радиолабораторией. С 1916 г. принимал участие в создании мощных электронных приемно-усилительных и генераторных ламп, изобрел мощную генераторную лампу с водяным охлаждением анода, получившую применение в мировой радиотехнике. Им же разработана теория триода. В 1919г. разработал и внедрил в производство триод с алюминиевым катодом. Под его руководством в 1922 г. была создана первая мощная радиовещательная станция в Москве.

Боргман Иван Иванович (1849–1914 гг.) — российский физик-электротехник. Родился в Петербурге. В 1870 г. окончил Петербургский университет, в котором с 1888 г. работал профессором, ас 1901 г. — директором Физического института при университете. В Электротехническом институте Петербурга с 1893 по 1914 г. он преподавал теоретическую часть электротехники. И.И. Боргман написал двухтомный курс «Основания учения об электрических и магнитных явлениях», в котором были отражены такие разделы электротехники, как постоянный ток, магнетизм, электромагнетизм, электродинамика. Ряд его работ посвящен разрядам в газах и радиоактивности. Он один из первых обнаружил радиоактивность российских целебных грязей. Создал ряд физических приборов. Активно пропагандировал в учебных заведениях теорию электромагнитного поля. В 1875–1900 гг. был редактором первого русского физического журнала. По его инициативе в 1911 г. стал издаваться непериодический сборник «Новые идеи в физике».

Боресков Михаил Матвеевич (1829–1898 гг.) — военный электротехник, специалист в области минной электротехники, генерал-лейтенант. Родился в Петербурге, окончил Главное инженерное училище, возглавлял гальваническую команду в саперном батальоне в Молдавии, а затем гальваническую команду в Петербурге. Разработал оригинальную плавучую гальваническую мину с электрическим запалом и специальным прибором, замыкающим электрическую цепь при ударе мины о борт судна или устье моста. Конструкция мины подробно описана в сочинении М.М. Борескова «Руководство по минному искусству в применении его к подводным оборонительным минам и гидротехническим работам» (1876 г.). М.М. Боресков активный участник обороны береговых укреплений во время Крымской войны 1854–1855 гг. Гальванические мины М.М. Борескова надежно защищали Дунай, Днепр и Буг. Работая в Техническом гальваническом заведении в Петербурге, М.М. Боресков продолжал совершенствование гальванических мин для использования их при углублении фарватеров рек и лиманов. М.М. Боресков один из организаторов Минного офицерского класса в Кронштадте — передового военного учебного заведения России. За успешное руководство минными заграждениями во время русско-турецкой войны 1877–1878 гг. был награжден золотым оружием за храбрость. Он один из организаторов электротехнического отдела Русского технического общества, ас 1891 г. Почетный член этого общества.

Буйлов Анатолий Яковлевич (1901–1949 гг.) — российский ученый-электротехник, профессор, доктор технических наук. Родился в Москве, в 1920 г. поступил в Московское высшее техническое училище на электротехнический факультет, после окончания которого начал работать в Государственном экспериментальном электротехническом институте (ныне ВЭИ) научным сотрудником. Параллельно с работой в ВЭИ с 1930 г. вел педагогическую деятельность в МЭИ. С 1940 г. заведовал в МЭИ кафедрой «Электрические аппараты», а в 1943 г. был назначен деканом электромеханического факультета МЭИ. В 1940 г. получил ученую степень доктора технических наук и звание профессора. А.Я. Буйлов внес большой вклад в развитие теории коммутации и создание мощных выключателей для энергосистем. В 1933 г. им была предложена специальная конструкция решетки масляного дутья. Большое значение для практики имели теоретические работы А.Я. Буйлова в области тяговых электромагнитов. Высокую оценку специалистов получили работы А.Я. Буйлова в области исследования перенапряжений, возникающих при коммутации электрических цепей, с учетом явлений в дуговом промежутке.

Буткевич Георгий Владимирович (1903–1974 гг.) — российский ученый-электротехник, профессор, доктор технических наук. Родился в Москве. В 1926 г., еще будучи студентом электротехнического факультета Московского высшего технического училища, начал работать в ВЭИ. В 1928 г. параллельно с научно-исследовательской деятельностью начал преподавательскую работу в МЭИ. С 1961 по 1972 г. заведовал кафедрой электроаппаратостроения в МЭИ. В период с 1937 по 1940 г. под непосредственным руководством Г.В. Буткевича впервые в СССР была создана лаборатория разрывных мощностей. За создание отечественных воздушных выключателей на напряжение от 6 до 500 кВ он был удостоен Ленинской (1962 г.) и Государственной (1974 г.) премий. Г.В. Буткевич внес большой вклад в развитие теории электрической дуги и исследование процессов коммутации высоковольтных электрических цепей. Он был в течение многих лет членом редколлегии журнала «Электричество», а также принимал активное участие в работе ряда международных организаций (МЭК, СИГРЭ, СЭВ).

Веденеев Борис Евгеньевич (1884–1946 гг.) — российский ученый и инженер-гидроэнергетик, академик, профессор Ленинградского института инженеров путей сообщения и Московского инженерно-строительного института. Б.Е. Веденеев родился в Тифлисе, окончил Петербургский институт инженеров путей сообщения в 1909 г. Прослушал курс лекций по электротехнике в знаменитом Дармштадском высшем техническом училище. С 1912 по 1916 г. занимался сооружениями портов на побережье Японского моря, в Кольском заливе и Мурманске. Б.Е. Веденеев был начальником строительства первой отечественной гидроэлектростанции — Волховской ГЭС (1926 г.) и главным инженером строительства Днепровской ГЭС (1932 г.). С именем Б.Е. Веденеева связано строительство гидроэлектростанций на реках Каме и Иртыше. Его учебник «Гидросиловые электрические установки» (1924 г.) многие годы служил настольной книгой для студентов и инженеров. В годы Великой Отечественной войны Б.Е. Веденеев работал заместителем члена Государственного комитета обороны и заместителем народного комиссара электростанций СССР.

Веников Валентин Андреевич (1912–1988 гг.) — российский ученый-энергетик, профессор, доктор технических наук, лауреат Ленинской и Государственной премий, заслуженный деятель науки и техники. Родился в Нижнем Новгороде. В 1936 г. окончил Московский энергетический институт. Инженерную и научную деятельность начал в Энергетическом институте АН СССР с исследований в области физического моделирования электроэнергетических систем, которые завершил защитой кандидатской диссертации (1941 г.) и опубликованием монографии «Применение теории подобия и моделирования в электротехнике» (1949 г.). Научные концепции этой книги инициировали многие последующие исследования как в СССР, так и за рубежом и легли в основу докторской диссертации автора, защищенной в 1952 г. Второе научное направление В.А. Веникова — исследование переходных процессов и устойчивости электроэнергетических систем, разработка методов их автоматического регулирования и управления. За комплекс теоретических и экспериментальных исследований, связанных с созданием первой сверхдальней линии передачи напряжением 500 кВ Куйбышев — Москва и других уникальных линий, изучением работы сложных электроэнергетических систем при переходных процессах был удостоен Ленинской премии (1958 г.). Общий список его научных трудов содержит более 400 наименований, среди которых около 50 книг и 40 изобретений. Педагогическая деятельность В.А. Веникова охватывает 50-летний период (1938–1988 гг.) его работы в МЭИ, где он возглавлял кафедру электроэнергетических систем, был деканом электроэнергетического факультета, проректором. Им созданы многие учебники, один из которых, ставший классическим и многократно издававшийся на русском и других языках, «Переходные электромеханические процессы в электрических системах» был удостоен Государственной премии СССР. В течение 30 лет В.А. Веников являлся постоянным членом научного комитета по режимам систем Международного конгресса по большим электрическим системам (СИГРЭ).

Войнаровский Павел Дмитриевич (1866–1913 гг.) — российский электротехник, профессор и ректор Петербургского электротехнического института. Окончил в 1889 г. Техническое училище почтово-телеграфного ведомства и начал практическую деятельность в качестве механика Управления городских телеграфных линий в Москве. П.Д. Войнаровский уже в молодые годы становится одним из ведущих электриков-связистов. В 1894 г. он приглашается в Электротехнический институт для чтения лекций по телефонии и железнодорожной сигнализации. Здесь же он получает звание профессора на ведущей кафедре электротехники, а потом становится ректором института. Когда правительство приняло решение о строительстве телефонной линии между Петербургом и Москвой, то проектирование ее Главное управление почт и телеграфов поручило П.Д. Войнаровскому, который в 1896 г. разработал один из проектов. П.Д. Войнаровский был членом Коллегии по устранению телеграфных помех на линии телефонной связи. П.Д. Войнаровский автор ряда электротехнических курсов, впервые читавшихся в России, им была создана высоковольтная лаборатория (1903 г.). Он известен как автор фундаментальных научных трудов. В 1898 г. в Петербурге вышел его труд «Теоретическое и практическое руководство по телефонии», его монография «Теория электрического кабеля» (1912 г.) была первым в России и одним из первых в мире трудов, посвященных в основном силовым кабелям.

Вологдин Валентин Петрович (1881–1953 гг.) — один из пионеров отечественной высокочастотной техники. Начиная с 1912 г. им было разработано и внедрено несколько типов высокочастотных электрических машин для радиотехнических целей, а позднее для термической обработки металлов. Первый высокочастотный генератор радиоволн (1912 г.) имел мощность 2 кВт, частоту 60 кГц и использовался на флотских радиостанциях. В 1913 г. генератор был установлен для радиосвязи между гребным портом и Главным адмиралтейством в Петербурге, расстояние между которыми составляло около 5 км. Один из основателей известной Нижегородской радиолаборатории. В 1922 г. построил там высокочастотный генератор мощностью 150 кВт и частотой 15 кГц, который был использован на Октябрьской радиостанции в Москве для осуществления радиосвязи между Москвой и Нью-Йорком в 1925 г. В 1930 г. в лаборатории В.П. Вологдина в Ленинграде началась разработка, а с 1932 г. на одном из заводов производство индукционных стеклоплавильных электрических печей, питавшихся от генераторов высокой частоты. Под его руководством были разработаны методы высокочастотной пайки и закалки металлов. С 1930 г. В.П. Вологдин член-корреспондент АН СССР, дважды лауреат Государственных премий (1943 и 1952 гг.).

Вольдек Александр Иванович (1911–1977 гг.) — российский ученый, доктор технических наук, профессор, академик АН Эстонской ССР, специалист в области электромашиностроения. Родился в Ульяновской области в крестьянской семье переселенца из Эстонии. После получения среднего образования в 1932 г. поступил на электромеханический факультет Ленинградского политехнического института (ЛПИ), который закончил в 1938 г. С 1961 г. по 1977 г. возглавлял кафедру электрических машин ЛПИ. А.И. Вольдек является основоположником научного направления по разработке и исследованию индукционных магнитогидродинамических машин с жидкометаллическим рабочим телом. Автор ряда работ по исследованию индукционных двигателей для высокоскоростного наземного транспорта, а также соавтор учебника по курсу «Электрические машины».

Вольта Алессандро (1745–1827 гг.) — выдающийся ученый, которого современники называли самым великим физиком, жившим в Италии после Галилея. Основные его исследования относятся к области электричества. Самым значительным достижением А. Вольта было создание в 1799 г. первого источника «длительного» электрического постоянного тока, знаменитого «вольтова столба», положившего начало практическому применению электричества. Первое публичное сообщение о вольтовом столбе было сделано в 1800 г. А. Вольта была предложена теория «контактного электричества», утверждавшая, что при соприкосновении различных материалов происходит разложение их «естественного» электричества, при этом электричество одного знака собирается на одном материале, другого — на другом. Силу, возникающую при контакте двух металлов, А. Вольта назвал электровозбудительной, или электродвижущей, силой, вызывающей разность потенциалов между металлами. А. Вольта принадлежат большие заслуги в исследовании электростатических явлений, его по праву можно назвать основателем электрической метрологии. В 1778–1782 гг. он создал чувствительный электроскоп и установил зависимость между электрическими зарядами, емкостью и напряжением. Им было создано несколько типов оригинальных электроскопов и электрический конденсатор. По предложению Наполеона А. Вольта был избран в число «бессмертных», награжден орденом Почетного легиона и удостоен звания графа. В мире науки имя А. Вольта останется навсегда, в его честь единице напряжения в 1881 г. присвоено название «Вольт». Он был почетным членом Санкт-Петербургской Академии наук.

Гальвани Луиджи (1737–1798 гг.) — итальянский ученый, врач, профессор Болонского университета, создатель теории «животного» электричества. Родился в Болонье, вначале изучал богословие, затем медицину, физиологию и анатомию в Болонском университете. С 1773 по 1780 г. провел ряд электрофизиологических опытов при анатомическом исследовании мышечных движений лягушек. В 1791 г. он издает «Трактат о силах электричества при мышечном движении», в котором изложил свои опыты и идеи. Трактат вызвал большой интерес и послужил причиной научных споров и новых исследований. Имя Л. Гальвани сохранилось в названиях явлений и устройств: гальванизм, гальванометр, гальванопластика, гальванические элементы и др.

Гельмгольц Герман Людвиг (1821–1894 гг.) — немецкий ученый, один из общепризнанных лидеров физической науки второй половины XIX в. Родился в семье потсдамского учителя гимназии. Получил хорошее медицинское образование и уже в 22 года в своей диссертации, посвященной строению нервной системы, подошел к установлению нейронов. Проработав много лет в качестве военного хирурга, он стал одним из основателей известного в Германии Немецкого физического общества. Г. Гельмгольц установил процесс расходования вещества при действии мышц и заинтересовался вопросом о загадочной жизненной силе. В 1847 г. выступил с докладом «О сохранении силы», в котором подошел к объяснению закона сохранения энергии, как физиолог. Его оригинальные выводы на первых порах были сочтены «фантастическим умствованием». Г. Гельмгольц утверждал, что «невозможно при существовании любой произвольной комбинации тел природы получать непрерывно из ничего движущую силу». Рассматривая электрические явления, Г. Гельмгольц выделяет энергию системы заряженных проводников и показывает, что при разряде лейденских банок выделяется теплота, эквивалентная запасенной электрической энергии. Он дал известное выражение электродвижущей силы индукции. С 1849 г. Г. Гельмгольц профессор физиологии и общей патологии медицинского факультета Кенигсбергского университета, а с 1858 г. профессор физиологии в Гейдельберге, где успешно занимался физиологией зрения, издав несколько выпусков широко известной «Физиологии оптики». С 1871 г. Г. Гельмгольц становится профессором Берлинского университета и создает известный в Европе Физико-технический институт.

Генри Джозеф (1797–1878 гг.) — американский физик, президент Национальной академии наук США, родился в семье бедного возчика в г. Олбани, увлекался чтением книг и путем самообразования расширял свои знания. И хотя он несколько лет учился в лицее, Д. Генри утверждал, что «был главным образом самоучкой». Он, так же как М. Фарадей, увлекался электромагнитными явлениями и независимо от него почти одновременно сделал величайшее открытие — явления электромагнитной индукции. Это произошло в июне 1832 г., т.е. спустя 9 мес. после М. Фарадея, об экспериментах которого в далеком Лондоне Д. Генри, естественно, ничего не знал. Много лет занимаясь изготовлением мощных электромагнитов, Д. Генри получил «электромагнитную искру из электромагнита» и опубликовал в американском научном журнале статью «О получении электрических токов и искр и магнетизма». В отличие от М. Фарадея, начавшего свои опыты с помощью соленоидов, Д. Генри сразу воспользовался электромагнитами. Д. Генри также открыл (1834–1838 гг.) явления самоиндукции и взаимной индукции. Катушка индуктивности, изобретенная Д. Генри, хранится в Принстонском институте, профессором которого он был с 1832 г. В 1842 г. Д. Генри первым из физиков установил, что при искровом разряде конденсатора (лейденской банки) возникают электромагнитные колебания, которые он назвал «волнами электричества». Это открытие намного опередило его время и по достоинству было оценено лишь спустя полвека, на заре радиотехники. В 1835 г. Д. Генри изобрел электромагнитное реле и схему батареи, пригодной для дальнего телеграфирования. В 1836 г. он сконструировал электродвигатель с качательным движением электромагнита (до 75 качаний в минуту). Имя Д. Генри было увековечено решением Чикагского электротехнического конгресса в 1893 г., присвоившего единице индуктивности название «Генри».

Герике Отто (1602–1686 гг.) — бургомистр г. Магдебурга, известный немецкий изобретатель, создатель первой электростатической машины (1650 г.), положившей начало новому этапу в проведении экспериментальных исследований электрических явлений. Его машина представляла собой серный шар, установленный на оси и натираемый руками. О. Герике был противником схоластики и видным защитником экспериментальных методов исследований. Он был создателем воздушного насоса и провел множество экспериментов с целью создания вакуума. Откачав воздух из медного шара, он убедился в огромной силе атмосферного давления. В 1654 г. он с успехом продемонстрировал членам рейхстага знаменитый опыт с магдебургскими полушариями. Свои необычные по тому времени эксперименты О. Герике описал в книге «Новые магдебургские опыты о пустом пространстве» (1672 г.), вызвавшей большой интерес к этому явлению природы и возможности его практического применения.

Герц Генрих Рудольф (1857–1894 гг.) — знаменитый немецкий физик, впервые экспериментально доказавший существование электромагнитных волн согласно теории Д.К. Максвелла. Родился в Гамбурге в семье адвоката. Учился в реальном училище, затем в гимназии и в Дрезденской, потом Мюнхенской технической школе, поражая учителей превосходной памятью и успехами как в математических, так и в гуманитарных науках. В 1880 г. закончил Берлинский университет и три года работал в лаборатории под руководством Г. Гельмгольца, занимаясь исследованиями в области электродинамики. В 24 года он уже доктор натуральной философии и математики, в 1883–1885 гг. приват-доцент на кафедре физики Кильского университета, в 1885–1889 гг. профессор физики в Высшей технической школе в г. Карлсруэ, в 1889–1894 гг. — профессор экспериментальной физики Боннского университета. Работая в физическом кабинете в Высшей технической школе в Карлсруэ, Г. Герц получил с помощью индукционной катушки Г Румкорфа «быстрые электрические колебания». Изучая колебательный разряд, он создал свой «классический излучатель» — вибратор, который позволил увеличить частоту колебаний более чем в 100 раз. Искровой разряд вибратора сопровождался возникновением электромагнитных волн, которые нужно было зарегистрировать. И Г. Герц сконструировал простейший приемник — резонатор. При соответствующем подборе размеров обоих приборов их можно было настроить в резонанс, и тогда резонатор, находившийся в нескольких метрах от вибратора, воспроизводил искры той же частоты. Это произошло весной 1887 г. Продолжая эксперименты, Г. Герц установил, что электромагнитные волны отражаются от зеркал, преломляются в призмах, поляризуются, т.е. обладают всеми свойствами световых волн. Таким образом Г. Герцу удалось перевести на экспериментальный язык уравнения Д.К. Максвелла. Г. Гельмгольц назвал работы Г. Герца «важнейшим физическим открытием новейшего столетия».

Гильберт Уильям (1540–1603 гг.) — английский ученый, родоначальник науки об электричестве и магнетизме. Родился в небольшом городке Кольчестере в семье судьи, учился в Кембридже и Оксфорде. С 1564 г. он магистр искусств, с 1569 г. доктор медицины, а позднее ему была присуждена степень доктора физики. Будучи известным врачом, он стал лейбмедиком английской королевы. Около 20 лет своей жизни У. Гильберт посвятил изучению явлений магнетизма и электричества, изучив труды своих предшественников, являясь последовательным сторонником экспериментальных методов исследований. Он произвел более 600 опытов, которые были описаны в его фундаментальном труде «О магните, магнитных телах и о большом магните — Земле», изданном в Лондоне в 1600 г. Подробно описав свойства магнита, У. Гильберт приходит к выводу, что Земля — это большой магнит. Исследования магнетизма привели У. Гильберта к изучению электрических явлений. Он установил, что кроме янтаря (об электризации которого при трении было известно еще со времен Фалеса Милетского) электризуются при натирании многие другие (около 20) тела: алмаз, опал, аметист, стекло, сера и др. Эти тела он назвал «электрическими». Но некоторые тела, например жемчуг, агат, мрамор, слоновая кость и металлы, не электризуются. Ошибочная точка зрения У Гильберта о невозможности электризации металлов продержалась в науке около 200 лет, пока выдающийся русский физик В.В. Петров не доказал, что металлы можно наэлектризовать, лишь предварительно изолировав их от земли. Описав разницу между проявлением магнитных и электрических явлений, У. Гильберт не сумел увидеть связи между этими явлениями. Именем У. Гильберта названа единица магнитодвижущей силы.

Глазунов Александр Александрович (1891–1960 гг.) — российский ученый-энергетик, профессор, доктор технических наук, заслуженный деятель науки и техники РФ, лауреат Государственной премии. Родился в Москве. В 1917 г. окончил Московское высшее техническое училище. Принимал участие в разработке плана ГОЭЛРО, в проектировании крупнейших электроэнергетических систем и ряда электростанций Донбасса, Урала, Центра. В течение длительной командировки в Германию и США глубоко изучил и критически освоил передовую зарубежную практику проектирования и строительства электрических систем, которую смело внедрял в энергетику СССР. А.А. Глазунов разработал теорию расчета проводов, тросов и деревянных опор. Под его руководством внедрены рациональные схемы соединений электростанций, подстанций и осуществлено питание собственных нужд от главных генераторов. Им разработаны методы определения мощности компенсирующих устройств, регулирующих напряжение в электроэнергетической сети на основе обобщения методов расчетов электрических сетей различных напряжений и назначения разработана и опубликована в 1939 г. синтезированная единая теория и методика таких расчетов. С 1918 г и до конца жизни А. А. Глазунов занимался преподавательской деятельностью (в МВТУ и МЭИ заведовал кафедрами электрических сетей и электрических станций). Он создал учебники по электрическим сетям и системам, электрической части станций, основам механической части воздушных линий электропередачи.

Голован Андрей Трифонович (1900–1964 гг.) — российский ученый в области электропривода, доктор технических наук, профессор, один из основоположников теории электропривода, создатель научной школы на кафедре автоматизированного электропривода МЭИ. В 1926 г. окончил Ленинградский электротехнический институт. С 1926 по 1931 г. работал инженером на электростанциях, в 1931–1934 гг. — руководителем научных работ в ЦНИИТмаш, а с 1934 г. — в МЭИ. В 1943 г. ему присвоена степень доктора технических наук, в 1944 г. — звание профессора. В 1942–1944 гг. А.Т. Голован руководил кафедрой электрооборудования промышленных предприятий, а в 1949–1959 гг. являлся деканом факультета электрификации промышленности и транспорта МЭИ. Его учебник «Основы электропривода», вышедший в 1949 г., выдержал несколько изданий и имел неоценимое значение для подготовки инженерных, научных и педагогических кадров. А.Т. Голованом опубликовано несколько монографий, учебных пособий, большое количество научных статей по фундаментальным вопросам автоматизированного электропривода. Им подготовлено свыше 30 докторов и кандидатов технических наук. А.Т. Голован был членом экспертной комиссии ВАК.

Голяр Люсьен (1850–1888 гг.) — французский электротехник, совместно с Д. Гиббсом в 1882 г. получил французский патент на «вторичный генератор» (как его называли), представлявший собой однофазный трансформатор с разомкнутой магнитной системой. Напряжение на вторичных обмотках могло регулироваться с помощью выдвижных сердечников катушек. Применение таких трансформаторов позволило осуществить электропередачу переменным током значительных мощностей на большие расстояния. Так, например, на Туринской выставке в 1884 г. была осуществлена передача энергии переменным током напряжением 2000 В на расстояние 40 км. Годом ранее Л. Голяр и Д. Гиббс выполнили установку для Лондонского метрополитена по освещению четырех станций. Общая мощность установки составляла около 15 кВ?А, напряжение 1500 В, а длина проводки 23 км. В 1885 г. ими была построена электростанция мощностью 160 кВ?А, энергия передавалась по двум линиям протяженностью 2 км каждая при напряжении 1200 В. В каждой линии последовательно было включено по пять трансформаторов.

Гопкинсон Джон (1849–1898 гг.) — английский электротехник, член Королевского общества. В 1884 г. совместно со своим братом инженером Эдвардом Гопкинсоном получил в Англии патент на «Конструкцию и применение индукционной катушки» с замкнутым магнитопроводом, изготовлявшимся из проволок или пластин листового железа. Это был первый трансформатор с замкнутым магнитопроводом. Они также предусмотрели возможность регулирования индуцированного тока. Большой заслугой братьев Гопкинсонов является разработка математических методов расчета магнитной системы электрических машин. В 1886 г. на заседании Королевского общества Гопкинсоны сделали доклад, в котором показали, что магнитный поток пропорционален произведению числа витков магнитопровода на намагничивающий ток и обратно пропорционален сумме всех сопротивлений магнитной цепи. Предложенный ими метод расчета магнитной системы позволял предусмотреть характеристики электрической машины еще в стадии ее проектирования. В 1879 г. Д. Гопкинсон ввел графическое представление о зависимостях в электрических машинах, так называемые характеристики холостого хода, внешнюю и др. Им же введено понятие коэффициента магнитного рассеивания. Вклад Д. Гопкинсона в теорию электрических машин не потерял своего значения до наших дней.

Горев Александр Александрович (1884–1953 гг.) — профессор, один из крупнейших отечественных ученых в области электротехники, электроэнергетики, электрофизики и техники высоких напряжений. Родился в Москве, окончил реальное училище, поступил на электромеханическое отделение Санкт-Петербургского политехнического института и был его выпускником с дипломом № 1. После успешного окончания института был оставлен там для продолжения научных исследований и создания в России лаборатории техники высоких напряжений. Участвовал в разработке плана ГОЭЛРО, был членом президиума Госплана, участвовал в разработке проектов строительства первых крупнейших электростанций — Волховской, Шатурской, Днепровской и дальних линий электропередачи. Ему принадлежат фундаментальные исследования режимов работы дальних линий электропередачи, сохранившие ценность до наших дней. Настольной книгой электриков 30-х годов была «Справочная книга для электротехников» (в шести томах), где раздел «Передача электрической энергии и техника высоких напряжений» был написан А.А. Горевым. Он является одним из основоположников исследования проблем устойчивости параллельной работы электростанций и переходных процессов в синхронных машинах. В 1932–1934 гг. им был разработан критерий циклической устойчивости систем, носящий название «критерий Горева». В 1936 г. он вывел общие дифференциальные уравнения электрических переходных процессов в синхронных машинах независимо от американского ученого Парха (известные уравнения Горева — Парха). За разработку методов испытаний высоковольтной аппаратуры был удостоен в 1948 г. Государственной премии. Создатель мощных накопителей энергии, первый в мире емкостный накопитель (1937 г.) носит название «контур Горева». В течение многих лет А.А. Горев возглавлял кафедру техники высоких напряжений Ленинградского политехнического института.

Грамм Зекоб Теофил (1826–1901 гг.) — бельгийский ученый, в течение ряда лет работал сотрудником французской фирмы «Альянс». В 1870 г. получил патент, а в 1871 г. представил в Парижскую академию наук доклад, в котором описал созданный им самовозбуждающийся генератор с кольцевым якорем. Кольцевой якорь был изобретен А. Пачинотти в 1860 г., но З.Т. Грамм усовершенствовал его конструкцию, изготовив тело якоря из пучка стальных проволок, благодаря чему снижались потери на вихревые токи. Кроме того, З.Т. Грамм предусмотрел возможность построения многополюсных машин. Важнейшим преимуществом машины З.Т. Грамма явилось не только то, что она давала постоянный ток, практически неизменный по значению, но и то, что она оказалась весьма экономичным источником тока, позволяющим получать значительные мощности при высоком КПД и сравнительно малых габаритах и массе. Машина З.Т. Грамма в принципе представляла собой машину постоянного тока современного типа и после Венской международной выставки в 1873 г. использовалась в режиме как двигателя, так и генератора. Внедрение генератора З.Т. Грамма в серийное производство в значительной степени ускорило применение электрической энергии в промышленности.

Графтио Генрих Осипович (1869–1949 гг.) — академик, один из крупнейших отечественных ученых-энергетиков, строителей первых гидроэлектростанций, родился в г. Двинске, закончил физико-математический факультет Новороссийского университета, получил звание кандидата физико-математических наук. После окончания университета поступает в Петербургский институт инженеров путей сообщения, где получает диплом инженера по электрификации железных дорог (1896 г.). Вскоре он уезжает в Европу, а потом в Америку и в течение трех лет работает там на заводах и энергетических предприятиях. Его приглашали остаться за границей, но он возвращается на Родину и с 1900 г. начинает добиваться от правительства разрешения на строительство гидроэлектростанций и электрификацию нескольких железных дорог. В 1905 г. он составляет проект гидростанции на р. Вуоксе для передачи энергии в Петербург. В том же году он издает отчет, в котором доказывает возможность гидротехнических сооружений на Днепре. Он был строителем первого трамвая в Петербурге (1906 г.).Уже в 1909–1911 гг. он выполнил проект сооружения Волховской гидроэлектростанции и линии электропередачи напряжением 110 кВ для передачи электроэнергии в Петербург, но сооружение Волховской гидроэлектростанции начинается только после 1917 г. Несмотря на огромные трудности, сооружение гидроэлектростанции было успешно завершено в 1926 г. С 1927 г. начинает строительство Нижнесвирской ГЭС. Для передачи энергии от Нижнесвирской ГЭС Г.О. Графтио впервые в мире построил линию электропередачи напряжением 220 кВ. После Великой Отечественной войны участвовал в восстановлении почти всех крупнейших гидростанций. С 1907 г. и до последних дней жизни он возглавлял кафедру электрических станций в Электротехническом институте им. В.И. Ульянова (Ленина).

Грей Стефан (1670–1736 гг.) — английский ученый, член Лондонского Королевского общества (1732 г.). Родился в Кентербери в семье ремесленника и интенсивно занимался самообразованием, в чем ему помогло близкое знакомство с королевским астрономом Д. Флемстидом. С. Грей с интересом изучал различные явления природы и приобрел известность своими астрономическими, оптическими и метеорологическими наблюдениями. Электрическими явлениями С. Грей начал заниматься в 20-х годах XVIII в. Он показал возможность электризации трением шелковых нитей, бумаги, кожи. В результате многих экспериментов в 1729–1730 гг. он открыл явление электропроводимости тел и показал, что для сохранения электричества тело должно быть изолировано. Он попытался выяснить, на какое расстояние передается электрическая сила. С. Грей доказал эффект электризации через влияние и возможность электризации тела человека, которое обладает заметной проводимостью. Он высказал предположение, что все тела можно разделить на «проводники» и «непроводники». Опыты С. Грея послужили началом исследования влияния электричества на тело человека и дали толчок дальнейшим исследованиям электрических явлений, в частности впервые привлекли внимание французского естествоиспытателя Ш. Дюфе. В 1731 г. С. Грею была присуждена высшая научная награда — премия Коплея.

Депре Марсель (1843–1918 гг.) — французский электротехник, академик Парижской академии наук, профессор. После окончания Высшей горной школы в Париже (1866 г.) много лет занимался механикой. Во время франко-прусской войны (1876–1877 гг.) создал прибор для определения скорости полета снаряда, находящегося в стволе орудия, затем им была разработана серия приборов для путевых динамометрических измерений. В конце 70-х годов XIX в. начинает усиленно заниматься электромеханикой и исследует электромагнитные процессы в электрических машинах, создает ряд оригинальных конструкций электродвигателей, электротехнических устройств и приборов: электрический молот, прибор для синхронной передачи движений на расстояние, гальванометр, носящий его имя, и ряд других. М. Депре показал возможность получения постоянного напряжения от машины со смешанным возбуждением. Он сделал значительный вклад в решение актуальнейшей для того времени проблемы — передачи электроэнергии на большие расстояния. Огромной заслугой М. Депре является то, что он, проявив блестящие способности инженера, впервые в 1882 г. осуществил опытную передачу электроэнергии на расстояние 57 км при напряжении на зажимах генератора 2400 В и КПД линии 20–22%. Электроэнергия, передаваемая по проводам из Мисбаха в Мюнхен на территорию выставки, приводила в движение электродвигатель, который с помощью насоса подавал воду для искусственного водопада на высоту 2,5 м. И хотя передача работала с перебоями, успех ее был очевиден. В 1883 г М. Депре построил линию электропередачи Визиль — Гренобль протяженностью 14 км, где КПД был уже около 62%, а в 1885 г. между Крейем и Парижем была осуществлена электропередача на расстояние 56 км при напряжении 6000 В и мощности в 100 раз больше, чем в первой электропередаче. Установки М. Депре являлись основополагающими в разработке методов и средств передачи электроэнергии постоянным током высокого напряжения на большие расстояния.

Дери Миклош (1854–1934 гг.) — венгерский электротехник, создавший в 1885 г. вместе с К. Циперновским и О. Блати несколько модификаций однофазных трансформаторов (кольцевой, броневой, стержневой) с замкнутыми шихтованными магнитопроводами, конструкция которых наиболее близка к современным. Серийный выпуск таких трансформаторов был осуществлен на электромашиностроительном заводе в Будапеште фирмой «Ганц и К°». В 1885 г. М. Дери получил первый патент на параллельное включение трансформаторов. В том же году М. Дери совместно с О. Блати предложил использовать в качестве однофазного двигателя машину постоянного тока с последовательным возбуждением.

Джоуль Джемс Прескотт (1818–1889 гг.) — английский ученый. Родился в семье пивовара, сам был владельцем большого пивоваренного завода. С юных лет увлекся электрическими явлениями и конструированием электрических приборов. В октябре 1841 г. опубликовал статью о тепловом эффекте электрического тока, в которой утверждал, что количество теплоты, выделяемое током в проводнике, пропорционально квадрату тока. Он знал, что задолго до него аналогичные исследования проводил петербургский академик Э.Х. Ленц, который опубликовал в 1843 г. свою работу «О законах выделения тепла гальваническим током». Закон о тепловом действии тока вошел в науку под названием закона Джоуля — Ленца. Заслугой Д.П. Джоуля является то, что он пришел к установлению взаимосвязи между теплотой, выделяемой в проводнике, и химическим превращением в гальванической батарее, т.е. энергетического процесса, происходящего при выделении теплоты. Он также утверждал, что теплота пропорциональна квадрату силы индуцированного тока. Д.П. Джоуль сумел определить механический эквивалент теплоты, проведя ряд оригинальных экспериментов. Он подошел к установлению закона сохранения энергии и стал одним из основоположников кинетической теории теплоты и газов. Еще в 40-х годах прошлого века Д.П. Джоуль смело утверждал, что теплота не может быть веществом, она состоит в движении частиц тела. Позднее к установлению закона сохранения энергии пришли Майер, Г. Гельмгольц и другие крупные ученые.

Дивиш Прокоп (1698–1765 гг.) — чешский изобретатель, построил большую электростатическую машину, исследовал явление электрического разряда в «эвакуированных» трубках, предложил несколько типов молниеотводов. П. Дивиш изучал влияние электрических разрядов на рост посевов различных культур. Результаты своих исследований П. Дивиш описал в книге «Естественная магия».

Доливо-Добровольский Михаил Осипович (1862–1919 гг.) — выдающийся российский электротехник, основоположник техники трехфазных систем. Родился в Санкт-Петербурге, окончил Одесское реальное училище, а в 1878 г. поступил в Рижский политехнический институт. В 1881 г. был исключен из института за участие в студенческих демонстрациях без права поступления в учебные заведения России. Мечтая получить электротехническое образование, М.О. Доливо-Добровольский уезжает в Германию и поступает в Дармштадское высшее техническое училище, одно из ведущих электротехнических учебных заведений Европы. После успешного окончания училища в 1884 г. начал там же преподавать новый самостоятельный курс. Однако вскоре его приглашают на должность шеф-электрика знаменитой немецкой «Всеобщей компании электричества» (АЭГ). В 1888–1889 гг. он разрабатывает трехфазную электрическую систему, которая благодаря своим преимуществам сохранила ведущее положение в современной электроэнергетике. Критически изучив работы своих современников, он создает наиболее простой и надежный трехфазный асинхронный двигатель, конструкция которого в принципе не изменилась до наших дней.

М.О. Доливо-Добровольским были разработаны все элементы трехфазной системы: синхронный генератор, трансформатор, линия электропередачи (трехпроводная и четырехпроводная), несколько типов асинхронных двигателей, в том числе уникальный по простоте и надежности — с короткозамкнутым ротором. Им было получено более 50 патентов и привилегий на изобретения. В 1918 г. М.О. Доливо-Добровольский впервые обосновал экономичность передачи электроэнергии на большие расстояния посредством постоянного тока; при этом генерирование и распределение энергии осуществляются переменным током, а передача энергии по линии — постоянным током высокого напряжения с использованием преобразовательных подстанций. Этим своим открытием он опередил современный ему уровень электроэнергетики на многие десятилетия. К сожалению, судьба нашего выдающегося соотечественнлка оказалась трагичной. В течение многих лет немецкие электропромышленники, нажившие на изобретениях М.О. Доливо-Добровольского огромные капиталы, безуспешно пытались заставить его принять немецкое подданство. Но он стремился вернуться на Родину. Во время первой мировой войны он уехал в Швейцарию, где его здоровье резко ухудшилось, и в 1919 г. в Гейдельберге он скончался. «Умер великий инженер», — писали о его смерти многие газеты мира.

Дэви Гемфри (1778–1829 гг.) — английский ученый, прославившийся своими работами в области химии и электричества. Трудовую деятельность начал с ученика аптекаря. С 1801 г. работал в Лондонском Королевском институте (позднее став его профессором). В 1807 г. он впервые с помощью электролиза щелочей получил чистый калий и натрий, а в 1808 г. — кальций, барий, стронций и магний и выявил природу хлора. По мнению биографов, этих открытий в области электрохимии было бы достаточно, чтобы имя Г. Деви заняло почетное место в истории химии. Но не меньшую славу ему принесло открытие явления электрической дуги, которую он получил, построив в 1808 г. большую гальваническую батарею. Он не знал, что впервые это открытие было сделано еще в 1802 г. В.В. Петровым. Подробное описание электрической дуги Г. Деви дал в 1812 г. В 1815 г. им была изобретена безопасная рудничная лампа для подземных работ, широко используемая шахтерами. Он был почетным членом Санкт-Петербургской Академии наук.

Дюфе Шарль Франсуа (1698–1739 гг.) — французский ученый, один из первых исследователей электрических явлений. Родился в Париже в семье военного и получил хорошее домашнее образование. Потом служил в армии, а в 1723 г. по конкурсу был избран адъюнктом Парижской академии наук по классу химии. В 1732 г. начал заниматься изучением электрических явлений, причем глубоко изучил труды своих предшественников. Об этом говорит первая его статья «История электричества», представленная в академию, — один из первых исторических обзоров в области изучения явлений электричества. Приступая к изучению электричества, он разработал программу, состоящую из шести основных задач, которые он собирался изучить и решить. В 1733–1737 гг. он опубликовал цикл мемуаров, в которых осветил результаты своих экспериментов. Один из выводов Ш.Ф. Дюфе, который вошел в историю науки, — это существование двух родов электричества: «смоляного» и «стеклянного». Особенность этих двух родов электричества — отталкивать однородные с ним и притягивать противоположные. Этот вывод был опубликован Ш.Ф. Дюфе в «Мемуарах Парижской академии наук» в 1773 г. Повторяя опыт С. Грея по электризации изолированного человеческого тела, Ш.Ф. Дюфе подвешивался на шелковых шнурках и его электризовали настолько сильно, что из тела при приближении руки другого человека выскакивали искры.

Жданов Петр Сергеевич (1903–1949 гг.) — российский ученый, энергетик, профессор, доктор технических наук, лауреат Государственной премии. Родился в Москве. Окончил в 1926 г. Московский энергетический техникум, в 1933 г. защитил дипломную работу в Московском энергетическом институте. С 1927 г. в течение 15 лет вел научную работу во Всесоюзном электротехническом институте (ВЭИ). В 1935 г. ему присуждена степень кандидата наук, в 1940 г. — доктора наук. Он один из создателей современного учения об электрических системах. Монография по теории устойчивости электрических систем, написанная им совместно с С.А. Лебедевым в 1933 г., была первой в мировой литературе. В 1941–1945 гг. работал начальником сектора Научно-исследовательского института электропромышленности. П.С. Ждановым выдвинуты оригинальные идеи: асинхронный ход в электрических системах, синхронизация при нарушении устойчивости, аварийное регулирование турбин, исследование характеристик нагрузок и их влияния на статическую и динамическую устойчивость, сооружение статических моделей систем.

За разработку моделей систем ему в 1947 г. была присуждена Государственная премия. П.С. Жданов провел большую работу по исследованию статической устойчивости электрических систем, впервые применив в полном объеме метод малых колебаний и установив степень приближения к истине известных практических критериев устойчивости сложных систем. В последние годы жизни много сделал в области передачи электроэнергии сверхвысокого напряжения, участвуя в разработке первого проекта электропередачи напряжением 400 кВ. С 1933 по 1949 г. вел преподавательскую работу в МЭИ, заведовал кафедрой электрических сетей и систем (1943–1949 гг.).

Завалишин Дмитрий Александрович (1900–1968 гг.) — российский ученый, член-корреспондент АН СССР, профессор, доктор технических наук, заслуженный деятель науки и техники РСФСР, основоположник школы электромашинно-вентильных преобразователей энергии, основанных на синтезе электрических машин и вентильных преобразователей частоты. Автор более 120 научных трудов, в том числе 20 монографий и более 10 изобретений в области ионно-полупроводниковых преобразователей для электропривода переменного тока и генераторов электроэнергии регулируемой частоты. Внес большой вклад в дело развития и совершенствования систем возбуждения мощных турбо- и гидрогенераторов, являлся членом научно-технического совета завода «Электросила». С 1934 г. профессор кафедры электрических машин Ленинградского политехнического института, в 1939–1968 гг. возглавлял кафедры электрических машин в Военной электротехнической академии, в Высшем инженерно-техническом училище ВМФ и в Ленинградском институте авиационного приборостроения, руководил отделом ВНИИэлектромаша. Являлся прекрасным педагогом и воспитателем молодых научных и инженерных кадров. Под его руководством подготовлено 40 докторов и кандидатов наук.

Золотарев Теодор Лазаревич (1904–1966 гг.) — российский ученый, специалист в области гидроэнергетики, профессор, доктор технических наук. Родился на Украине, закончил в 1937 г. Грузинский политехнический институт. С 1927 по 1932 г. работал в Энергострое ВСНХ АзССР в должности заместителя главного инженера. С 1932 г. возглавлял группу по гидроэнергетическим ресурсам во Всесоюзном научно-исследовательском институте энергетики и электрификации. С 1933 г. и до конца жизни работал в Московском энергетическом институте — возглавлял кафедру гидравлики и гидроэнергетики. С 1938 по 1940 г. возглавлял созданную по его инициативе при Президиуме АН.СССР секцию по водохозяйственным проблемам и вел научную работу в Энергетическом институте АН СССР им. Г.М. Кржижановского. Во время эвакуации МЭИ (1941–1943 гг.) Т.Л. Золотарев работал зам. директора по учебной работе. За 40 лет инженерной, научной и педагогической деятельности им было опубликовано более 250 оригинальных трудов, многие из которых были напечатаны на 18 языках мира. Им подготовлено свыше 40 кандидатов и ряд докторов технических наук. За большие заслуги в области энергетики Т.Л. Золотарев был избран (1962 г.) действительным членом Академии наук Казахской ССР.

Иосифьян Андроник Гевондович (1905–1993 гг.) — российский ученый в области электромеханики, доктор технических наук, профессор, академик и вице-президент АН Армянской ССР. После окончания в 1930 г. Азербайджанского политехнического института работал во Всесоюзном электротехническом институте, где получил целый ряд приоритетных результатов в области линейных двигателей переменных токов, бесконтактных сельсинов, синхронно-следящих систем, электромашинного следящего привода и синхронных машин, послуживших основой для присвоения ему в 1941 г. ученой степени доктора технических наук и звания профессора. В сентябре 1941 г. по инициативе и под руководством А.Г. Иосифьяна создается завод, предназначенный для разработки и выпуска изделий электротехники для военных целей, который вскоре преобразуется в научно-исследовательский институт, а затем (1959 г.) во ВНИИэлектромеханики (ВНИИЭМ). Во многом благодаря выдающимся научным, инженерным, организаторским качествам А.Г. Иосифьяна эта организация становится ведущей во многих областях электротехники. Под его руководством в годы войны выпускаются электрические машины, сельсины, амплидины, радиосистемы, комплексные системы электропитания, системы управления орудийным огнем и электрооборудование для бомбардировочной авиации, а в последующие годы — системы автоматического проектирования, единые серии электрических машин, вычислительная техника для управления и контроля крупных систем, несколько поколений управляющих вычислительных машин, системы автоматического контроля работы атомных электростанций. Широкую известность получили работы А.Г. Иосифьяна в области электрооборудования для кораблей, в том числе для систем электродвижения атомных ледоколов и подводных лодок. А.Г. Иосифьяном созданы электромеханические системы для ракетно-космической техники. Он участник подготовки и запуска первого спутника и первого космонавта, член совета главных конструкторов под руководством С.П. Королева. Был главным конструктором метеорологических искусственных спутников Земли серии «Метеор-1, 2», руководил летными испытаниями и сдачей в эксплуатацию космических систем для наблюдения Земли и атмосферы.

Йёдлик Иштван Аньош (1800–1895 гг.) — венгерский физик и изобретатель. Учился в латинской гимназии г. Пожонь и после ее окончания в 1817 п поступил в бенедиктинский лицей в г. Дьёре, ас 1819 г. началась его педагогическая деятельность и проведение экспериментов в физическом кабинете. С 1822 г. доктор философии, а с 1840 г. возглавляет кафедру в Пештском университете в звании профессора физики и механики. В стенах этого университета И. Йёдлик проработал окало 40 лет, и здесь им были сделаны важнейшие открытия и изобретения в области электромагнетизма. В 1858 г. он был избран действительным членом Венгерской академии наук. Под его руководством расширяется научно-экспериментальная база в физической и химической лабораториях, его изобретения экспонируются на международных выставках и удостаиваются наград. Еще работая в физическом кабинете гимназии, И. Йёдлик внимательно изучает все важнейшие научные исследования современников, воспроизводит электродинамические опыты А. Ампера и М. Фарадея и опытным путем доказывает, что один электромагнит может приводить в движение другой, если заменить в мультипликаторе Швейгера магнитную стрелку на стержневой электромагнит, опирающийся на вертикальную ось. Свой прибор И. Йёдлик назвал «электромагнитным ротором». Позднее, в 50-х годах, он сконструировал еще две, большие по размерам, модели «электронного ротора». В 1856 г. И. Йёдлик впервые пришел к идее самовозбуждения электрической машины и в 1861 г. осуществил ее действующую модель. Ему удалось добиться успеха и в совершенствовании гальванических элементов и аккумуляторов со свинцовыми решетчатыми пластинами, а также в создании электростатических индукционных машин.

Кавендиш Генри (1731–1810 гг.) — английский ученый-физик и химик, был богатым лордом, занимавшимся научными исследованиями исключительно ради своего удовольствия. В 1766 г. открыл водород и получил углекислый газ, доказал, что вода получается в результате горения водорода. Свои исследования (особенно в области электричества) он почти не публиковал и около 70 лет после его смерти оставался неизвестным. Научный мир узнал об открытиях Г. Кавендиша лишь в 1879 г., когда его труды обнаружил в архивах и опубликовал Д. Максвелл. Выяснилось, что еще в 1781 г., т.е. задолго до Ш. Кулона, Г. Кавендиш установил закон взаимодействия электрических зарядов, он также пользовался крутильными весами. Но в истории науки этот закон носит имя Ш. Кулона. Г. Кавендишу удалось определить постоянную закона тяготения. Родственники Г. Кавендиша в 1874 г. построили научную лабораторию его имени, первым профессором которой стал Д. Максвелл.

Каганов Израиль Львович (1902–1974 гг.) — российский ученый, профессор, доктор технических наук, основатель специальности «Промышленная электроника» в МЭИ и руководитель одноименной кафедры. И.Л. Каганов получил широкое признание как специалист в области управляемых ртутных выпрямителей, которые сделали возможным развитие электрического привода постоянного и переменного тока, электрической тяги и электрометаллургии. В тяжелые военные годы он вместе с группой специалистов участвовал в пуске мощных ртутно-выпрямительных агрегатов, применяемых в производстве алюминия. За работы в области повышения коэффициента мощности он был удостоен Ленинской премии. Работу на кафедре МЭИ И.Л. Каганов сочетал с участием в научных исследованиях в ВЭИ. Им написано большое число учебников и монографий. Его трехтомник «Электронные и ионные преобразователи» в течение длительного времени был базовым учебником для студентов специальности «Промышленная электроника».

Калантаров Павел Лазаревич (1892–1951 гг.) — российский ученый, профессор, доктор технических наук, специалист в области теоретической электротехники. С 1931 по 1951 г. возглавлял кафедру теоретических основ электротехники Ленинградского политехнического института. П.Л. Калантаров родился в Петербурге. После окончания реального училища поступил в Политехнический институт на электротехнический факультет, который окончил в 1920 г.

Его теоретические и экспериментальные исследования электрических цепей, содержащих ферромагнитные сердечники и конденсаторы, явились основой построения теории нелинейных электрических цепей и использования цепей для практических целей. Ряд научных работ П.Л. Калантарова посвящен вопросам уравновешивания трехфазной системы токов в печах с несимметричным подводом тока, электрическим фильтрам для выделения симметричных составляющих, расчетам индуктивностей, феррорезонансным явлениям. П.Л. Калантаров является автором классических учебников по теоретическим основам электротехники, написанным совместно с Л.Р. Нейманом, а также задачников и лабораторных руководств по теории цепей переменного тока.

Карандеев Константин Борисович (1907–1969 гг.) — ученый в области измерительной техники, член-корреспондент АН СССР и УССР, доктор технических наук, заслуженный деятель науки и техники УССР. По окончании Ленинградского политехнического института в 1930 г. К.Б. Карандеев работал в Ленинградском электротехническом институте и во Всесоюзном научно-исследовательском институте метрологии им. Д.И. Менделеева. С 1944 по 1958 г. он работал в Львовском политехническом институте. В 1957 г. возглавил Институт автоматики и электрометрии Сибирского отделения АН СССР, работал до 1967 г. С 1967 г. и до конца своих дней был научным руководителем Львовского филиала ВНИИФТРИ. С именем К.Б. Карандеева связано развитие метрологии, измерительной техники, приборостроения. Он внес значительный вклад в теорию электрических измерительных цепей, провел основополагающие исследования в области геофизических измерительных систем электроразведки, автоматического контроля массовых радиодеталей. По инициативе и при участии К.Б. Карандеева осуществлялась широкая программа анализа и синтеза измерительных информационных систем, которая положила начало автометрии. К.Б. Карандеев автор 14 монографий, около 200 научных статей, ряда изобретений. Он подготовил около 60 кандидатов и докторов наук. Он был главным редактором журнала «Автометрия» и членом редколлегии журнала «Измерительная техника».

Кирхгоф Густав Роберт (1824–1887 гг.) — выдающийся немецкий физик, электротехник, автор известных законов, носящих его имя. Родился в Кенигсберге в семье советника юстиции. Уже в годы учебы в гимназии Г.Р Кирхгоф проявил незаурядные способности в математике и физике. В 1842 г. он поступил в Кенигсбергский университет, где проявил себя как один из способных студентов и последователей крупнейшего специалиста в области математической физики Ф. Неймана. Занимаясь в семинаре Ф. Неймана, Г.Р. Кирхгоф выполнил свою первую научную работу о токе через плоскую пластину; в ней были сформулированы два его знаменитых закона, которые уже при жизни Г.Р. Кирхгофа использовались электротехниками всех стран и легли в основу современной теории электрических цепей. Вскоре он удостаивается ученой степени и получает редко предоставляемую стипендию для поездки во Францию. С 1848 г. Г.Р. Кирхгоф приват-доцент Берлинского университета и член Берлинского физического общества, затем недолго работал профессором физики в Бреслау, а с 1854 г. перешел в Гейдельбергский университет, где проработал более 20 лет и сделал почти все свои важнейшие открытия. В 1859 г. им был открыт спектральный анализ, что принесло ему мировую славу. Научные интересы Г.Р. Кирхгофа поражают своей глубиной и разносторонностью: электричество и теория упругости, гидродинамика и термодинамика, излучения, спектры и спектральный анализ. Свои лекции он сопровождал оригинальными экспериментами, нередко используя для этого изобретенные им приборы, например электрометр. Среди наиболее выдающихся учеников Г.Р. Кирхгоф выделял известных русских физиков А.Г. Столетова и Н.А. Умова. Г.Р. Кирхгоф с 1863 г. член-корреспондент Петербургской академии наук, а с 1870 г. — действительный член Берлинской академии наук.

Классов Роберт Эдуардович (1868–1926 гг.) — российский инженер-энергетик. В 1891 г. с отличием окончил Петербургский технологический институт. Богатый опыт в электротехнике он получил, работая в качестве монтажного инженера при сооружении под руководством М.О. Доливо-Добровольского знаменитой Лауфен-Франкфуртской электропередачи высокого напряжения. В середине 90-х годов возвращается в Москву, затем в Петербург, занимает должности технического директора электрических предприятий, имея дело в основном с устаревшими электростанциями постоянного тока. Встретившись с известным электротехником В.Н. Чиколевым, принимает участие в исследованиях прожекторного освещения. В 1896 г. им была построена первая в России трехфазная установка для питания электродвигателей и освещения Охтенского порохового завода. Передача была осуществлена посредством проводов, подвешенных на столбах, с использованием трансформаторов. Эта установка была признана исключительной по смелости технического решения. Затем по проекту Р.Э. Классона строятся электростанции в Москве и Петербурге, снабженные мощными по тому времени генераторами по 1000 л.с. В 1900 г. Р.Э. Классон переезжает в Баку и возглавляет общество «Электрическая сила», строит электростанции для электроснабжения нефтяных промыслов. С 1907 г. Р.Э. Классон вновь в Москве и занимается усовершенствованием оборудования московских электростанций. Р.Э. Классон выступает инициатором использования местных топлив, в частности торфа. В 1908 г. по его проекту и при его активном участии была построена самая крупная в мире (по тому времени) электростанция на торфе близ г. Богородска около Москвы. Ему удается изобрести гидравлический способ добычи торфа, известный под названием «гидроторф». Р.Э. Классон был активным участником разработки и претворения в жизнь плана ГОЭЛ-РО и сделал большой вклад в развитие электроэнергетики страны.

Константинов Константин Иванович (1817–1871 гг.) — российский военный инженер-электромеханик, специалист в области ракетной артиллерии и пиротехники, генерал. В 1842–1845 гг. разработал наиболее совершенное устройство — электробаллистическую установку с электромагнитным хроноскопом и автоматическим переключателем цепей — прототип распределителя — элемента современных автоматических и телемеханических устройств. К.И. Константинову удалось измерить скорость полета снаряда и осуществить измерение малых промежутков времени с наименьшей для тех времен погрешностью (до 0,00008 с). В 1856 г. под руководством К.И. Константинова в Лефортово во время коронационных торжеств в честь императора Александра II впервые было осуществлено электрическое освещение большой площади и создана оригинальная установка для управления посредством электричества артиллерийским огнем на значительном расстоянии.

Костенко Михаил Полиевктович (1889–1976 гг.) — российский ученый, основатель научной школы электромашиностроения, академик, Герой Социалистического Труда. Родился в Воронежской губернии в семье врача. После окончания в 1907 г. гимназии поступил на естественный факультет Петербургского университета. Через год он переходит в Петербургский электротехнический институт, а затем учится в Петербургском политехническом институте.

Значительный опыт он получил во время практики в электромеханическом цехе Французского судоремонтного завода (1915 г.). В конце 1918 г. М.П. Костенко с отличием закончил Политехнический институт и был оставлен для подготовки к профессорскому званию. Одновременно он принимает участие в разработке новых типов электрических машин на заводе «Электросила». Еще в студенческие годы М.П. Костенко создал электромагнитный аппарат трансформатор-регулятор, позднее был соавтором изобретения электромагнитного молота и др. Совместно с П.А. Капицей он разработал импульсный («ударный») синхронный генератор, который был изготовлен в России и позволял получать импульсные магнитные поля с магнитной индукцией до 320 тыс. Гс. Позднее, в 30-х годах, М.П. Костенко создал несколько типов ударных генераторов большой мощности. При его участи были изготовлены первые отечественные мощные гидрогенераторы для Волховской ГЭС. Важным вкладом в науку М.П. Костенко явилась разработка теории всеобщего трансформатора. С 1930 г. М.П. Костенко профессор, а в 1931–1941 гг. заведующий кафедрой электрических машин ЛПИ; два года он был деканом электромеханического факультета. По инициативе М.П. Костенко при заводе «Электросила» было создано общезаводское бюро исследований, заложившее начало фундаментальных основ электромашиностроения в нашей стране. М.П. Костенко — один из первых ученых, показавший роль автоматики и телемеханики в развитии электромашиностроения и энергетики. В 1951 г. он становится заместителем директора Института автоматики и телемеханики АН СССР. В течение 12 лет (1955–1967 гг.) он возглавляет Институт электромеханики АН СССР. В 1958 г. за создание электродинамических моделей для практических исследований мощных энергосистем, линий сверхдальних электропередач и электрооборудования электростанций М.П. Костенко был удостоен Ленинской премии. С 1967 по 1976 г. он возглавлял Научный совет по теоретическим и физическим проблемам энергетики АН СССР

Кржижановский Глеб Максимилианович (1872–1959 гг.) — российский ученый-энергетик и государственный деятель, академик. Родился в Самаре, окончил Санкт-Петербургский технологический институт в 1894 г. В конце 1895 г. за участие в революционном движении был арестован, 1,5 года находился в тюрьме, а затем на 3 года был сослан в Красноярский край. С 1910 г. участвовал в реконструкции Московской кабельной сети высокого напряжения. Один из руководителей сооружения первой в России и первой в мире крупной торфяной электростанции «Электропередача» в Богородске (1914 г.), обеспечивавшей электроэнергией Москву. Он активно пропагандирует целесообразность использования местных видов топлива (торф, уголь) для мощных электростанций. Он был одним из первых отечественных инженеров, предложивших в 1914 г. строительство крупной гидроэлектростанции на Волге. В 1919 г Г.М. Кржижановский — председатель Главэлектро ВСНХ, а в 1920 г. назначается председателем Комиссии ГОЭЛРО. Под руководством Г.М. Кржижановского план ГОЭЛРО был успешно претворен в жизнь и сыграл важную роль в развитии электрификации и всего народного хозяйства России. Он работал руководителем Госплана, начальником Главэнерго, был одним из руководителей строительства Днепрогэс. В 1930 г. выступает с инициативой создания крупнейшего в России научно-технического центра в области энергетики — Энергетического института (ЭНИН) АН СССР, которым руководил с 1939 г. и который в настоящее время носит имя Г.М. Кржижановского.

Крон Габриэль (1901–1968 гг.) — американский ученый, основоположник тензорного и матричного анализа электрических цепей и машин, создатель обобщенной теории электрических машин и метода расчета сложных систем путем деления их на элементарные составные части, названного им диакоптикой. Родился в Венгрии, в 1921 г. переехал в США, где в 1924 г. закончил Мичиганский университет, получил ученые степени и почетные звания ряда университетов США, Великобритании, Бельгии и Японии. Значительную часть своей творческой жизни работал в фирме «Дженерал электрик». Автор книг «Нериманова динамика вращающихся электрических машин», «Тензорный анализ цепей», «Применение тензоров для анализа вращающихся электрических машин», «Эквивалентные схемы замещения электрических машин», «Диакоптика: метод расчета сложных систем». Его работы начали публиковаться в 30-х годах, положив начало широкому внедрению в электротехнику методов топологии, использующей математический аппарат тензорного и матричного анализа, дифференциальной геометрии многомерных пространств. Популярность его идей особенно возросла с развитием и внедрением ЭВМ в практику научных исследований и инженерных расчетов.

Круг Карл Адольфович (1873–1952 гг.) — российский ученый, электротехник, один из основоположников высшего электротехнического образования в нашей стране, основатель московской электротехнической школы. В 1892 г. К.А. Круг поступает в Московское высшее техническое училище (МВТУ). Успешно закончив училище в 1898 г., К.А. Круг был командирован на два года в Германию для подготовки к преподаванию электротехники. Обучаясь в Дармштадском высшем техническом училище, К.А. Круг значительно расширил свои познания в области электротехники и получил диплом инженера-электрика. Затем он уехал в Берлин и слушал лекции в университете. Заграничная командировка помогла К.А. Кругу приобрести более глубокие теоретические и практические знания в области электротехники. В 1908 г. им была написана книга «Основы электротехники», которая выдержала несколько изданий и стала настольной книгой многих поколений студентов и инженеров-электротехников. В 1915 г. при участии К.А. Круга в МВТУ организуется электротехническая специализация, а после основания Московского энергетического института в 1930 г. К.А. Кругом была основана кафедра теоретических основ электротехники, ставшая одной из ведущих в стране. Как один из крупнейших специалистов в области электротехники и энергетики, К.А. Круг был утвержден членом Комитета ГОЭЛРО, и под его руководством был разработан план электрификации Центрального и Волжского районов России. В 1921 г. по инициативе К.А. Круга организуется важный научно-исследовательский центр — Государственный экспериментальный электротехнический институт, преобразованный впоследствии во Всесоюзный электротехнический институт (ВЭИ), который К.А. Круг возглавлял в течение 10 лет. В 1933 г. К.А. Круг избирается в число членов-корреспондентов АН СССР, с 1937 г. начинает работать в Энергетическом институте АН им. Г.М. Кржижановского и организует первую в нашей стране лабораторию по передаче электроэнергии постоянным током высокого напряжения. Но при всем многообразии научных интересов К.А. Круг особое внимание уделял подготовке инженерных и научно-педагогических кадров и созданию факультетов по новейшим направлениям развития электротехники.

Кулебякин Виктор Сергеевич (1891–1970 гг.) — российский ученый-электротехник, академик, заслуженный деятель науки и техники РСФСР, генерал-майор инженерно-авиационной службы. Родился в Москве, в 1909 г. поступил в МВТУ, который блестяще закончил в 1914 г. и был оставлен в институте для научной работы, но в конце года был призван в армию и служил с 1914 по 1916 г. в авиационных войсках. С 1916 г. преподаватель и руководитель занятий в электротехнической лаборатории МВТУ. В 1920–1921 гг. он участвовал в работе комиссии ГОЭЛРО. В 1921 г. совместно с К.А. Кругом создает Государственный экспериментальный электротехнический институт (позже ВЭИ), руководит строительством и оборудованием новых корпусов института, заведует измерительным и аппаратным отделениями. Разработал теорию и оригинальную конструкцию магнето высокого напряжения для авиационных двигателей. Создатель и руководитель кафедры электрических аппаратов МЭИ. B.C. Кулебякин один из основателей и директор (1939–1941 гг.) Института автоматики и телемеханики Академии наук СССР. С 1941 по 1945 г. он руководитель работ Академии наук СССР и Военно-воздушной инженерной академии по оказанию научно-технической помощи фронту и промышленности. В 1944–1970 гг. заведует лабораторией и является научным руководителем Института автоматики и телемеханики Академии наук СССР, 1957–1970 гг. — член президиума Национального комитета СССР Всемирной федерации по автоматическому регулированию. Он был главным редактором журнала «Известия АН СССР».

Кулон Шарль Огюстен (1736–1806 гг.) — французский ученый, открывший закон, носящий его имя. Ш.О. Кулон родился в Ангулене (на юго-западе Франции) в семье правительственного чиновника. Начальное образование получил в Париже в Колледже четырех наций, где ярко проявился его интерес к математике. Затем он поступил в Военно-инженерный корпус французской армии, считавшийся одним из лучших высших учебных заведений Европы. После окончания этого учебного заведения Ш.О. Кулон в качестве военного инженера работал над созданием военных крепостных сооружений на острове Мартиника — заморской колонии Франции. Одновременно он занимается научными исследованиями, создает чувствительный прибор для изучения магнитного поля Земли, изучает законы механики, трения и кручения. В 1781 г. за работы в области механики Ш.О. Кулон избирается членом Парижской академии наук. Он все более углубленно изучает электрические и магнитные явления. Ему удается создать прибор — крутильные весы, позволявшие определить силу взаимодействия наэлектризованных бузиновых шариков. В 1785 г. выходит его первый «мемуар», в котором подробно описывается устройство крутильных весов и устанавливается, что «отталкивательная сила» наэлектризованных тел обратно пропорциональна квадрату расстояния между центрами шариков. Так родился знаменитый закон Ш.О. Кулона. Во втором «мемуаре» Ш.О. Кулон нашел закон взаимодействия магнитных полюсов. Он изучал процессы утечки заряда, исследовал распределение заряда по проводникам сложной формы. Ему не было известно, что английский ученый Г. Кавендиш еще в 1771 г. установил закон взаимодействия заряженных тел, но его труды не были опубликованы, их нашел и опубликовал Д. Максвелл в 1879 г. Позднее Ш.О. Кулон создал установку для исследования сил электрического притяжения. Труды Ш.О. Кулона послужили толчком к открытию математических методов анализа электрических и магнитных явлений.

Лабунцов Владимир Александрович (1927–1997 гг.) — российский ученый, профессор, доктор технических наук, действительный член Академии электротехнических наук РФ, один из основоположников специальности промышленная электроника, много сделавший в области силовой преобразовательной техники. Вся его творческая жизнь связана с МЭИ. Он занимался тиратронными преобразователями частоты для синхронного электропривода. Вместе с Г.И. Шевченко, Г.А. Ривкиным, В.Г. Комаром под руководством проф. И.Л. Каганова участвовал в формировании научного и преподавательского коллектива кафедры. В 1973 г. защитил докторскую диссертацию, которая стала фундаментальной работой в области автономных инверторов напряжения. В.А. Лабунцов известен своими работами в области анализа мощных преобразовательных установок, которыми он занимался в Институте высоких температур АН СССР с 1974 г. Однако наибольшее признание он заслужил подготовкой инженерных и научных кадров. Его работы в области преобразователей с принудительной коммутацией, способов формирования и регулирования напряжения дали начало нескольким научным направлениям.

Ларионов Андрей Николаевич (1889–1963 гг.) — российский ученый-электротехник, профессор, член-корреспондент АН СССР, доктор технических наук. В 1919 г. окончил Московское высшее техническое училище (МВТУ), затем работал преподавателем в МВТУ и МЭИ. Во время работы в МЭИ, возглавлял кафедры специальных электрических машин (1930–1937 гг.), электрооборудования промышленных предприятий (1937–1941 гг.). В 1941 г. он назначается заведующим кафедрой авиационного и автотракторного электрооборудования, которой он руководил до конца своей жизни. Научная деятельность А.Н. Ларионова длительное время была связана с ВЭИ, где он прошел путь от научного сотрудника до заведующего лабораторией. Научные интересы А.Н. Ларионова концентрировались на проблемах общего электромашиностроения, авиационного и автотракторного электрооборудования и применения постоянных магнитов в специальных электрических машинах. Повсеместно применяемая в настоящее время трехфазная мостовая схема выпрямления была предложена А.Н. Ларионовым и запатентована в 1924 г. При его непосредственном участии в 1933 г. были спроектированы и изготовлены комбинированные генераторы постоянного и переменного тока для самолета-гиганта «Максим Горький». Под руководством А.Н. Ларионова был проведен комплекс работ, определивших облик авиационных систем электроснабжения переменного тока. Он возглавлял проблемную лабораторию по постоянным магнитам, созданную в МЭИ в 1962 г.

Лачинов Дмитрий Александрович (1842–1902 гг.) — российский физик и электротехник. В 1859 г. он поступил на физико-математический факультет Петербургского университета и еще до его окончания на два года был направлен в Германию в Гейдельбергский университет, где слушал лекции Г. Кирхгофа, Г. Гельмгольца и других выдающихся физиков. Более 35 лет проработал доцентом, а затем профессором физики в Петербургском лесном институте, позднее преобразованном в академию. Он был одним из основателей и членом Электротехнического отдела Русского технического общества и одним из редакторов журнала «Электричество». Д.А. Лачинов был не только видным физиком-теоретиком, но и изобретателем оригинальных электротехнических приборов и устройств. Среди его изобретений можно назвать новый тип гальванического элемента, соединявшего быстроту заряжения с большим значением тока, и «диа-фаскоп» — медицинский прибор, в котором электрическая дуга использовалась «для освещения внутренних полостей человеческого тела». В 1878 г., исследуя режимы работы электрических машин постоянного тока, он впервые предложил «шунтовую» обмотку возбуждения. Наиболее выдающимся достижением Д.А. Лачинова в области электротехники и электрофизики являются его исследования по передаче электрической энергии на большие расстояния (1880 г.). Он заложил основу современной высоковольтной техники. Только спустя год, в августе 1881 г., к открытию закона электропередачи, аналогичного тому, который сформулировал Д.А. Лачинов, пришел известный французский электротехник М. Депре.

Лебедев Сергей Алексеевич (1902–1974 гг.) — российский ученый, основоположник отечественных быстродействующих ЭВМ, академик, Герой Социалистического Труда, лауреат Ленинской и Государственных премий. Родился в Нижнем Новгороде, в 1921 г. поступил на электротехнический факультет МВТУ Уже в дипломном проекте С.А. Лебедев успешно решил проблему устойчивости параллельной работы электростанций и стал одним из ведущих в стране специалистов в этой области. Он был одним из первых ученых, начавших моделирование энергосистем и обеспечивавших предотвращение выпадения генераторов из синхронизма. Затем он стал применять аналоговые вычислительные машины для математического моделирования энергосистем. В годы Великой Отечественной войны С.А. Лебедев занимался разработкой самонаводящихся торпед и ракет. В 1946 г. С.А. Лебедев переезжает в Киев и начинает заниматься созданием ЭВМ. Под его руководством в 1948–1950 гг. разрабатывается первая в СССР и Европе малая электронно-счетная машина (МЭСМ). В 1952 г. С.А. Лебедев возвращается в Москву и возглавляет Институт точной механики и вычислительной техники. В 1953 г. он избирается действительным членом АН СССР, в 1957 г. участвует в запуске спутника Земли. Им были созданы серии больших электронно-счетных машин (от БЭСМ-1 до БЭСМ-4), а в 1964 г. разработана БЭСМ-6, позволившая нашей стране выйти на мировой уровень в разработке ЭВМ второго поколения.

Левин Марк Иосифович (1903–1973 гг.) — российский ученый в области измерительной техники, профессор, доктор технических наук. В 1931 г. М.И. Левин окончил электротехнический факультет МВТУ. С 1930 г. он преподавал математику и электротехнику в Военно-воздушной академии им. Н.Е. Жуковского, МАИ и МЭИ. В 1935 г. начал работать во ВНИИ Государственного комитета стандартов, где прошел путь от старшего инженера до заместителя директора по научной работе, продолжая при этом педагогическую деятельность в МЭИ. В 1958 г. М.И. Левин перешел на основную работу в МЭИ, где заведовал кафедрой информационно-измерительной техники с 1959 по 1971 г. М.И. Левин сделал крупные обобщения в теории измерительных цепей. Одновременно с К.М. Поливановым, но независимо от него он сформулировал теорему, позволяющую определять изменение тока в любой ветви линейной электрической цепи при изменении параметров в другой ветви (других ветвях) без полного расчета цепи. М.И. Левин ввел понятие эквивалентного магнитного сопротивления и сформулировал для магнитных цепей теорему, аналогичную теореме об эквивалентном генераторе для электрических цепей. Вместе с исследованиями мостовых и компенсационных измерительных цепей эти вопросы нашли отражение в вышедшей в 1972 г. книге «Основы электроизмерительной техники». В сфере педагогической деятельности М.И. Левин создал курс «Теоретические основы информационно-измерительной техники».

Ленц Эмилий Христианович (1804–1865 гг.) — выдающийся российский ученый-физик, прославивший свое имя трудами в области электромагнетизма, электрических машин и электрических измерений. Родился в Тарту (ныне Эстония) в семье обер-секретаря городского магистрата (в то время это был город Дерпт, входивший в состав России). После окончания гимназии в 1820 г. поступил в Дерптский университет. Студентом второго курса участвовал в кругосветной научной экспедиции и изобрел несколько приборов для исследования океана (барометр и глубиномер), получивших высокую оценку специалистов. Во время трехлетнего плавания усердно занимался физикой и математикой. Отчет о проведенной научной работе Э.Х. Ленца был признан как ценный научный вклад молодого физика, и в 1828 г. он был избран адъюнктом Петербургской Академии наук по физике, в 1830 г. — академиком. В 1831–1836 гг. Э.Х. Ленцем была проведена целая серия важных электромагнитных исследований. С целью измерения индукционных токов Э.Х. Ленц создает баллистический гальванометр, разработав его теорию, а позднее предлагает способ изучения формы кривой переменного тока. Э.Х. Ленц экспериментально доказал, что электродвижущая сила, возбуждаемая в катушке, пропорциональна числу ее витков. Одним из фундаментальных открытий Э.Х. Ленца явилось установление им в 1832 г. закона «определения направления гальванических токов, возбуждаемых электродинамической индукцией». Этот закон сыграл огромную роль в последующем развитии электротехники, а также явился частным случаем закона сохранения энергии при взаимных превращениях механической и электромагнитной энергии. Это было за много лет до установления всеобщего закона сохранения энергии.

Открытый Э.Х. Ленцем закон позволил ему впервые установить принцип обратимости двигателя и генератора, а в 1835 г. он доказал это, обратив в двигатель генератор Пиксии. В 1836 г. Э.Х. Ленц вывел формулу для определения температурной зависимости сопротивления металлов. Э.Х. Ленц преподавал физику в Петербургском университете, а позднее стал ректором и много сделал для совершенствования преподавания физики и подготовки учебных пособий. В 1847 г. Э.Х. Ленц открыл явление реакции якоря в электрических машинах и совместно с Б.С. Якоби провел важные исследования по изучению закона намагничивания железа и измерению «возбужденного магнетизма». Еще в 1833 г. задолго до Д. Джоуля Э.Х. Ленц пришел к установлению закона теплового действия тока. В 1844 г. им была выведена формула для определения тока в любой из параллельно соединенных ветвей при наличии в них источников электродвижущих сил. Поэтому он по праву может считаться предшественником Г. Кирхгофа.

Ли де Форест (1873–1961 гг.) — американский инженер, после многих экспериментов запатентовал в 1907 г. новый прибор — трехэлектродную лампу, поместив в диод третий электрод, названный им «сеткой». Он показал, что, изменяя потенциал на этом электроде, можно изменять ток между анодом и катодом, т.е. его лампа обладала способностью усиливать электрический сигнал. Построенный на его приборе усилитель низкочастотных колебаний звуковой частоты Ли де Форест назвал «аудином». Позднее лампы с тремя электродами стали называть «триодами».

Лодыгин Александр Николаевич (1847–1923 гг.) — выдающийся российский электротехник, создатель одной из первых электрических ламп накаливания. В 1867 г. закончил Московское военное училище, посещал лекции в Санкт-Петербургском университете. Еще в юности задумался над созданием летательного аппарата и для его освещения компактной лампы накаливания. Летательный аппарат ему осуществить не удалось ни в России, ни в Париже. Но над совершенствованием лампы накаливания он проработал более 5 лет. Первые лампы представляли собой «герметически закупоренный пустой прозрачный сосуд», в котором телом накала служили тонкие стерженьки из ретортного угля. После многих экспериментов он доказал целесообразность помещения внутри стеклянной колбы двух или более угольных стерженьков с тем, чтобы после сгорания одного, автоматически включился второй, горевший более продолжительное время, так как находился в атмосфере инертных газов. Первые публичные опыты А.Н. Лодыгин произвел в 1870 г. в Санкт-Петербурге. Они доказали возможность применения ламп накаливания для освещения производственных помещений, зданий общественного пользования, угольных копей и даже подводных работ (специальный «подводный фонарь»). Важность изобретения А.Н. Лодыгина была отмечена Академией наук, присудившей ему в 1874 г. Ломоносовскую премию. Им были получены патенты в крупных странах Европы. Но промышленного производства ламп в России А.Н. Лодыгину наладить не удалось, и он уехал за границу. В Америке ему удалось изготовить лампу с вольфрамовой нитью и получить несколько патентов. Однако вскоре А.Н. Лодыгин заинтересовался проблемами электрометаллургии и создал несколько электропечей. В 1905–1906 гг. под его руководством было построено несколько заводов по производству феррохрома, ферровольфрама и др. Он также принимал участие в строительстве Нью-Йоркского метрополитена.

Ломоносов Михаил Васильевич (1711–1765 гг.) — выдающийся русский ученый-энциклопедист, которому по широте и необъятности таланта принадлежит одно из видных мест в истории мировой науки и культуры. Родился в д. Денисовка (позже село Ломоносово) на берегу Белого моря в семье помора, обучался грамоте у местного дьячка. Его не приняли в Холмогорскую славяно-латинскую школу, так как он происходил из крестьянской семьи. Тогда он в зимнюю стужу 1730 г. пешком с рыбным обозом отправился в Москву и был зачислен в Заиконоспасскую Славяно-греко-латинскую академию. Проявил свои способности в области естественных наук, в особенности физики и химии. В 1736 г. в числе еще нескольких учеников был отправлен в Петербургскую Академию наук и зачислен студентом, а вскоре был командирован в Марбургский университет для изучения химии, естественной истории, механики, физики, металлургии и горного дела. После пятилетнего обучения в Германии М.В. Ломоносов был назначен адъюнктом Академии по физическому классу, а с 1745 г. он профессор химии и член Академии наук. Уже в начале 1745 г. им была написана рукопись «Наивящего примечания достойные электрические опыты». Совместно с академиком Г.В. Рихманом М.В. Ломоносов провел важные экспериментальные и теоретические исследования атмосферного электричества. Наиболее фундаментальные работы М.В. Ломоносова в этой области относятся к 1752–1753 гг., хотя первая серия его наблюдений грозы над Петербургом относится к 1744–1748 гг., т.е. задолго до известных опытов Франклина с электрическим змеем, а наблюдения за северным сиянием он начал в 1748 г. Он собственноручно изготовил чертеж экспериментальной установки «громовой машины» — стационарной установки, позволяющей непрерывно фиксировать «наличие этой силы» в воздухе даже при отсутствии грозы. В 1753 г. оба академика провели уникальный эксперимент, подтвердивший, что «электрическая сила в воздухе грому и молнии причина», а не наоборот, как писали другие ученые. Выводы М.В. Ломоносова послужили одной из основ разработанной им теории атмосферного электричества (1753 г.), изложенной в труде «Слово о явлениях воздушных, от электрической силы происходящих». Возникновение электрических зарядов в атмосфере он объяснял восходящими и нисходящими вертикальными потоками воздуха, при которых находившиеся в них продукты горения и пыли сталкиваются, «трутся и электрическую силу рождают». Северное сияние тоже имеет электрическую природу. Для измерения «громовой силы» М.В. Ломоносов изобрел автоматический регистратор грозового разряда. В 1756 г. в своем новом труде «Теория электричества, изложенная математически М.В. Ломоносовым», в котором он утверждал, что электрические явления обусловлены вращательным движением «частичек эфира», имеющих «шаровидную форму». «Электрическая сила есть действие», подчеркивал М.В. Ломоносов. Эфирная теория электричества была прогрессивной для своего времени и послужила основой для разработки теории электромагнитного поля.

Лютер Роберт Андреевич (1889–1976 гг.) — российский ученый, доктор технических наук, заслуженный деятель науки РФ, лауреат Государственных премий, специалист в области электромеханики: теория и расчет электропередач, основополагающие труды по электрификации железных дорог, судов и электроприводу, теория и расчет практически всех видов электрических машин, теория переходных процессов и параметры синхронных машин, создание классических методов расчета токов и моментов при аномальных режимах. Более 50 лет Р.А. Лютер был главным электриком завода «Электросила» в Санкт-Петербурге, создал основополагающие научные методы электромагнитных и тепловых расчетов турбо- и гидрогенераторов и электрических машин. Принимал непосредственное участие в расчете и создании генераторов для крупнейших электрических станций: Волховской, Днепровской, Волжского каскада, Братской, Красноярской, серии турбогенераторов с воздушным, водородным и водяным охлаждением мощностью от 6 до 1200 МВт. Участвовал в разработке электродвижения атомных ледоколов и электроприводов металлургических комбинатов.

Максвелл Джемс Клерк (1831–1879 гг.) — выдающийся английский ученый, основатель современного учения об электромагнитном поле, создатель классической электродинамики. Родился в г. Эдинбурге, десятилетним ребенком был принят в Эдинбургскую академию, являвшуюся классической гимназией. Его увлечения естествознанием и необычайные способности. проявились уже в юношеском возрасте: в 15 лет он публикует в трудах Эдинбургского Королевского общества первые исследования об овальных кривых (1846 г.). Поступив в 1847 г. в Эдинбургский университет, уже через три года выступил в Королевском обществе с докладом о равновесии упругих тел, доказав «теорему Максвелла» по теории упругости и сопротивления материалов. В 1850 г. переходит на учебу в Кембриджский университет. В 1854 г., блестяще выдержав экзамены, Д.К. Максвелл получает степень бакалавра. И уже в следующем году он докладывает Кембриджскому философскому обществу первую часть своего известного мемуара «О фарадеевых силовых линиях». Д.К. Максвелл придал трудам М. Фарадея математическую завершенность и сформулировал законы электромагнитного поля, которые М. Фарадей впервые представил с помощью силовых линий. Свою электромагнитную теорию Д.К. Максвелл вначале изложил в работах «О физических линиях силы» (1861–1862 гг.) и «Динамическая теория поля» (1864–1865 гг.). А свой главный труд «Трактат по электричеству и магнетизму» (1873 г.) он заканчивал уже будучи профессором Кавендишской лаборатории, куда был приглашен в 1871 г. Эта лаборатория благодаря Д.К. Максвеллу стала ведущим центром физической науки. Теория электромагнитного поля, разработанная Д.К. Максвеллом, знаменовала собой новый этап в развитии физики и по праву стоит в одном ряду с такими фундаментальными научными открытиями, как ньютоновская механика или квантовая механика. Преждевременная смерть помешала Д.К. Максвеллу более элементарно изложить свою теорию, и, может быть, поэтому она вначале казалась физикам непонятной и абстрактной и получила признание лишь после известных трудов Г. Герца и А. Майкельсона и первых работ Лоренца по электронной теории.

Д. К. Максвелл утвердил в физике понятие «электромагнитное поле» как носитель электромагнитной энергии. Он был блестящим разносторонним ученым, ему принадлежат глубокие исследования в области тепловых движений, разработки теории «цветного зрения», проблем «кривизны поверхностей» и многие другие.

Маркони Гульельмо (1874–1937) — итальянский физик и инженер, изобретатель систем радиотелеграфии. Родился в Болонье (Италия). Начальное образование получил в Болонье, затем обучался во Флоренции. В 1894 г. он начал экспериментальные исследования в лаборатории отца с индукционной катушкой для повышения напряжения и искровым разрядником, управляемым ключом Морзе. Он впервые усовершенствовал простой когерер — прибор для обнаружения электромагнитных колебаний. После первых экспериментов с передачей сигналов на короткие расстояния он показал, что дальность передачи сигналов увеличивается при использовании вертикальной антенны, один полюс которой имел плоскую или цилиндрическую форму, а другой был заземлен. Дальность передачи сигналов достигла 2,4 км, что убедило Г. Маркони в возможности использования радиосигналов для целей связи. Из-за трудностей продолжения экспериментов в Италии Г. Маркони переезжает в Лондон, где находит поддержку В. Приса, ведущего инженера почтового ведомства Англии. Здесь в 1897 г. был получен патент на применение электромагнитных волн для связи без проводов, воспользовавшись тем, что изобретатель радио А.С. Попов свое изобретение не патентовал, а доложил 7 мая 1895 г. на заседании физического отделения Русского физического общества. Дальность передачи Г. Маркони удалось увеличить до 14,5 км. Эти эксперименты получили широкую известность в Англии и за ее пределами, и в июне 1897 г. Г. Маркони возвращается в Италию, где он оборудовал станцию и осуществлял связь с итальянским военным кораблем на расстоянии до 19 км. Благодаря финансовой помощи двоюродного брата Д. Девиса (практикующего инженера) ему удалось образовать «Компанию беспроволочной связи и передачи сигналов», переименованную в 1900 г. в «Компанию беспроволочного телеграфа Маркони», которая установила станцию для регулярной связи Южной Англии с Францией (50 км). В это же время дальность связи с судами уже достигла 121 км. Г. Маркони удалось осуществить связь через Атлантический океан. В 1909 г. он был удостоен Нобелевской премии за исследования в области радиофизики. В дальнейшем работал в области коротковолновой беспроволочной связи, которая стала основой практически всех видов передачи информации на большие расстояния. В 1910 г. была осуществлена радиосвязь Буэнос-Айрес — Ирландия (9650 км), в 1918 г. — Англия — Австралия.

Мешков Владимир Васильевич (1903–1980 гг.) — российский ученый, заслуженный деятель науки и техники РФ, профессор, доктор технических наук. Научная деятельность В.В. Мешкова началась в конце 20-х годов в Институте охраны труда, где он, еще будучи студентом, организовал светотехническую лабораторию. Исследования по физиологической оптике, проведенные им в этой лаборатории, нашли широкую известность и были использованы в практике проектирования наружного и промышленного освещения. Логическим продолжением исследований по физиологической оптике явилась разработка теоретических основ нормирования осветительных и облучательных установок, нашедшая отражение в книгах «Осветительные установки» Г947 и 1972 гг. издания. Внедрение критериев видимости в практику нормирования освещения принадлежит всецело В.В. Мешкову и его школе. Большое значение имеют его работы в области видимости объектов сложной формы для изучения проблем распознавания. Возглавив кафедру светотехники МЭИ в 1948 г., В.В. Мешков сформулировал проблему инженерной оценки качественных показателей освещения и организовал широкий фронт исследований в этом направлении. Комплексный подход к изучению качественных показателей освещения впервые позволил дать инженерные методы расчета и проектирования установок с высокими требованиями к качеству освещения. Много лет В.В. Мешков работал деканом электрофизического факультета, в организации которого принимал деятельное участие. В течение ряда лет работал на посту проректора МЭИ по научной и по учебной работе. Его учебники «Осветительные установки» и «Основы светотехники» (2 тома) являются настольными книгами специалистов-светотехников.

Миткевич Владимир Федорович (1872–1951 гг.) — российский ученый-электротехник, академик АН СССР, внесший значительный вклад в развитие науки об электромагнитных явлениях и в их практические приложения. В.Ф. Миткевич родился в Минске. После окончания Минской гимназии в 1891 г. поступил на физико-математический факультет Петербургского университета. После окончания в 1895 г. университета он преподавал электротехнику в Петербургском электротехническом институте, Горном институте и университете. С 1902 г. В.Ф. Миткевич преподает электротехнику в Петербургском политехническом институте, создает кафедру теоретических основ электротехники, которую возглавлял более 35 лет. В.Ф. Миткевич является автором 17 научных монографий и учебников, основателем крупнейшей школы теоретической электротехники. С 1935 г. В.Ф. Миткевич возглавил в отделении технических наук АН СССР секцию по разработке научных проблем электросвязи.

Морозов Дмитрий Петрович (1896–1963 гг.) — российский ученый в области электропривода, профессор, доктор технических наук. В 1929 г. окончил МВТУ им. Баумана по специальности электромашиностроение. С 1930 г. Д.П. Морозов работал в МЭИ, где читал основные курсы лекций. Он являлся крупным теоретиком и одним из ведущих специалистов в области электропривода металлургического производства. В 1944 г. защитил докторскую диссертацию, а в 1946 г. его утвердили в звании профессора. Его книга «Теория электропривода и автоматика реверсивных станов» (1949 г.) стала классическим трудом в этой области и многие годы являлась настольной книгой специалистов. Популярностью пользовался его учебник «Основы электропривода», изданный в 1950 г. Одним из главных итогов деятельности Д.П. Морозова является создание научной школы по электроприводу прокатных станов. Его ученики стали видными учеными и руководящими работниками промышленности.

Муассан Анри (1852–1907 гг.) — французский ученый, профессор Парижской высшей фармацевтической школы (1887–1900 гг.) и Парижского университета (с 1900 г.), член Парижской академии наук (с 1891 г.), иностранный член-корреспондент Петербургской АН, лауреат Нобелевской премии (1906 г.). Впервые получил электролитическим методом свободный фтор (1886 г.) и изучил свойства фтора и его соединений. Сконструировал электрическую дуговую печь, в которой получил карбиды кальция и тугоплавких металлов (1892–1894 гг.). Его работы, а также работы Т.Л. Вильсона (Канада) заложили основы производства карбида, обеспечившего получение ацетилена и развитие газовой сварки. В лабораторной дуговой печи получил восстановлением оксидом углерода вначале металлический хром, а затем и другие металлы: ванадий, титан, молибден (1895 г.) и вольфрам (1897 г.) Исследовал дистилляцию материалов (кремния, углерода, тугоплавких металлов). Использовал постоянные магниты для вращения электрической дуги. А. Муассан автор труда «Электрическая печь», переведенного на многие языки.

Мюсхенбрук Питер (Мушенбрук) (1692–1761 гг.) — голландский физик и математик. Родился в г. Лейдене, закончил Лейденский университет, затем учился в Лондоне у И. Ньютона. С 1715 г. доктор медицины, ас 1719 г. доктор философии, профессор физики и математики. П. Мюсхенбрук прославился своими опытами с Лейденской банкой (1746 г.) — первым электрическим конденсатором. П. Мюсхенбрук убедительно доказал сильное действие электричества на человека, что положило начало электромедицине. Открытие П. Мюсхенбрука было научной сенсацией XVIII в. Есть сведения, что это же открытие в том же 1746 г. независимо от П. Мюсхенбрука сделал немецкий ученый Э. Клейст из Померании. П. Мюсхенбрук автор известных в свое время учебников физики, чем немало способствовал развитию науки об электричестве. Он был членом многих академий, в том числе и Петербургской Академии наук.

Нейман Леонид Робертович (1902–1975 гг.) — российский ученый, профессор, доктор технических наук, академик АН СССР, основоположник ряда важных научных направлений в области электротехники и электроэнергетики. Л.Р. Нейман родился в Петербурге, в 1930 г., окончил Ленинградский политехнический институт, с которым была связана вся его дальнейшая трудовая деятельность. В течение многих лет он возглавлял одну из крупнейших школ теоретической электротехники страны. Научная и педагогическая деятельность была тесно связана с развитием отечественной электропромышленности, электроэнергетики и с подготовкой научных и инженерных кадров. Труды Л.Р. Неймана, изданные в виде многочисленных монографий, статей и особенно учебников по теоретическим основам электротехники (ТОЭ), оказали и оказывают влияние на формирование и развитие современных методов исследования электромагнитных явлений в различных сферах и устройствах. В течение 33 лет (1942–1975 гг.) возглавлял кафедру ТОЭ в Ленинградском политехническом институте. Под его руководством успешно решались теоретические проблемы в области преобразователей в сложных электроэнергетических системах, при создании новых типов электрических машин, электропередач и магнитных систем с использованием сверхпроводимости. Л.Р. Нейман руководил многими научными советами страны и плодотворно работал в международных организациях (МЭК, СИГРЭ, ИФАК), был членом редколлегий журнала «Электричество» и серии «Энергетика и транспорт» в «Известиях АН СССР».

Нейман Франц Эрнст (1798–1895 гг.) — немецкий физик-теоретик, один из крупнейших представителей кенигсбергской школы физиков XIX в. Ф.Э. Нейман в 1845 г. впервые вывел ныне известное уравнение закона электромагнитной индукции. Им был введен термин «Электродвижущая сила индукции». В 1847 г. Г. Гельмгольц, опираясь на свой закон «сохранения силы», также вывел формулу для индуцированной электродвижущей силы, точно совпадающую с выражением Ф.Э. Неймана, только в других обозначениях. Ф.Э. Нейман создал в Кенигсбергском университете физическую лабораторию, в которой с успехом занимался экспериментальной и теоретической физикой. Когда официальные власти отказались финансировать лабораторию, он использовал для этого свои средства. Научные семинары Ф.Э. Неймана по математической физике посещали все его ученики, среди них самым выдающимся был Г.Р. Кирхгоф.

Нетушил Анатолий Владимирович (1915–1998 гг.) — российский ученый в области теоретических основ электротехники, профессор, доктор технических наук, заслуженный деятель науки и техники РФ, действительный член Академии электротехнических наук РФ, почетный академик Международной академии информатизации, почетный доктор Словацкого политехнического университета. Родился в Харькове в семье горного инженера, в 1937 г. окончил Московский энергетический институт, работал инженером в Тресте электрификации промышленности Минстроя СССР. В течение 19 лет А.В. Нетушил руководил проектированием электрооборудования предприятий черной и цветной металлургии. С 1945 г. начал преподавательскую деятельность на кафедре теоретических основ электротехники МЭИ, одновременно работал заместителем главного инженера в тресте «Центрэлектромонтаж». Он был первым деканом факультета автоматики и вычислительной техники МЭИ и заведующим кафедрой автоматики и телемеханики. В 1972 г. с группой учеников перешел в Московский институт тонкой химической технологии, где заведовал кафедрой электротехники, электроники и вычислительной техники. Научные труды А.В. Нетушила охватывают проблемы теории электрических цепей, теории электромагнитного поля и применения этих теорий для анализа и синтеза электротехнических и электронных устройств, электротехнических процессов и систем управления. Широко известны его труды по диэлектрическому высокочастотному нагреву и электроосмотическому воздействию на грунтовые воды. Список опубликованных научных работ А.В. Нетушила содержит около 300 наименований, в том числе несколько монографий и учебников, им получено 20 авторских свидетельств, под его руководством выполнено более 30 кандидатских диссертаций. Он был членом редколлегий нескольких электротехнических журналов.

Никитин Василий Петрович (1893–1956 гг.) — российский ученый, специалист в области электромеханики и электросварки, в 1914 г. окончил Петербургский политехнический институт, профессор Горного института в Днепропетровске (1925–1929 гг.), Московского института стали и сплавов и МВТУ им. Н.Э. Баумана (1933–1950 гг.). В 1939 г. его избирают академиком АН СССР. Под руководством В.П. Никитина разработаны типовые сварочные трансформаторы, при этом первый сварочный трансформатор со встроенным регулятором был создан им в 1924 г. на заводе «Электрик», творческое содружество с которым не прерывалось до конца жизни. В.П. Никитин создатель теории электрических машин и аппаратов для дуговой электросварки.

Ом Георг Симон (1787–1854 гг.) — выдающийся немецкий физик-электротехник, открывший знаменитый закон, носящий его имя. Родился в Баварии, с 1805 г. учился в Эрлангенском университете, а затем в должности приват-доцента преподавал там математику. В течение 1813–1817 гг. преподавал математику и физику в различных учебных заведениях Германии. Увлекшись электротехникой, он начал исследовать электропроводность электрических цепей. С помощью крутильных весов он установил, что при неизменных напряжении (он называл его «разностью электроскопических сил») и площади поперечного сечения электропроводность участка цепи остается неизменной. Он изучал влияние температуры проводников на их сопротивление. Применяя проводники из разных материалов различной длины и площади поперечного сечения, ГС. Ом устанавливает важный закон: ток в цепи при постоянном источнике электродвижущей силы обратно пропорционален сопротивлению цепи (1826 г.). Ученые встретили этот закон с недоверием, тем более что при первоначальных опытах с вольтовым столбом был обнаружен ряд неточностей. В 1827 г. вышла обширная монография ГС. Ома «Теоретические исследования электрических цепей» (в ряде источников она называется «Гальваническая цепь, разработанная математически доктором Омом»). В 1842 г. Лондонское Королевское общество наградило Г.С. Ома почетной золотой медалью Коплея и избрало своим членом — он был вторым ученым Германии, удостоенным такой чести. В 1852 г. Г.С. Ом был утвержден в должности ординарного профессора, о чем мечтал всю жизнь, а в 1853 г. его награждают только что утвержденным орденом Максимиллиана «за выдающиеся достижения в области науки». Международное признание заслуг Г.С. Ома выразилось в утверждении Электротехническим съездом в Париже в 1881 г. названия единицы сопротивления «Ом».

Орлов Игорь Николаевич (1930–1997 гг.) — российский ученый-электротехник, профессор, доктор технических наук, заслуженный деятель науки и техники РФ, действительный член Академии электротехнических наук РФ. И.Н. Орлов в 1953 г. окончил МЭИ, в 1960 г. защитил кандидатскую диссертацию, а в 1976 г. — докторскую диссертацию, посвященную проблемам теории и проектирования гироскопических электродвигателей. С 1979 г. по 1985 г. он возглавлял кафедру энергоснабжения и электрооборудования летательных аппаратов МЭИ, в 1974–1983 гг. являлся научным руководителем научно-исследовательской части института, в 1983–1985 гг. был проректором по научной работе и в 1985–1990 гг. — ректором МЭИ. И.Н. Орловым создано новое научное направление по системному анализу и проектированию электромеханических устройств гироскопов. Под его руководством выполнены комплексные работы по автоматизации проектирования и исследований приборных электромеханических систем, гироскопическому гистерезисному электроприводу, многодвигательному электроприводу технологических линий. В период с 1988 по 1993 г. был членом правления Союза научных и инженерных обществ СССР, а затем России. И.Н. Орлов активно работал в составе президиума Академии электротехнических наук РФ, являясь академиком-секретарем отделения электромеханики и силовой электроники.

Патон Евгений Оскарович (1870–1953 гг.) — украинский ученый, специалист в области электросварки. Окончил Дрезденский политехнический институт (Германия, 1894 г.) и Петербургский институт инженеров путей сообщения (1896 г.). С 1898 г. преподаватель Московского инженерного училища, с 1905 г. профессор Киевского политехнического института, с 1929 г. академик, а с 1945 по 1952 г. вице-президент АН УССР, лауреат Государственной премии (1941 г.). Проблемами электросварки начал заниматься в 1929 г. Им создана сварочная лаборатория, которая в 1934 п была преобразована в Институт электросварки АН УССР. Под его руководством выполнен ряд работ по исследованию автоматической дуговой сварки, сварки под флюсом, скоростных методов сварки и др., а также по созданию промышленных образцов электросварочного оборудования, которые были внедрены в народное хозяйство. В 1935 г. по его инициативе в Киевском политехническом институте организована кафедра сварки. Был организатором и редактором журнала «Автоматическая сварка». Им написаны фундаментальные труды «Автоматическая сварка голым электродом под слоем флюса» (1940 г.) и «Скоростная автоматическая сварка под слоем флюса» (1941 г.). Институт электросварки АН Украины с 1953 г. носит его имя Е.О. Патона.

Пачинотти Антонио (1841–1912 гг.) — итальянский ученый, электротехник, профессор физики Пизанского университета. В 1860 г. он впервые создает оригинальный электрический двигатель с кольцевым якорем и зубцами, укрепленными на вертикальном валу между электромагнитами, снабженными полюсными наконечниками. Обмотка электромагнитов включалась последовательно с обмоткой якоря. Концы катушек обмоток якоря соединялись с пластинами, напоминающими современный коллектор, а подвод тока к пластинам осуществлялся посредством роликов. А. Пачинотти пришел к осуществлению обратимости электродвигателя в генератор, но, не зная принципа самовозбуждения, предлагал электромагниты заменить постоянными магнитами. Прогрессивные идеи А. Пачинотти в создании кольцевого якоря в то время не получили заслуженного внимания, и только после появления через 10 лет кольцевого якоря 3. Грамма эта конструкция стала широко использоваться. Узнав об этом в 1871 г., А. Пачинотти направил в редакцию Парижского журнала, где было описано изобретение 3. Грамма, письмо, в котором устанавливал свой приоритет.

Петров Василий Владимирович (1761–1834 гг.) — выдающийся российский ученый, основоположник отечественной электротехники. В.В. Петров родился в г. Обояни (ныне Курской обл.) в семье приходского священника. Начальное образование получил дома и в церковно-приходской школе, затем поступил в Харьковский коллегиум — известное в то время учебное заведение на юге России, где преподавались естественные и гуманитарные науки. После окончания коллегиума В.В. Петров в 1786 г. был принят в Санкт-Петербургскую учительскую гимназию, позднее преобразованную в учительский институт. Через два года, желая приобрести практический опыт в области естественных наук, В.В. Петров добровольно отправляется преподавать математику и физику в Горном училище на дальних алтайских Колывано-Воскресенских горных заводах, крупнейших горно-рудных предприятиях не только России, но и Европы. Проработав два года на Алтае, В.В. Петров возвращается в Санкт-Петербург, продолжает заниматься педагогической и научной деятельностью в области физики и в 1815 г. избирается профессором Санкт-Петербургской медико-хирургической академии, где проработал почти 40 лет. За выдающиеся научные заслуги он избирается в 1802 г. членом-корреспондентом Академии наук, а в 1815 г. — ординарным академиком. Он также избирается почетным членом известного Немецкого физико-химического общества и Виленского университета. Но судьба нашего выдающегося соотечественника была поистине трагической. Неустанно отстаивая интересы отечественной науки, открыто выступая против иностранного засилья в Академии наук, он постоянно испытывал противодействие со стороны официальных академических кругов. И когда в знак протеста В.В. Петров не явился на похороны Александра I, он был отстранен от руководства физическим кабинетом, его труды были запрещены к печатанию. После смерти ученого почти в течение полувека его имя было предано забвению, и только в 1886 г. благодаря случайной находке в Виленской библиотеке его труда «Известия о гальвани-вольтовских опытах» был признан его приоритет в открытии электрической дуги. В 1935 г. Президиум ЦИК СССР принял постановление «Об ознаменовании столетия со дня смерти первого русского электротехника академика В.В. Петрова». Как указывал академик СИ. Вавилов, «в истории русской физики до половины XIX в. В.В. Петров не только хронологически, но и по своему значению непосредственно следует за М.В. Ломоносовым».

Петров Георгий Николаевич (1899–1977 гг.) — российский ученый-электромеханик, профессор, доктор технических наук, заслуженный деятель науки и техники РСФСР. В 1924 г. он окончил электромеханический факультет МВТУ и сразу начал педагогическую деятельность (до 1930 г. в МВТУ, а потом в МЭИ). В 1933 г. ему было присвоено звание профессора, а в 1937 г. он стал доктором технических наук. Г.Н. Петров занимал должность заведующего кафедрой (1938–1976 гг.), был деканом факультета, заместителем директора МЭИ по научной работе (в течение 12 лет), директором МЭИ (во время Великой Отечественной войны). В 20-х и начале 30-х годов им были написаны первые работы по рациональному выбору главных размеров трансформаторов, а в 1934 г. увидела свет его монография по теории трансформаторов. В ВЭИ с участием Г.Н. Петрова был проведен ряд исследований по электромагнитным процессам в трансформаторах. В 1948 г. ему была присуждена Государственная премия за разработку, трансформаторов для мощных выпрямительных установок, в 1962 г. — вторая Государственная премия за создание и внедрение трансформаторов тока с новой системой компенсации погрешностей. В 1964 г. Г.Н. Петров был избран членом-корреспондентом АН СССР, ему были присвоены почетные звания доктора наук Политехнического института Будапешта и Высшей технической школы Праги. Он был председателем научно-методического совета Минвуза СССР, главным редактором журналов «Электричество» и «Электротехника», принимал участие в разработке новых серий электрических машин и трансформаторов. Учебники, принадлежащие перу Г.Н. Петрова, отличаются исключительной глубиной и широтой охвата изложенных вопросов. Его перу принадлежат более 120 статей и многие изобретения. Плодотворный труд Г.Н. Петрова был отмечен двумя орденами Ленина и другими орденами и медалями.

Пироцкий Федор Аполлонович (1845–1898 гг.) — российский изобретатель в области электротехники. Родился в Полтавской губернии в семье небогатого помещика. В 1869 г. поступил в Михайловскую артиллерийскую академию в Петербурге, после окончания которой в 1871 г. начал работать в Главном артиллерийском управлении, где увлекся применением электричества в военном деле. Побывав в Финляндии, он решил заняться проблемой использования энергии воды для передачи ее в качестве «Двигательной силы» к различным механизмам. В 1874 г. Ф.А. Пироцкий представил свой проект в Главное артиллерийское управление. Не зная о существовании машины 3. Грамма, он разработал свою конструкцию генератора и двигателя и предложил соединить их «весьма длинной железной проволокой, поддерживаемой деревянными столбами». Он также указал на возможность выработки электроэнергии с помощью паровых машин, установленных в местах добычи дешевых каменных углей. Никто до Ф.А. Пироцкого ни в России, ни за рубежом не указывал на экономическую целесообразность производства электроэнергии на тепловых и гидравлических электростанциях и передачи ее на большие расстояния. В 1876 г. он приобрел машину 3. Грамма и начал опыты по передаче электроэнергии по рельсам заброшенной железнодорожной ветки, подсчитав, что сопротивление рельсов значительно меньше, так как их площадь поперечного сечения в 644 раза больше, чем у телеграфной проволоки. Ему удалось передать электроэнергию на расстояние около 1 км, предложив ряд способов изоляции рельсов от земли. Его идея об использовании рельсов для передачи электроэнергии позднее получила реализацию при электрификации железных дорог. В 1880 г. Ф.А. Пироцким впервые был осуществлен опыт приведения в движение по рельсам большого вагона с 40 пассажирами.

Пойнтинг Джон Генри (1852–1914 гг.) — английский физик, прославившийся своими исследованиями электромагнитных явлений. Родился в Монтене, в 1876 г. окончил Кембриджский университет. Работал в Манчестерском университете и Кавендишской лаборатории, затем стал профессором Бирмингемского университета. Основные его работы относятся к электромагнетизму, а также к оптике и астрофизике. С 1888 г. — член Лондонского Королевского общества, ас 1910 г. — 'вице-президент этого общества. Широкую известность Д.Г. Пойнтингу принесла в 1884 г. его статья «О переносе энергии в электромагнитном поле» в наиболее авторитетном журнале «Труды Королевского общества». В этой статье автор вводит понятие «потока энергии электромагнитного поля». Он впервые показывает изменение во времени энергии электрического и магнитного полей. Математически доказывает, что скорость изменения электрической энергии, содержащейся внутри замкнутой поверхности, равна некоторому интегралу по этой поверхности за вычетом скорости изменения магнитной энергии внутри той же поверхности и джоулева тепла, выделяемого проводниками с токами, находящимися в рассматриваемом объеме. Впоследствии этот вывод получил название «Теорема Пойнтинга». Кроме того, Д.Г. Пойнтинг вывел выражение векторного произведения, называемое «Вектором Пойнтинга».

Поливанов Константин Михайлович (1904–1983 гг.) — российский ученый-электротехник, профессор, доктор технических наук. Окончил Московский энергетический институт (МЭИ) в 1930 г. Начал трудовую деятельность в МЭИ под руководством Л.И. Сиротинского и К.А. Круга и одновременно в АН СССР под руководством В.К. Аркадьева. Именно в эти годы сформировалось основное направление деятельности К.М. Поливанова — физическая теория электромагнитного поля и ее технические приложения. После смерти К.А. Круга в 1952 г. стал заведовать кафедрой теоретических основ электротехники МЭИ. Его научные труды относились к электродинамике материальных сред: магнитные свойства ферритов, гиромагнитные явления и параметрические эффекты, динамика процессов перемагничивания, явления в диэлектриках с учетом их проводимости в вязкости. К.М. Поливанов определил направления научных исследований многих своих учеников и сотрудников. К числу таких направлений относятся сверхвысокочастотный гиромагнетизм, разработка первых в стране методов измерения магнитной и диэлектрической проницаемости ферритов и магнитодиэлектриков; исследование гиромагнитных явлений в изотропных и магнитооднодоменных ферритах; анализ процессов перемагничивания ферритов; исследования эффекта М. Фарадея в дисперсных системах с фазой из магнетитовых и ферритовых частиц и т.д. К.М. Поливанов был постоянным и активным членом Научного совета АН СССР по проблеме «Физика магнитных явлений», председателем комиссии по ферритам при ГКНТ СССР. Перу К.М. Поливанова принадлежат 120 научных статей и две монографии. Его учебники и учебные пособия завоевали широчайшую известность, выдержали по несколько изданий, использовались в учебном процессе советских и иностранных учебных заведений.

Попков Валерий Иванович (1908–1984 гг.) — российский ученый-электротехник, академик АН СССР. В 1930 г. окончил Московский энергетический институт и с 1930 по 1936 г. работал энергетиком на шахте в Днепродзержинске, научным сотрудником во Всесоюзном электротехническом институте, а в 1936–1943 гг. в Наркомате обороны. В 1943 г. поступил в аспирантуру в Энергетический институт им. Г.М. Кржижановского. В 1946 г. защитил диссертацию на соискание степени кандидата и в 1948 г. — доктора технических наук. С именем В.И. Попкова связаны крупные достижения в области электрофизики, которые послужили основой создания современных линий высокого и сверхвысокого напряжения и высоковольтной техники. Им разработана теория коронного разряда постоянного и переменного тока, получившая широкое признание. На ее основе получены многие инженерные решения при разработке новых типов высоковольтной аппаратуры. Существенный вклад внесен им в развитие электронноионной технологии получения изолирующих и защитных покрытий в сильных электрических полях. Он автор более 300 научных трудов, в том числе пяти монографий. За выдающиеся научные заслуги В.И. Попков в 1953 г. был избран членом-корреспондентом, а в 1966 г. — действительным членом Академии наук СССР. С 1980 г. он руководил отделением физико-технических проблем энергетики Академии наук СССР, являлся главным редактором журнала «Энергетика и транспорт», председателем Научного совета АН СССР по электрофизике и электроэнергетике, принимал активное участие в подготовке научных и научно-педагогических кадров в Московском энергетическом институте. В течение ряда лет он представлял нашу страну в Международной электротехнической комиссии, будучи ее вице-президентом и президентом. Заслуги В.И. Попкова высоко оценены — ему присвоено звание Героя Социалистического Труда, он удостоен Государственной премии СССР.

Попов Александр Степанович (1859–1905 гг.) — выдающийся российский ученый, родился в Пермской области (с. Туринские рудники) в семье сельского священника. Начальное образование он получил в духовной семинарии. Однако в 1877 г. его интересы обратились к математике, и он поступил в Санкт-Петербургский университет, который окончил с отличием в 1883 г. После окончания университета А.С. Попов занимался преподаванием математики, физики и электротехники в Русской морской минной школе в Кронштадте. Там требовалось обучать слушателей умению обращаться с электротехническим оборудованием военных судов. Школа была не только хорошо оснащена, но и имела библиотеку с последними публикациями на иностранных языках. Понимая важность и перспективность работы Г. Герца в области электромагнитных колебаний и волн, А.С. Попов начал работать над методами повышения дальности приема. Он сконструировал аппарат (грозоотметчик), который мог регистрировать разряды в атмосфере и в июле 1895 г. установил его в метеорологической обсерватории Лесной академии Санкт-Петербурга. Им была высказана мысль о важности применения искусственных источников электромагнитных колебаний для целей передачи сообщений. В марте 1896 г. он выступил перед Санкт-Петербургским физическим обществом и продемонстрировал передачу и прием электромагнитных колебаний между двумя зданиями университета. Слова «Генрих Герц» были переданы азбукой Морзе, приняты и записаны на демонстрационной доске президентом общества. Дальнейшие усилия А.С. Попова были направлены на установление связи судна с берегом, и достигнутый результат (10 км в 1898 г.) свидетельствует о высоком уровне работ нашего соотечественника. С 1902 г. А.С. Попов был профессором Электротехнического института и его директором.

Привезенцев Владимир Алексеевич (1900–1977 гг.) — российский ученый, профессор, доктор технических наук, заслуженный деятель науки и техники РСФСР, лауреат Государственной премии (1944 г.). Окончил электротехнический факультет МВТУ (1924 г.) и Московский промышленно-экономический институт (1926 г.). Специалист в области кабельной техники. В 1938 г. защитил кандидатскую, а в 1956 г. — докторскую диссертацию, с 1949 г. профессор МЭИ. Во время Великой Отечественной войны работал главным инженером завода «Москабель». Один из организаторов Центральной кабельной лаборатории, преобразованной позднее в Научно-исследовательский институт кабельной промышленности (НИИКП), где работал заместителем директора по научной части. Много сделал для создания инженерной специальности «Электроизоляционная и кабельная техника». Он автор многих монографий и учебных пособий, выдержавших несколько изданий («Производство силовых кабелей», «Основы кабельной техники» и др.), и около 200 научных статей. Под его руководством подготовлено более 20 кандидатов технических наук.

Пухов Георгий Евгеньевич (1916–1998 гг.) — профессор, доктор технических наук, академик АН УССР (впоследствии Национальной академии наук Украины). Окончил в 1940 г. Томский индустриальный (впоследствии политехнический) институт и его аспирантуру. Участник Великой Отечественной войны, получивший тяжелое ранение во время обороны Москвы (1942 г.). В 1962 г. его избирают членом-корреспондентом, а в 1967 г. — действительным членом АН УССР, в 1978–1988 гг. он академик-секретарь Отделения физико-технических проблем АН УССР, впоследствии советник Президента АН УССР. Г.Е. Пухов — организатор и директор (1981–1988 гг.) Института проблем моделирования в энергетике, главный редактор созданного по его инициативе всесоюзного научно-технического журнала «Электронное моделирование». Им получены крупные достижения в области электротехники (прежде всего в диакоптике), энергетики (теории устойчивости систем и специальных электрических машин), моделирования (автор принципов квазианалогий и теории квазианалогового моделирования), теории систем и математики (создатель операционных методов анализа и синтеза нелинейных систем, точечного и дифференциального преобразований, специального комплексного исчисления. Под его руководством разработаны вычислительные машины с нетрадиционной организацией вычислений (разрядно-аналоговые и гибридные). Г.Е. Пухов опубликовал свыше 600 печатных работ, он лауреат Государственной премии УССР, премии им. С.А. Лебедева АН УССР.

Разевиг Даниил Всеволодович (1920–1973 гг.) — российский ученый-энергетик, профессор, доктор технических наук. Родился в Москве, в 1942 г. окончил Московский энергетический институт. Работал диспетчером Алтайской энергетической системы (1942–1943 гг.). После окончания аспирантуры МЭИ защитил кандидатскую диссертацию (1947 г.) и начал преподавательскую деятельность, которую активно совмещал с научными исследованиями, посвященными грозозащите вращающихся машин и индуцированным перенапряжениям на линиях электропередачи. Им создана (1950–1952 гг.) одна из первых в стране модель электропередачи. С 1958 по 1972 г. Д.В. Разевиг заведует кафедрой техники высоких напряжений МЭИ и создает проблемную лабораторию сильных электрических полей. Автор целого ряда капитальных научных трудов в области техники высоких напряжений. Его монография «Атмосферные перенапряжения на линиях электропередач» (1959 г.) стала основой докторской диссертации, защищенной в 1961 г В 1962 г. утвержден в звании профессора. В 1958–1961 гг. он декан электроэнергетического факультета, в 1961–1965 гг. проректор МЭИ. В 1972–1973 гг. Д.В. Разевиг возглавил Энергетический институт им. Г.М. Кржижановского. Он один из основных авторов трехтомного учебника по технике высоких напряжений. Последние годы много работал над созданием методов расчета разрядных и начальных напряжений газовых промежутков.

Рахимов Гафир Рахимович (1905–1972 гг.) — узбекский ученый, профессор, доктор технических наук, член-корреспондент АН Узбекской ССР. После окончания рабфака Ленинградского государственного университета (1923–1926 гг.) и Ленинградского электромеханического института (1926–1931 гг.) всю жизнь проработал на кафедре теоретических основ электротехники Среднеазиатского индустриального (Ташкентского политехнического) института ассистентом (1931–1934 гг.), доцентом (1934–1960 гг.), профессором и заведующим кафедрой (1960–1972 гг.). В 1958 г. ему присвоено звание доктор технических наук, а в 1966 г. он избран членом-корреспондентом АН УзССР. Г.Р. Рахимов внес большой вклад в создание, развитие и широкое признание электротехнической школы в Узбекистане. Автор более 150 научных работ, специалист в области теории и методов расчета нелинейных электрических цепей и систем. Он впервые экспериментально обнаружил хаотические (он назвал их блуждающими) колебания в системах с ферромагнитными элементами, ставшие предметом особого внимания электротехников лишь в 80-е годы. Значительное внимание Г.Р. Рахимов уделял актуальным проблемам развития энергетики и электрификации Узбекистана.

Рихман Георг Вильгельм (1711–1753 гг.) — российский ученый, академик (с 1741 г.), один из основоположников теплофизики и науки об электричестве. Родился в Пярну (Эстония), затем учился в Ревеле (Таллинн), в университетах в Галле и Йене. Он был первым ученым в России, занявшимся систематическим изучением электрических (точнее, электростатических) явлений. Вместе с М.В. Ломоносовым они положили начало переходу от качественных наблюдений к установлению количественных закономерностей. В 1745 г. Г.В. Рихман создал первый электроизмерительный прибор — «электрический указатель», с помощью которого можно было оценить интенсивность атмосферного электричества. Вместе с М.В. Ломоносовым он построил «громовую машину», которая, имея «электрический указатель», позволяла вести постоянные наблюдения за состоянием атмосферного электричества. С 1744 г. и до конца жизни Г.В. Рихман возглавлял физический кабинет Академии наук, превращенный им в одну из крупных физических лабораторий Европы. Г.В. Рихман впервые наблюдал и описал явление электрической индукции, но подробно его исследовать не успел. Им был написан мемуар «Опыты о магнитной силе, без магнита сообщенной». Он также с успехом занимался изучением тепловых явлений, и оставил содержательные труды по термометрии и калориметрии, теплообмену жидкостей. Летом 1753 г. во время грозы, находясь у «громовой машины», Г.В. Рихман был убит ударом молнии.

Руденко Юрий Николаевич (1931–1994 гг.) — российский ученый в области энергетики, академик Российской академии наук, лауреат Государственной премии. Окончил в 1956 г. Ленинградский заочный индустриальный институт, а затем аспирантуру Ленинградского политехнического института. С 1960 по 1963 г. Ю.Н. Руденко был руководителем группы, а затем начальником службы режимов Объединенного диспетчерского управления Энергосистемы Сибири. В 1963 г. перешел на работу в Сибирский энергетический институт, а с 1973 по 1988 г. возглавлял этот институт. В 1987 г. избран академиком АН СССР, а в 1988 г. — академиком-секретарем Отделения физико-технических проблем энергетики и членом Президиума АН СССР За цикл работ, содержащих теоретические решения проблемы создания автоматизированной системы диспетчерского управления Единой электроэнергетической системой СССР, и обобщение опыта ее практической реализации в 1986 г. ему была присуждена Государственная премия СССР Ю.Н. Руденко был руководителем работ по созданию научной концепции формирования Единой электроэнергетической системы СССР на перспективу, а в последние годы и работы по энергетической стратегии России. Создал научную школу по теории надежности больших систем энергетики, внес значительный вклад в теорию живучести больших систем энергетики, в решение проблем энергетической безопасности страны и проблем создания мировой энергетической системы, включая вопросы энергоснабжения Земли из космоса. Ю.Н. Руденко автор около 200 научных публикаций, под его редакцией вышли издания «Системные исследования энергетики» (в трех томах) и «Надежность систем энергетики и их оборудования» (в шести томах).

Румкорф Генрих-Даниил (1803–1877 гг.) — немецкий изобретатель, именем которого названа известная индукционная катушка. Родился в Ганновере, а в 1840 г. переехал в Париж, где создал собственную мастерскую физических приборов. Им был создан первый в мире переключатель электрической цепи — «коммутатор Румкорфа». Мировую известность принесло ему усовершенствование индукционной катушки, которую до него создавали ряд изобретателей (в 1836–1838 гг. Н. Каллан, Ч. Пейдье). В 1852 г. Г.-Д. Румкорф сконструировал катушку с двумя обмотками. В первичную цепь включались гальваническая батарея и прерыватель вибрационного типа. При этом во вторичной цепи, состоящей из большого числа витков, возникало высокое напряжение, позволявшее получать искровой разряд. Такие катушки широко применялись в электротехнической практике и как простейший трансформатор, и как прибор для дистанционного взрывания электрических мин, а также для генерирования радиоволн и в рентгенотехнике.

Свенчанский Александр Данилович (1904–1988 гг.) — российский ученый, профессор, доктор технических наук. Окончил в 1928 г. Московское высшее техническое училище, в 1931 г. организовал лабораторию при отделе электромашин ВЭИ, которая занималась печами сопротивления, а также дуговыми и руднотермическими печами. При его активном участии в Московском энергетическом институте (МЭИ) в 1935 г. была создана специальность «Электротермические установки». В 1943 г. он организовал кафедру «Электротермические установки» (ЭТУ) МЭИ и в течение 30 лет был ее заведующим. Научные интересы А.Д. Свенчанского: теплопередача в печах сопротивления и дуговых печах, расчет и рациональное конструирование электропечей сопротивления (докторская диссертация, 1956 г.), автоматизация электротермического оборудования и др. Педагогическая деятельность А.Д. Свенчанского охватывала организацию учебного процесса кафедры ЭТУ МЭИ, а также создание кафедр ЭТУ в других вузах (Чебоксары, Новосибирск и др.), руководителями и преподавателями которых стали его бывшие аспиранты. Под его редакцией коллективом авторов был выпущен первый отечественный фундаментальный учебник «Электрические промышленные печи» (1948 г.). Среди многочисленных монографий и учебников, написанных А.Д. Свенчанским лично или под его редакцией, можно отметить также «Электрические печи сопротивления» (1975 г.) и «Дуговые печи и установки специального нагрева» (1981 г.). Он активно работал в Международном союзе по электротермии (МСЭ) и принимал участие в работе международных конгрессов, проводимых МСЭ.

Сименс Эрнст Вернер (1816–1892 гг.) — немецкий электротехник и пионер электротехнической промышленности. Закончил (1834 г.) Любекскую гимназию и поступил в артиллерийское инженерное училище в Берлине, после окончания которого в 1838 г. занялся изобретательской деятельностью и в 1842 г. получил первый патент на метод гальванического золочения и серебрения. Затем он был откомандирован в артиллерийские мастерские в Берлине. Здесь он стал членом Физического общества. В 1846 г. он усовершенствовал конструкцию стрелочного электрического телеграфа и вместе с механиком И.Г. Гальске основал телеграфную строительную фирму «Сименс и Гальске», занимавшуюся изготовлением не только телеграфных аппаратов, но и различных электромедицинских приборов. В 1849 г. фирма получила правительственный заказ на прокладку первой в Европе дальней телеграфной линии между Берлином и Франкфуртом-на-Майне. Еще в 1847 г. Э.В. Сименс изобрел гуттаперчевый пресс для бесшовной изоляции медного провода. Имя Э.В. Сименса стало широко известно, и заказы на дальние телеграфные линии поступали один за другим. В 1851 г. на Первой Международной промышленной выставке в Лондоне стрелочный телеграф Э.В. Сименса был удостоен высшей награды. В 1851 г. 75 пишущих телеграфов фирмы «Сименс и Гальске» были поставлены для единственной в то время телеграфной линии между Москвой и Петербургом. А в 1852 г. Э.В. Сименс прибыл в Петербург для переговоров о прокладке телеграфной сети. Вскоре современные автоматические телеграфные линии связали ряд отдаленных городов европейской части России. В 1953 г. телеграфные линии связывали Москву и Севастополь, а также Петербург и Кронштадт, где кабель был проложен через Балтийское море. Для быстрого определения места повреждения линии Э.В. Сименсом был предложен метод многократного использования одного провода, а также усовершенствован якорь динамомашины (1856 г.). Одним из наиболее значительных вкладов Э.В. Сименса в развитие электромашиностроения явился предложенный им в 1866 г. принцип самовозбуждения, о котором он представил доклад в начале 1867 г. в Берлинскую академию наук. Этот принцип Э.В. Сименс назвал динамоэлектрическим. Необходимо отметить, что принцип самовозбуждения был разработан еще до Э.В. Сименса многими изобретателями и учеными (например, А. Йедликом в 1861 г.), но они не располагали возможностями и средствами для промышленного изготовления таких генераторов. В 1879 г. он построил первую электротехническую железную дорогу на Берлинской промышленной выставке, усовершенствовал телефон, создал дуговую электропечь (1878 г.), получившую применение в промышленности. На Первой Международной электротехнической выставке в Париже в 1891 г. фирме Э.В. Сименса была присуждена большая часть почетных дипломов. Э.В. Сименс был одним из основателей Имперского физико-технического института.

Сиротинский Леонид Иванович (1879–1970 гг.) — российский ученый в области энергетики, профессор, доктор технических наук, лауреат Ленинской и Государственной премий, заслуженный деятель науки и техники. Родился в г. Николаеве. В 1897 г. поступил в Петербургский университет, а затем на технический факультет Льежского университета (Бельгия).

В 1903 г., получив диплом инженера-электрика, вернулся в Россию. В 1903–1905 гг. работал инженером на заводе Центрального электротехнического общества в Москве. В 1907–1908 гг. принял участие в создании первого в России среднего электротехнического училища. В 1918 г. Л.И. Сиротинский приглашен на преподавательскую работу в Московское высшее техническое училище, где и читал ряд курсов, продолжая руководить Средним техническим училищем (позднее Московским электротехническим техникумом) и преподавал в нем до 1935 г. Еще в 1914 г. им были составлены многие главы справочника для электротехников, выдержавшего 10 изданий и имевшего большое значение для развития электротехники в стране. В 1921 г. принял участие в создании Государственного экспериментального электротехнического института (ныне ВЭИ) и стал первым руководителем отдела высоких напряжений этого института, сформировав его научную направленность и экспериментальную базу. В 1928 г. он избран заведующим кафедрой техники высоких напряжений МВТУ, а позднее — заведующим созданной им кафедры того же названия МЭИ. Как один из авторитетнейших ученых-энергетиков Л.И. Сиротинский участвует в экспертизах многих крупных объектов довоенного периода: Днепрогэс, Свирьгэс, электрических сетей Донбасса и др. В 1939–1945 гг. вышел в свет подготовленный Л.И. Сиротинским и его учениками трехтомный учебник «Техника высоких напряжений», переизданный в полностью переработанном виде в 1951–1959 гг. В послевоенные годы активно участвует в создании аппаратуры для линий передачи сверхвысокого напряжения.

Славянов Николай Гаврилович (1854–1897 гг.) — российский изобретатель-электротехник, прославивший наше Отечество своими работами в области электросварки. Он родился в Воронежской губернии в семье обедневшего помещика. Успешно закончил Петербургский горный институт в 1877 г., получив звание горного инженера. Несколько лет он работал на горных заводах, а с 1883 г. и до конца жизни — на Пермских казенных пушечных заводах, которые он несколько лет возглавлял. В 1888 г. он изобретает метод электрической отливки металлов. Отливаемым металлом служит металлический стержень, являющийся одним из электродов электрической дуги, которая автоматически поддерживается с помощью специального регулятора. Изобретенный Н.Г. Славяновым автоматический регулятор длины дуги получил название «электроплавильник». Впервые он применил сварку вала паровой машины в 1888 г., а затем для ремонта деталей различных машин, пароходных и паровозных частей. Н.Г. Славянов создал на Пушечных заводах специальный цех — «электролитическую фабрику», оборудовав ее всеми необходимыми источниками питания и приборами собственной конструкции. За период 1891–1894 гг. на фабрике под руководством Н.Г. Славянова было отремонтировано более 1600 деталей различных машин и устройств общим весом около 280 т. Он также изобрел метод «электрического уплотнения металлических отливок», суть которого в том, что металл застывает снизу вверх, все газы выходят из металла, в нем не образуются пустоты и отливка получается плотной. Патенты на свое изобретение он получил в большинстве стран Европы, а в 1893 г. на Всемирной Чикагской электротехнической выставке был награжден золотой медалью. Его труд электрическая отливка металлов (1891 г.) был издан на немецком, французском и английском языках. В 1889 г. Н.Г. Славянов впервые в судостроении заменил клепку сваркой.

Смуров Александр Антонович (1884–1937 гг.) — российский ученый, профессор, доктор технических наук, заслуженный деятель науки и техники, специалист по технике высокого напряжения. В 1906 г. А.А. Смуров окончил Санкт-Петербургский университет, а в 1911 г. Санкт-Петербургский электротехнический институт. В 1919 г. избирается профессором кафедры электротехники высоких напряжений, с 1922 по 1925 г. является деканом электротехнического факультета, а с 1925 по 1929 г. — ректором института. В 1931 г. был назначен членом Госплана СССР. В 1937 г. за выдающиеся заслуги ему было присвоено звание заслуженного деятеля науки и техники. Под руководством А.А. Смурова были проведены работы, связанные со строительством новых электростанций, линий электропередачи и испытанием диэлектриков. В их числе разработка и внедрение защиты от перенапряжений в сетях Центрэнерго, Донэнерго, Уралэнерго, под его руководством созданы передвижные высоковольтные лаборатории для профилактических испытаний сетей в условиях эксплуатации, проведены исследования высоковольтных кабелей и конструкций, организована первая лаборатория релейной защиты. А.А. Смуровым опубликовано много научных трудов, а его книга «Электротехника высокого напряжения и передача энергии» является классической монографией.

Столетов Александр Григорьевич (1839–1896 гг.) — выдающийся российский физик. Родился в г. Владимире в купеческой семье. Во время обучения в гимназии ярко проявились его способности в физике и математике, а также в изучении иностранных языков. В 1856 г. он поступил на физико-математический факультет Московского университета и после его успешного окончания был оставлен для подготовки к профессорскому званию. После сдачи магистерских экзаменов командируется в Германию (Берлин, Гейдельберг), где сформировалась известная физическая школа, возглавляемая Г. Гельмгольцем и Г. Кирхгофом. После трехлетней подготовки в физических лабораториях А.Г. Столетов, которого Г. Кирхгоф называл лучшим своим учеником, возвращается в Москву, защищает магистерскую диссертацию и создает при университете физическую лабораторию. В 1872 г. А.Г. Столетов успешно защитил докторскую диссертацию «Исследование физики намагничивания мягкого железа», в которой он впервые доказал, что магнитная восприимчивость железа с ростом напряженности магнитного поля сначала пропорционально возрастает, проходит через максимум, а затем уменьшается (железо как бы «насыщается» магнетизмом). Это открытие сыграло огромную роль в процессе совершенствования конструкции электрических машин, выбора рационального режима намагничивания их магнитных систем. Вскоре А.Г. Столетов был избран профессором физики университета. Мировую известность приобрели исследования А.Г. Столетовым явления внешнего фотоэффекта (1888–1890 гг.). Созданная им установка явилась, по существу, первым фотоэлементом, им был установлен закон (носящий его имя) пропорциональности между фототоком насыщения и световым потоком. Исследуя фотоэффект в условиях вакуума, он создал установку, явившуюся первым вакуумным фотоэлементом. Открытие А.Г. Столетова стало важнейшим шагом на пути создания и широкого применения электронных приборов. А.Г. Столетов по праву считается основоположником московской школы физиков. Признанием его научных заслуг крупнейшими физиками мира было избрание его вице-президентом Международного конгресса электриков.

Тесла Никола (1856–1943 гг.) — выдающийся югославский ученый-электротехник, творец многофазных систем и техники СВЧ, автор более 800 изобретений в области электротехники, радиотехники и автоматики. Родился в хорватском селении Смиляны, принадлежал к древнему сербскому роду. В 1871 г. Н. Тесла поступил в Высшее реальное училище г. Карловец, а после его окончания стал студентом Высшей технической школы в г. Граце. Окончив Высшую техническую школу, он начал работать инженером, а затем стал инженером-электриком правительственной Телеграфной компании в Будапеште. В 1888 г. открывает явление вращающегося магнитного поля и получает патенты на несколько типов двухфазных генераторов, двигателей и трансформаторов. В 1896 г. состоялось торжественное открытие крупнейшей в мире Ниагарской гидроэлектростанции, оборудованной машинами Н. Теслы. В процессе создания многофазных систем Н. Тесла обратил внимание на особенности переменного тока высокой частоты и создал несколько высокочастотных генераторов. Но с увеличением частоты ухудшаются КПД и механическая прочность машин, поэтому Н. Тесла, изучив особенности колебательного характера электрических разрядов и явлений резонанса в электрических цепях, создает в 1891 г. свой знаменитый резонанс-трансформатор (трансформатор Теслы), сыгравший огромную роль в развитии электротехники и радиотехники. Н. Тесла предложил использовать резонанс-трансформатор для возбуждения проводника-излучателя, поднятого высоко над землей (это была первая антенна) и способного передавать энергию высокой частоты без проводов. В 1898 г. Н. Тесла получает патент на изобретение, положившее начало радиотелемеханике. С помощью своей установки он управлял специально оборудованными кораблями, находившимися в океане на расстоянии более 25 морских миль от берега и выполнявшими сложные маневры. Он первым ввел термин «телеавтоматика». Под его руководством была сооружена 47-метровая каркасная башня, где должна была быть установлена мощная радиостанция для передачи различных сигналов и сообщений. Он работал над осуществлением космической радиосвязи и передачи изображений на другие планеты. В 1956 г. Международная электротехническая комиссия увековечила имя Н. Теслы, присвоив единице магнитной индукции название «Тесла».

Толстое Юрий Георгиевич (1913–1996 гг.) — российский ученый в области электроэнергетики и преобразовательной техники. Родился в Санкт-Петербурге. В 1935 г. окончил Новочеркасский индустриальный институт, а в 1940 г. — аспирантуру МЭИ, защитив диссертацию, посвященную передаче электроэнергии на дальние расстояния от асинхронных генераторов. С 1941 г. он старший научный сотрудник Энергетического института им. Г.М. Кржижановского, а с 1948 г. заместитель заведующего лабораторией постоянного тока. С 1952 по 1988 г. Ю.Г. Толстое возглавляет эту лабораторию, переименованную в 1966 г. в лабораторию преобразовательной техники им. К.А. Круга, с 1988 по 1992 г. научный консультант этой лаборатории. Научные исследования Ю.Г. Толстова, посвященные в основном вопросам нелинейной электротехники, широко известны как в нашей стране, так и за рубежом. Он был одним из пионеров разработки и внедрения в преобразовательную технику силовых полупроводниковых приборов, регулируемых реакторами. В 1950 г. защитил докторскую диссертацию по вопросам анализа электромагнитных процессов в преобразовательных установках с нелинейными реакторами, получившим развитие в трудах его учеников и коллег. Ю.Г. Толстое был доктором технических наук, профессором, заслуженным деятелем науки и техники РСФСР, почетным академиком Академии электротехнических наук РФ.

Томсон (Кельвин) Уильям (1824–1907 гг.) — выдающийся английский ученый, удостоенный за свои научные заслуги титула лорда Кельвина. Родился в г. Белфасте в семье преподавателя математики. Одаренный мальчик уже в десятилетнем возрасте поступил в Глазговский университет и еще студентом опубликовал свою первую научную работу по теории теплопроводности, а когда ему исполнилось 22 года, он стал профессором натурфилософии Глазговского университета и возглавлял там кафедру до 1899 г., т.е. в течение 53 лет. Им была создана лаборатория, в которой под его руководством были проведены важные исследования в области электродинамики, был создан ряд оригинальных приборов, в частности высокочувствительный астатический гальванометр. Кафедра и дом У. Томсона первыми в Англии стали освещаться электричеством. У. Томсон был выдающимся педагогом, внедрявшим экспериментальный метод обучения. Он был одним из соавторов известного «Трактата по натуральной философии», сыгравшего большую роль в развитии физической науки, написал огромное число работ по экспериментальной и теоретической физике. Его труд «О динамической теории теплоты» сыграл огромную роль в разработке закона сохранения энергии. У. Томсон первым заменил термин «движущая сила» на современный термин «энергия». Многие годы У. Томсон занимался исследованием электрических колебаний и, применяя к процессу разряда закон сохранения энергии, вывел в 1853 г. уравнение разрядного процесса.

Угримов Борис Иванович (1872–1942 гг.) — российский ученый в области теоретической и общей электротехники высоких напряжений. Родился в Москве, окончил Московский университет и Московское высшее техническое училище (МВТУ) в 1897 г., где был оставлен для подготовки к профессорскому званию. В 1898 г. был командирован за границу, в Германию для совершенствования знаний в области электротехники. Будучи за границей, изобрел первый «электрокотел», за что на Всемирной Парижской выставке был удостоен медали. С 1900 г. назначается Советом МВТУ преподавателем электротехники и заведующим всеми электротехническими лабораториями. Он был первым лектором, начавшим читать курсы общей электротехники и техники высоких напряжений. В 1910 г. в Карлсруэ защитил докторскую диссертацию и в 1913 г. получил звание профессора. Одновременно работал в промышленности: с 1914 по 1918 г. был директором Кабельного телефонного узла, руководил бюро по электрификации сельского хозяйства Наркомзема, участвовал в разработке электропахотных орудий. В 1920 г. был назначен заместителем председателя Комиссии ГОЭЛРО. В 1930–1932 гг. работал главным инженером Уралэнергодорстроя. Вел активную педагогическую деятельность, преподавал электротехнику в разных вузах Москвы, был начальником кафедры одной из военных академий. Автор известных учебников и учебных пособий: «Основы техники силовых токов», «Техника высоких напряжений», «Электротехника» и «Электрооборудование автомобилей и тракторов».

Уитстон Чарльз (1802–1875 гг.) — английский физик, получивший всемирную известность благодаря исследованиям по электромагнетизму и оптике. В 1843 г. изобрел широко известный четырехплечий мост (носящий его имя) для измерения электрического сопротивления проводников, на основе которого был создан ряд других мостовых измерительных схем и устройств. Значительная часть исследований Ч. Уитстона была посвящена усовершенствованию электромагнитного телеграфа, изобретенного П.Л. Шиллингом. В 1837 г. он совместно с У. Куком получил патент на «показывающий» телеграфный аппарат, пятистрелочный вариант которого почти полвека применялся на английских железных дорогах. Первая действующая линия пятистрелочного телеграфа протяженностью 21 км была установлена в 1839 г. между Лондоном и Уэст Дрейтоном. За научные заслуги Ч. Уитстон был избран членом Лондонского Королевского общества.

Умов Николай Алексеевич (1846–1915 гг.) — выдающийся российский физик. В 1867 г. закончил математический факультет Московского университета. В 1871 г. получил ученую степень магистра физико-математических наук. В 1873 г. опубликовал работу «Уравнения движения энергии в телах», а в 1974 г. защитил в университете докторскую диссертацию. Впервые ввел понятия движения и потока энергии движущихся частиц, плотности энергии и скорости ее движения, а также вектора, определяющего поток энергии, текущей в единицу времени через площадку, нормальную к этому вектору (вектор Умова), установил связь между количеством энергии, отнесенным к единице времени, и изменением количества энергии в среде (теорема Умова). Ряд работ Н.А. Умова относится к земному магнетизму.

Усагин Иван Филиппович (1855–1919 гг.) — российский физик-самоучка, почти 40 лет проработавший в Московском университете на кафедре физики в качестве механика и лекционного ассистента. Родился в крестьянской семье в Московской области. Обучался в церковно-приходской школе. Приехав в Москву, поступил в университетские мастерские, занимался самообразованием, изучая устройство многих физических приборов, и с успехом осуществлял лекционное демонстрирование у таких блестящих ученых как А.Г. Столетов, П.Н. Лебедев, Н.А. Умов. В 1882 г. И.Ф. Усагин продемонстрировал на Всероссийской промышленно-художественной выставке в Москве установку, в которой показал, что предложенный П.Н. Яблочковым способ «дробления энергии» посредством индукционных катушек может быть с успехом использован для питания любого приемника переменного тока: во вторичные обмотки катушек он включал не только электрические свечи, но и электродвигатель, проволочную нагревательную спираль, дуговую лампу с регулятором. В установке И.Ф. Усагина была наглядно продемонстрирована универсальность переменного тока. Он был удостоен почетного диплома, а позднее Московским обществом любителей естествознания, антропологии и этнографии почетной премии. И.Ф. Усагин также успешно занимался исследованием катодных лучей, создал «электрический выпрямитель тока», занимался изучением фосфоресценции газов при электрических разрядах.

Фарадей Майкл (1791–1867 гг.) — выдающийся английский физик. Жизненный путь М. Фарадея — замечательный пример неустанного стремления к знаниям, трудолюбия, неуемной настойчивости в преодолении трудностей и в творческих поисках. Трудно представить, что сын кузнеца, не имевший возможности закончить даже начальную школу, путем самообразования и упорного труда стал величайшим ученым и почетным членом 68 академий и научных обществ, в том числе и почетным членом Петербургской Академии наук. В процессе обучения переплетному делу он увлекся чтением книг и, познакомившись с описанием электрических явлений в «Британской энциклопедии», начал проводить разнообразные эксперименты и даже соорудил электрическую машину. Он начал посещать общеобразовательные лекции по физике и астрономии, научился грамотно писать и излагать свои мысли. Посетив несколько лекций известного ученого X. Дэви по химии, он послал ему свои записи. X. Дэви обнаружил в записях «большое прилежание, внимание и силу памяти» и в начале 1813 г. пригласил М. Фарадея на должность лаборанта в лабораторию Королевского института. Так начался путь М. Фарадея в науку. Через два года выходят его первые статьи по химии, он начинает читать лекции в организованном им Философском обществе. Летом 1820 г. X. Дэви познакомил М. Фарадея с открытием Х.К. Эрстеда. Он начинает повторять его эксперименты и на всю жизнь увлекается изучением электромагнитных явлений. Уже в 1821 г. М. Фарадей построил прибор — прообраз электродвигателя и опубликовал в научном журнале Королевского общества статьи об электромагнетизме. Кроме изучения электромагнитных явлений он продолжил опыты по химии и в 1823 г. впервые получил жидкий хлор. За свои научные заслуги М. Фарадей в 1824 г. избирается в число членов Королевского общества, а в 1827 г. получает профессорскую кафедру в Королевском институте. Всемирную славу принесло М. Фарадею открытие им в 1831 г. явления электромагнитной индукции и создание первого электромагнитного генератора. Им были открыты законы электролиза, исследованы разряды в вакууме и газах, открыты явления диамагнетизма и парамагнетизма. Имя М. Фарадея увековечено присвоением единице емкости названия «Фарада».

Федосеев Алексей Михайлович (1904–1990 гг.) — российский ученый в области релейной защиты и автоматизации энергосистем, профессор, доктор технических наук, лауреат Ленинской и Государственной премий. Окончил МВТУ в 1929 г. и работал в проектном отделе Энергостроя, руководил разработкой проблем релейной защиты и автоматики электростанций, подстанций и электрических сетей высокого напряжения. Более 35 лет возглавлял эти работы в институтах «Теплоэлектропроект» и «Энергосетьпроект». В годы Великой Отечественной войны руководил разработкой технических и рабочих проектов релейной защиты электростанций и сетей высокого напряжения в восточных районах, а позднее в освобожденных районах европейской части страны. Имеет большие заслуги в области моделирования энергосистем, создания и внедрения комплексной защиты и автоматики дальних электропередач напряжением 500 кВ (1964 г.). Им сделан большой вклад в исследование и разработку релейной защиты на интегральных схемах для электропередач напряжением 500–1150 кВ. С 1931 г. вел педагогическую работу в МЭИ, с 1961 по 1973 г. — декан электроэнергетического факультета. При его активном участии в 1943 г. в МЭИ была основана кафедра релейной защиты и автоматизации энергосистем, и многие годы он возглавлял эту кафедру. Автор многочисленных печатных трудов по теории и практике релейной защиты. Его труд «Основы релейной защиты» — ценный вклад в отечественную и мировую электротехническую литературу. A.M. Федосеев был председателем советского национального технического комитета по релейной защите СИГРЭ.

Феррарис Галилео (1847–1897) — итальянский ученый, профессор, член Туринской академии наук. К открытию явления вращающегося магнитного поля (ВМП) он пришел еще в 1885 г., но доклад «Электродинамическое вращение, произведенное с помощью переменных токов» он сделал в Туринской академии наук в 1888 г., т.е. почти одновременно с Н. Теслой. Г. Феррарис разработал теорию переменных токов и в ясной форме объяснил сложные физические процессы. Он показал, что если в двух взаимно перпендикулярно расположенных катушках переменные токи сдвинуты на четверть периода, то конец вектора суммарной магнитной индукции описывает окружность. Если поместить в это поле полый медный цилиндр, снабженный валом и подшипниками, то он начнет вращаться. Г. Феррарис построил модель двухфазного асинхронного двигателя. Для получения двух сдвинутых по фазе токов Г. Феррарис предложил метод «расщепления фаз», что позднее получило практическое применение. Вначале у Г. Феррариса магнитное поле получалось не круговым, а эллиптическим, из-за невыполнения всех условий создания кругового ВМП. При теоретическом анализе Г. Феррарис, находясь в плену «слаботочной техники», предположил, что двигатель должен работать в режиме, согласованном с источником питания, т.е. при максимальной мощности, поэтому КПД двигателя не мог превышать 50%. На этом основании Г. Феррарис считал, что «аппарат … не может иметь какого-либо практического значения». И поэтому использование «этого аппарата» ограничивалось применением в измерительных устройствах. Но именно эта ошибка Г. Феррариса привлекла внимание М.О. Доливо-Добровольского, создавшего первый трехфазный асинхронный двигатель. Позднее за открытие явления вращающегося магнитного поля Г. Феррарис был награжден прусским орденом.

Филиппов Евген (1917–1992 гг.) — ученый в области теоретической электротехники. Родился в г. София (Болгария). В 1936 г. поступил в Берлинский технический университет в Карлоттенбурге, после окончания которого в 1941–1956 гг. занимался исследовательской и научно-организационной работой в Болгарии. С 1957 г. работал в Техническом университете г. Ильменау (Германия), где основал отделение теоретической и экспериментальной электротехники и создал специальность «теоретическая электротехника». Кандидатскую (1957 г.) и докторскую (1972 г.) диссертации Е. Филиппов защитил по проблемам нелинейной электротехники, он автор и соавтор ряда фундаментальных монографий, получивших международное признание.

Флеминг Джон Амброз (1849–1945 гг.) — английский физик, член Лондонского Королевского общества (с 1892 г.), изобретатель вакуумного диода с накаленным катодом. Он предложил использовать его для выпрямления переменного тока, так как прибор оказался чувствительным детектором. Диоду Д.А. Флеминга благодаря ряду последующих конструктивных усовершенствований, предстояла долгая жизнь в радиотехнике.

Флоренский Павел Александрович (1882–1937 гг.) — отечественный ученый-энциклопедист, один из видных представителей мировой науки XX в. Родился в Закавказье в семье инженера-путейца, после блестящего окончания Тифлисской гимназии поступил на физико-математический факультет Московского университета и был оставлен Н.Е. Жуковским на кафедре математики. В то же время поступил в Московскую духовную академию, в 1911 г. принял сан священника и был утвержден доцентом академии, а после успешной защиты магистерской диссертации в 1914 г. стал профессором. До 1920 г. работал в области богословия, был ученым секретарем по охране памятников искусства и старины. Высокообразованный физик, химик и электротехник, он с 1920 г. начал активную деятельность в отечественной электропромышленности сначала в качестве начальника ОТК завода «Карболит», а с 1922 г. сотрудника Главэлектро. Он являлся также организатором и руководителем лаборатории испытания материалов в Государственном экспериментальном электротехническом институте (ныне ВЭИ), а с 1930 по 1932 г. был помощником директора ВЭИ по научной части. Широкую известность приобрели его исследования в области диэлектрикоь, особенно его фундаментальный труд «Диэлектрики и их технические применения» (1924 г.) со многими ценными иллюстрациями и обширнейшей уникальной библиографией. В книге впервые подробно рассмотрены вопросы электропроводности, диэлектрических потерь, электрической прочности диэлектриков. В 1928 г. вышел один из первых трудов по синтетическим смолам — книга П.А. Флоренского «Карболит. Его производство и свойства». В 1927–1933 гг. он был одним из редакторов «Технической энциклопедии», в которую написал 127 статей. Заслуживают внимания его выводы о возможности нетрадиционных источников получения энергии. В 1933 г. по ложному обвинению П.А. Флоренский был арестован и расстрелян в 1937 г. в Соловецком лагере особого назначения.

Франклин Вениамин (Бенджамин) (1706–1790 гг.) — американский ученый, просветитель, государственный деятель. Родился в Бостоне в семье мыловара и был пятнадцатым ребенком в семье. Трудовую деятельность начал еще юношей в типографии, много читал и занимался самообразованием. Он основал первую в Североамериканских колониях публичную библиотеку в Филадельфии. Пенсильванский университет, в 1743 г. Американское философское общество. Его по праву можно считать основоположником науки в Америке; наиболее выдающимися его исследованиями, имевшими мировое значение, были работы по электричеству. Исследованиями электрических явлений он занялся в 1746 г., выписав из Англии электрические приборы. В. Франклин разработал оригинальную теорию электричества, исходя из существования универсальной электрической материи, существующей во всех телах: если тело получает избыток этой материи (например, при трении), то оно заряжается положительным зарядом, а если теряет часть материи, то — отрицательным. Причем тела, наэлектризованные одним знаком электричества, отталкиваются, различными знаками — притягиваются. Важнейшими были его исследования атмосферного электричества, знаменитые опыты с «электрическим змеем», доказавшие электрическую природу молнии (1749–1752 гг.). В. Франклином был усовершенствован молниеотвод, который в простейшем виде применялся еще в древности. Научные заслуги В. Франклина были высоко оценены во всем мире, в 1789 г. он был избран почетным членом Петербургской Академии наук.

Фуко Жан Бернар (1819–1868 гг.) — французский физик, член Парижской академии наук, член-корреспондент Петербургской Академии наук. Поставил известный опыт для доказательства вращения Земли (маятник Фуко), изобрел гироскоп и разработал его теорию. Открыл явление нагревания железных масс, вращаемых в магнитном поле «вихревыми токами» (токи Фуко). Определил (1850 г.) скорость света в воздухе и воде методом, названным его именем. Один из первых применил для научных исследований дуговую лампу.

Хевисайд Оливер (1850–1925 гг.) — английский физик и математик, создатель векторного и операционного исчисления, сделавший огромный вклад в развитие электродинамики. Родился в Лондоне в семье художника. Интерес к электричеству появился у него в связи с тем, что его дальним родственником был Ч. Уитстон — знаменитый английский физик и создатель измерительного моста, носящего его имя. Ч. Уитстон много лет занимался усовершенствованием телеграфии, и не случайно О. Хевисайд начал работать телеграфистом (1870–1874 гг.) и занимался определением скорости передачи сигналов по линии связи. Еще ранее, в 1868 г. в доме отца он оборудовал лабораторию и занялся экспериментами по электричеству. Его первые печатные работы были посвящены точному измерению сопротивлений (1872–1873 гг.). С 1873 по 1876 г. О. Хевисайд опубликовал серию статей, в которых была обоснована возможность дуплексной телеграфии. Вся жизнь О. Хевисайда изменилась после того, как он в 1873 г. случайно увидел и прочитал «Трактат» Д. Максвелла. О. Хевисайд потратил несколько лет, чтобы изучить теорию Д. Максвелла. Но, кроме того, он создал две новые области математической физики — векторное исчисление, включая векторный анализ, и операционное исчисление. Вначале работы О. Хевисайда были встречены с недоверием, он сумел доказать преимущества предложенных им методов для анализа сложных физических явлений. Особенно широкое применение операционное исчисление получило при исследовании переходных процессов. О. Хевисайд еще до Д.Г. Пойнтинга ввел понятие потока электромагнитной энергии и предсказал явление скин-эффекта, обнаруженное позднее Д. Юзом. В 1892 г. вышел из печати двухтомник «Работы по электричеству», содержащий все труды О. Хевисайда до 1891 г., а в 1893 г. был издан первый том его трудов «Электромагнитная теория», в 1899 г. — второй том, в 1912 — третий. В 1900–1902 гг. он подробно исследует поле движущихся зарядов при сверхзвуковой скорости. Своими трудами О. Хевисайд намного опередил свое время, его творческий метод и научные обобщения близки к современным. В 1891 г. он был избран членом Королевского общества, в 1899–1919 гг. почетным членом многих научных электротехнических обществ и институтов Европы и Америки. Ему первому была присуждена почетная медаль Фарадея (1821 г.).

Циперновский Карой (1853–1942 гг.) — венгерский электротехник, директор Будапештского отделения электротехнической фирмы «Ганц и К°», профессор Высшего технического училища и член-корреспондент Венгерской академии наук. Совместно с известными электротехниками О. Блати и М. Дери создал в 1885 г. первые однофазные трансформаторы с замкнутыми шихтованными магнитопроводами современного типа: кольцевой, броневой и стержневой. Заслугой изобретателей явилось внедрение трансформаторов в промышленность: их серийно выпускали на электромашиностроительном заводе в Будапеште. В патентной заявке была подчеркнута важность замкнутого шихтованного магнитопровода особенно для мощных трансформаторов. До конца 1887 г. электротехническая фирма «Ганц и К°» построила 24 установки с однофазными трансформаторами общей мощностью около 3000 кВт. Трансформатор фирмы «Ганц и К°» был установлен на одной из первых русских электростанций переменного тока в Одессе для электрификации нового городского театра (1887 г.). А наиболее мощный трансформатор (1500 кВт) был установлен в Риме в 1886 г. В 1880 г. К. Циперновский изобрел многополюсную динамоэлектрическую машину с цилиндрическим якорем, позволявшую получать как постоянный, так и переменный ток. Он также успешно занимался вопросами электрического освещения.

Чернышев Александр Алексеевич (1882–1940 гг.) — российский ученый-энергетик, академик. После окончания Петербургского политехнического института был оставлен для подготовки к профессорской деятельности. Первая его печатная работа «К вопросу о законе пробоя диэлектриков» (1908 г.) явилась важным исследованием в области техники высоких напряжений. В 1913 г. он защитил диссертацию «Абсолютные измерения в высоковольтных цепях» и получил звание адъюнкта. В 1916 г. он провел важные исследования индуктивного влияния переменных токов железных дорог на линии связи и предложил метод уменьшения этих влияний. С 1918 г. А.А. Чернышев работает во вновь созданном Физико-техническом институте в Петрограде. В 1922 г. он строит опытную установку для телефонной связи между Москвой и Каширской электростанцией, используя линию электропередачи, что было оригинальным техническим решением. К 1928 г. такими же линиями телефонной связи были оборудованы Волховская, Шатурская и другие электростанции. Всеобщее распространение получил созданный А.А. Чернышевым разрядник для защиты линий слабого тока от влияния линий электропередачи. Важнейшим вкладом А.А. Чернышева явились работы по телевидению и радиосвязи, приведшие к разработке первой отечественной системы передачи изображений на расстояние. В процессе исследований в области передачи электроэнергии током высокого напряжения А.А. Чернышев создал высоковольтную лабораторию с каскадом трансформаторов на 1000 кВ, а несколько позже построил опытную линию передачи электроэнергии напряжением 500 кВ. А.А. Чернышев был одним из первых в мире ученых, доказавших преимущества передачи электроэнергии на большие расстояния постоянным током высокого напряжения. В 1932 г. А.А. Чернышев избирается действительным членом АН СССР. Он был основателем и руководителем Комиссии АН СССР по автоматике и телемеханике. В течение многих лет он вел педагогическую деятельность в Ленинградском политехническом институте.

Чиколев Владимир Николаевич (1845–1898 гг.) — российский электротехник. Родился в Смоленской губернии, обучался в кадетском корпусе в Москве, а затем в Александровском военном училище. Увлекшись физикой и электротехникой, покинул училище и поступил вольнослушателем на физико-математический факультет Московского университета, который успешно закончил в 1867 г. Его способности наиболее ярко проявились в Московском высшем техническом училище, куда он поступил в 1870 г. Здесь в 1872 г. он создает первый в мире электродвигатель для швейной машины и усовершенствует конструкции гальванических элементов. На Московской политехнической выставке в 1872 г. изобретения В.Н. Чиколева были удостоены золотой и серебряной медалей. Он принимал активное участие в создании Московского политехнического музея. В 1876 г. В.Н. Чиколев переехал в Петербург и поступил на службу в электротехнический отдел Главного артиллерийского управления, где проработал до конца своих дней. Наибольшую известность в России и за рубежом получила изобретенная В.Н. Чиколевым дуговая электрическая лампа с дифференциальным электромагнитным регулятором (1879–1886 гг.). Создав за это время несколько типов таких ламп, В.Н. Чиколев впервые осуществил принцип электромашинного регулирования. Одним из важных достоинств лампы В.Н. Чиколева было то, что ее световой центр практически не изменялся. Изобретение В.Н. Чиколевым дифференциальных электромагнитных механизмов получило позднее широчайшее применение в автоматике, телемеханике, электроизмерительной технике. Значительная часть исследований В.Н. Чиколева посвящена совершенствованию электрических прожекторов, широко применявшихся в военном деле. В.Н. Чиколев много работал в области электрического освещения и по праву считается одним из основоположников отечественной светотехники. В.Н. Чиколев был выдающимся пропагандистом и популяризатором электротехнических знаний. Он был одним из инициаторов основания электротехнического отдела Русского технического общества и создания специального электротехнического журнала «Электричество» (1880 г.) и был его первым редактором.

Чиликин Михаил Григорьевич (1909–1977 гг.) — российский ученый в области электропривода и организатор высшей школы, профессор, доктор технических наук. С 1935 г. после окончания МЭИ работал на кафедре электрооборудования промышленных предприятий (ныне автоматизированного электропривода), а в 1939 г. был назначен начальником учебного управления МЭИ. Во время Великий Отечественной войны в 1942–1943 гг. работал директором одного из оборонных заводов Москвы. В 1951 г. М.Г. Чиликин был утвержден в звании профессора, а в 1954 г. успешно защитил докторскую диссертацию. С 1951 г. и до конца своих дней М.Г. Чиликин возглавлял кафедру автоматизированного электропривода. С 1952 по 1976 г. М.Г. Чиликин был ректором МЭИ. Из почти 300 книг и статей, опубликованных М.Г. Чиликиным, следует отметить его учебник «Общий курс электропривода», выдержавший шесть изданий и в настоящее время являющийся самым популярным учебным пособием по электроприводу. Он переведен на английский, немецкий, французский, испанский, китайский, чешский и другие языки. Наибольший вклад он внес в разработку теории и создание дискретных электроприводов с шаговыми двигателями. За эти работы ему в 1967 г. была присуждена Государственная премия СССР. В 1960 г. ему присвоено звание «Заслуженный деятель науки и техники РСФСР».

Шателен Михаил Андреевич (1866–1957 гг.) — российский ученый, член-корреспондент АН СССР, заслуженный деятель науки и техники РСФСР, Герой Социалистического Труда. Родился в крепости Анапа (ныне Краснодарский край). В 1884 г. поступил на физико-математический факультет Санкт-Петербургского университета, после окончания которого в 1888 г. за научную работу ему была присвоена степень кандидата физико-математических наук. Его командируют на два года во Францию для совершенствования знаний в области электротехники. Вернувшись в Петербург, он с 1890 по 1892 г. работал ассистентом на кафедре физики университета, а также занимался научной работой по магнетизму. С 1893 г. М.А. Шателен — профессор кафедры электротехники в Санкт-Петербургском электротехническом институте. Он был первым профессором электротехники в России, совмещавшим педагогическую деятельность с научными исследованиями в области электротермии и электрического освещения. В 1901 г. он был приглашен в качестве профессора электротехники во вновь организуемый Санкт-Петербургский политехнический институт, где он вскоре стал деканом электромеханического факультета. В 1901 г. вышел в свет учебник М.А. Шателена «Курс электротехники», выдержавший пять изданий и получивший широкую известность. В 1910–1911 гг. он организовал при институте высоковольтную лабораторию и устроил в ней опытную линию передачи высокого напряжения. В 1919 г. он избирается ректором Политехнического института, а с 1920 г. принимает активное участие в работе Комиссии ГОЭЛРО в качестве уполномоченного по Северному региону России. В 1920–1930 гг. он представляет нашу страну на многих международных съездах и конференциях по электротехнике, светотехнике, сетям высокого напряжения. Он был членом совета Международной электротехнической комиссии, членом Международного комитета мер и весов. В 1931 г. участвовал в организации Энергетического института АН СССР В 1946–1950 гг. руководил работами по развитию энергоснабжения Ленинграда и районов Северо-запада СССР. В 1951 г. участвовал в организации Всесоюзного научно-исследовательского светотехнического института. Широкую известность получили многочисленные учебники и учебные пособия по электротехнике, статьи и монографии по истории электротехники и электрификации страны, написанные М.А. Шаге леном.

Шенфер Клавдий Ипполитович (1885–1946 гг.) — российский ученый, профессор, академик АН СССР (1932 г.), один из создателей отечественной школы электромеханики. Родился в Ковенской губернии в семье железнодорожного машиниста. После окончания Краснодарской гимназии (1903 г.) он поступил в Варшавский политехнический институт, но через два года перевелся на механический факультет Московского высшего технического училища (МВТУ), где профессором К.А. Кругом была создана электротехническая специализация. Еще будучи студентом, он участвует в подготовке новых лабораторных работ и даже выполняет отдельные задания промышленных предприятий. После успешного окончания МВТУ К.И. Шенфер по представлению К.А. Круга остается в качестве лаборанта электротехнической лаборатории, где начинает свои первые серьезные исследования по электрическим машинам постоянного тока, завершившиеся публикациями в журнале «Электричество». В 1911 г. К.И. Шенфер командируется в г. Карлсруэ (Германия), где в те годы сложилась известная в Европе научная школа в области электромашиностроения. После полуторагодичной командировки молодой ученый начинает преподавать курс электрических машин, а в 1917 г. избирается профессором. К.И. Шенфер принимал активное участие в претворении в жизнь плана ГОЭЛРО, его учебники по электрическим машинам выдержали множество изданий. Он является изобретателем электромашинного преобразователя и автором более 40 изобретений и 125 научных трудов. С 1930 по 1938 г. К.И. Шенфер — заведующий кафедрой электрических машин Московского энергетического института. Он также возглавлял машинно-аппаратный отдел Всесоюзного электротехнического института.

Шиллинг Павел Львович (1786–1837 гг.) — выдающийся российский ученый в области электротехники и создатель первого в мире электромагнитного телеграфа. Родился в г. Ревеле (ныне Таллинн) в семье военного. В 1802 г. окончил Первый кадетский корпус в Санкт-Петербурге и был направлен в Генеральный штаб. В 1803 г. оставляет военную службу и переводится в Коллегию иностранных дел с назначением на должность переводчика при русском посольстве в Мюнхене. После поездки в Вену и Париж П.Л. Шиллинг знакомится с Земмерингом, изобретателем (1809 г.) электрохимического телеграфа, и помогает ему в исследованиях. Возвратись в Санкт-Петербург, П.Л. Шиллинг в 1812 г. изобрел электрический запал для взрывания подводных мин на р. Неве, а в 1815 г. демонстрировал запал в Париже на р. Сене. Заинтересовавшись электрохимическим телеграфом, П.Л. Шиллинг начал исследования по созданию электромагнитного телеграфа и в 1828–1832 гг. разработал его конструкцию и создал оригинальный телеграфный код, позволявший с помощью восьми проводов связывать передающую и приемную станции. Наибольшее применение получил шестистрелочный телеграф. В 1835 г. П.Л. Шиллинг приступил к прокладке стационарной телеграфной линии, предназначенной для длительной эксплуатации. Он был первым, кто предложил идею прокладки телеграфных проводов по столбам на изоляторах. Он мечтал протянуть телеграфные линии между Санкт-Петербургом и Москвой. По указу императора П.Л. Шиллинг приступил к прокладке линии между Санкт-Петербургом и Кронштадтом, но внезапная смерть помешала ему осуществить свои идеи. В 1827 г. он был избран членом-корреспондентом Петербургской Академии наук. П.Л. Шиллинг был близко знаком с А.С. Пушкиным и другими видными деятелями отечественной культуры.

Шрамков Евгений Георгиевич (1894–1991 гг.) — российский ученый в области измерительной техники, доктор технических наук, заслуженный деятель наукй и техники РСФСР. Е.Г. Шрамков был профессором Петербургского политехнического института, ас 1929 г. заведующим основанной им кафедрой электрических измерений. В 1937 г. под его редакцией вышел фундаментальный курс «Электрические и магнитные измерения». В 1966 г. Е.Г. Шрамков выступил инициатором создания новой специальности «Информационно-измерительная техника». Он координировал и направлял методическую деятельность всех вузов страны, где имелась эта специальность. Наряду с педагогической деятельностью Е.Г. Шрам ков участвовал в становлении и развитии научной метрологии. В 1922 г. он начал работу в Главной палате мер и весов (в дальнейшем ВНИИМ им. Д.И. Менделеева), в 1927 г. возглавил лабораторию магнитных измерений, в 1946 г. — отдел электромагнитных измерений. В 30–50-е годы под руководством Е.Г Шрам ко ва создано первое поколение эталонов единиц электрических и магнитных величин. На протяжении многих лет он представлял отечественную метрологию за рубежом, участвуя в работе Консультативного комитета по электричеству Международного комитета мер и весов, Комитета по терминологии в области измерительной техники. В 1948 г. Е.Г. Шрамков создал в Ленинграде научно-техническое общество приборостроительной промышленности, председателем которого был почти два десятилетия.

Штейнмец Чарлз Протеус (1865–1923 гг.) — американский ученый-электротехник. Родился в г. Бреслау в семье небогатого силезского ремесленника. После блестящего окончания гимназии он поступил в Бреславский университет. Он был активным членом Математического общества, посещал научные семинары физиков и экономистов. В 1887 г., когда Ч.П. Штейнмец заканчивал работу на соискание степени доктора философии, он покинул Германию и выехал в Швейцарию, чтобы завершить свое образование в известном Цюрихском политехникуме — одной из лучших высших технических школ в мире. В политехникуме Ч.П. Штейнмец познакомился с американским электротехником и после окончания учебы (1889 г.) уехал в Америку, где поступил на работу на механический завод, который изготовлял электрические машины, и заинтересовался вопросами, связанными с магнитными свойствами стали. В 1890 г. Ч.П. Штейнмец стал участвовать в работах Американского института инженеров-электриков. Хорошо зная теоретическую -электротехнику, Ч.П. Штейнмец все более увлекался электрическими машинами и трансформаторами и занялся проблемой сильного нагрева электрических машин. Очень быстро он установил причины нагрева и рекомендовал снизить потери в стали, вызываемые ее перемагничиванием. Он предложил эмпирическую формулу для определения потерь на гистерезис. Другим вкладом в электротехнику явилась разработка Ч.П. Штейнмецем символического метода (метода комплексных величин), который в наши дни является основным для расчета цепей переменного тока. Примененный им метод позволил заменить сложные геометрические операции над векторами алгебраическими операциями с комплексными числами. По отзывам современников это был огромный вклад Ч.П. Штейнмеца в электротехнику. Он увлекался и многими другими проблемами, в частности электрическим освещением. Когда Ч.П. Штейнмец узнал об утверждении в России плана ГОЭЛРО, он его воспринял с воодушевлением и опубликовал в известном американском журнале основные положения этого плана.

Щедрин Николай Николаевич (1891–1975 гг.) — российский ученый, доктор технических наук, профессор, член-корреспондент АН УзССР, специалист в области расчета токов короткого замыкания, устойчивости энергосистем и дальних электропередач. Он разработал оригинальный метод исследования несимметричных режимов синхронной машины посредством построения цепочечных схем замещения, впервые провел полное исследование процессов короткого замыкания и устойчивости синхронных машин с последовательно включенным конденсатором. За ним сохраняется неоспоримый приоритет в теоретическом исследовании влияния качаний генераторов на значения токов короткого замыкания и работу дистанционной защиты. Ему принадлежит заслуга в развитии метода симметричных составляющих в теории электрических цепей и его применении для решения многих практических задач. Н.Н. Щедрин работал в Ленинградском и Среднеазиатском политехнических институтах. С 1958 г. и до конца жизни он являлся научным руководителем Института постоянного тока. Он внес большой творческий вклад в решение проблем передачи электрической энергии постоянным и переменным токами.

Эдисон Томас Алва (1847–1931 гг.) — выдающийся американский электротехник-изобретатель. Более 65 лет жизни он посвятил изобретению и внедрению в практику многих десятков оригинальных устройств, приборов и систем в области телеграфии, телефонии, электрического освещения, электроэнергетики, электромашиностроения, приборостроения и кинематографа. Только с 1869 по 1910 г. он получил 1300 патентов в США и 3000 патентов в других странах. Т.А. Эдисон родился в семье торговца. В 15 лет обучился телеграфному делу. В 1869 г. он запатентовал одно из первых своих изобретений — телеграфный прибор для быстрой передачи информации о смене биржевых курсов и на полученные деньги открыл электротехническую и телеграфную мастерскую. В 1876 г. он построил близ Нью-Йорка специальный научно-производственный центр с хорошо оборудованной лабораторией. Мировую славу Т.А. Эдисону принесла электрическая лампа накаливания, которую он усовершенствовал в 1879 г., придав ей почти современный вид. Ему принадлежит заслуга в изобретении цоколя и патрона, выключателей и плавких предохранителей, а также счетчика электроэнергии. Он построил первый электроламповый завод> и лампа получила массовое распространение. Т.А. Эдисон создал первую в мире электростанцию общественного пользования в Нью-Йорке (1882 г.) со всем необходимым оборудованием. Он изобрел несколько типов электрических генераторов с шихтованным якорем, сумел усовершенствовать телефон и создал новый аппарат — фонограф, вызвавший интерес во всем мире. В 1889 г. на Международной электротехнической выставке в Париже Т.А. Эдисон был награжден орденом Почетного легиона и итальянским орденом Короны. Он стоял у истоков кинематографа: в 1889 г. с успехом применил целлулоидную пленку вместо стеклянных пластин и создал киносъемочную камеру с синхронным озвучиванием изображения. ТА. Эдисон был членом многих научных обществ в мире, в том числе почетным членом Академии наук СССР (1930 г.). В 1909 г. в США была учреждена Золотая медаль имени Эдисона.

Эпинус Франц Ульрих (1724–1802 гг.) — известный физик. Родился в Германии. Будучи членом Берлинской академии наук в 1757 г. принял приглашение Петербургской Академии наук, и нашел в России вторую родину, принял русское подданство и проработал в новом отечестве 45 лет до конца своих дней. В 1759 г. в Петербурге вышел его фундаментальный труд «Опыт теории электричества и магнетизма», переведенный на русский язык и изданный в издательстве АН СССР в 1951 г. Важнейшей заслугой Ф.У. Эпинуса является его утверждение о связи между электрическими и магнитными явлениями. В труде Ф.У. Эпинуса впервые применены математические расчеты для характеристики взаимодействия заряженных тел. Задолго до Ш. Кулона он высказал предположение о том, что силы взаимодействия электрических и магнитных зарядов изменяются обратно пропорционально квадрату расстояния между ними. Ф.У. Эпинусом была высказана правильная мысль о законе сохранения количества электричества. В своем труде Ф.У. Эпинус впервые описал сущность и проявление электростатической индукции и экспериментально обнаружил поляризацию диэлектриков. Ф.У. Эпинус первым из ученых создал воздушный конденсатор и близко подошел к понятию потенциала и емкости. Проводя в 1752 г. опыты по нагреванию и охлаждению кристаллов турмалина, он обнаружил образование разноименных статических зарядов — это явление позднее получило название «пироэлектричества». Труды Ф.У. Эпинуса получили высокую оценку А. Вольта, ILL Кулона и других крупнейших ученых XVIII в.

Эрстед Ханс Кристиан (1777–1851 гг.) — датский физик, профессор Копенгагенского университета, первым убедительно доказал связь между электрическими и магнитными явлениями. Родился в семье аптекаря, окончил медицинский факультет Копенгагенского университета и уже в возрасте 22 лет стал доктором философии. Занимаясь философией Х.К. Эрстед пришел к выводу о существовании связей между теплотой, светом, электричеством и магнетизмом. В 1820 г. во время лекции студентам Х.К. Эрстед демонстрировал способность электрического тока нагревать проволоку. Рядом с проволокой случайно оказался компас, и Г.Х. Эрстед обнаружил отклонение его стрелки. Это было подтверждением давней догадки ученого о связи электричества и магнетизма. Он срочно публикует брошюру «Опыты, касающиеся действия электрического конфликта на магнитную стрелку». Следует отметить, что, говоря о действии «электрического конфликта», Х.К. Эрстед заблуждался, полагая, что в проводнике происходит встречное движение положительной и отрицательной «электрической материи», но его заслуга заключается в том, что он считал это движение в проводнике не ограничивающимся проводящей проволокой, а имеющим обширную сферу активности вокруг проволоки. «Этот конфликт образует вихрь вокруг проволоки». Этим «вихрем» было нечто иное, как проявление магнитного поля вокруг проводника, и стрелка компаса отклонялась в разные стороны в зависимости от того, располагался компас над проволокой или под нею.

Эру Поль Луи Туссен (1863–1914 гг.) — французский ученый. Окончил Горную школу в Париже. В 1886 г. разработал способ получения алюминия электролизом криолитно-глиноземных расплавов, реализованный в промышленности (завод в г. Нейхаузене, Швейцария, 1888 г.). Одновременно в США это сделал Ч. Холл. Разработал электролитические способы получения алюминиевых сплавов и конструкции электропечей для этих целей. С 1899 г. он директор алюминиевого завода в г. Фроже (Франция). В 1898–1899 гг. разработал электрическую дуговую печь прямого действия (так называемая печь Эру) для выплавки стали. Первый вагон стали, полученный в дуговой электропечи, был отгружен 12 декабря 1900 г. Это день рождения промышленного производства электростали. Основные принципы конструкции дуговой сталеплавильной печи, созданной П.Л.Т. Эру, остались неизменными до нашего времени. Он разрабатывал процессы получения ферросплавов: ферровольфрама и феррохрома, получил на конструкцию руднотермической печи патенты США (1887–1888 гг.).

Яблочков Павел Николаевич (1847–1894 гг.) — выдающийся российский изобретатель-электротехник, создатель знаменитой «электрической свечи», вызвавшей бурное развитие многих новых отраслей электротехники. Родился в обедневшей помещичьей семье, окончил в 1866 г. Петербургское военно-инженерное училище. Затем получил специальное электротехническое образование в Петербургском техническом гальваническом заведении, готовившем военных инженеров. Увлекшись электрическим освещением, он решил отказаться от ранее существовавших электрических ламп с регулятором расстояния между угольными электродами по мере сгорания вследствие их ненадежности и дороговизны. П.Н. Яблочков пришел к гениально простой конструкции лампы: расположить электроды параллельно, расстояние между ними не изменять и регулятор не нужен. Но находясь в затруднительном денежном положении, он был вынужден покинуть Россию и запатентовать свою «свечу» в Париже. При поддержке французских предпринимателей П.Н. Яблочкову удалось наладить выпуск простых дешевых ламп, которые называли «русским светом». Лампы освещали площади и помещения больших городов Европы и даже Азии. Имя П.Н. Яблочкова стало известно всему миру. Вскоре П.Н. Яблочков запатентовал несколько систем «дробления» электрической энергии, в том числе посредством индукционных катушек, ставших первыми трансформаторами; он внедрил в практику переменный ток, а в 1879 г. впервые высказал идею о централизованном производстве электрической энергии на «заводах» и распределение ее между потребителями подобно газу и воде. Его лампы с триумфом демонстрировались на международных выставках, и за особые заслуги он был награжден высшим французским орденом Почетного легиона и почетной медалью Российского технического общества. П.Н. Яблочковым были разработаны различные конструкции электрических генераторов, аккумуляторов и приборов. Находясь в ореоле славы, П.Н. Яблочков мечтал внедрить свое изобретение в России и заплатил французской компании все свои сбережения за право пользоваться лампой. Неимоверный труд серьезно подорвал здоровье П.Н. Яблочкова, и в 1894 г. в Саратовской гостинице он скончался в расцвете сил.

Якоби Борис Семенович (1791–1874 гг.) — выдающийся российский электротехник. Родился в Потсдаме в семье коммерсанта, получил хорошее домашнее образование, а в 1829 г. окончил Геттингентский университет и получил диплом архитектора. Вскоре он переезжает в Кенигсберг, где знакомится с известными учеными университета математиком Ф. Бесселем и физиком Ф. Нейманом. Дружба с Ф. Нейманом, автором математических исследований проблем электромагнетизма, оказала решающее влияние на всю творческую жизнь Б.С. Якоби. Изучив работы М. Фарадея, Д. Генри и др., Б.С. Якоби в 1834 г. конструирует электродвигатель с вращательным движением П-образных электромагнитов и оригинальным коммутатором для изменения их полярности. Сообщение о своем изобретении он послал в Парижскую академию наук, и оно было опубликовано. Труды Б.С. Якоби получили высокую оценку, и ему была присуждена в 1835 г. ученая степень доктора философии Кенигсбергского университета. Вскоре Б.С. Якоби получает приглашение занять должность профессора в Дерптском университете, и переезжает в Россию. В хорошо оборудованной физической лаборатории университета он производит ряд успешных экспериментов по усовершенствованию гальванических элементов. Здесь же в 1836 г. он открывает явление гальванопластики, получившей широкое распространение. В 1837 г. Б.С. Якоби переезжает в Санкт-Петербург и начинает работать с академиком Санкт-Петербургской Академии наук Э.Х. Ленцем, оказавшим ему помощь в работе над усовершенствованием двигателя. Б.С. Якоби создал электродвигатель с расположенными в одной плоскости подвижными и неподвижными электромагнитами. Затем на Ижорском заводе был изготовлен более мощный электродвигатель. В 1838 г. первый в мире «электрический бот» Б.С. Якоби — восьмивесельная шлюпка — двигался по Неве против течения со скоростью около трех верст в час. За большие заслуги в научной деятельности Б.С. Якоби в 1838 г. избирается членом-корреспондентом, а в 1847 г. академиком Петербургской Академии наук. В поисках наиболее надежного электрического генератора Б.С. Якоби в 1842 г. создает магнитоэлектрический генератор, получивший широкое применение для взрывания электрических мин. Продолжая работы П.Л. Шиллинга, Б.С. Якоби в период 1839–1845 гг. конструирует несколько типов телеграфов.


13.2. КРАТКИЕ СВЕДЕНИЯ ОБ АКАДЕМИКАХ И ЧЛЕНАХ-КОРРЕСПОНДЕНТАХ АН СССР И РАН, ЯВЛЯЮЩИХСЯ ПОЧЕТНЫМИ И ДЕЙСТВИТЕЛЬНЫМИ ЧЛЕНАМИ АКАДЕМИИ ЭЛЕКТРОТЕХНИЧЕСКИХ НАУК РФ (АЭН РФ)

13.2.1. Академики РАН

Глебов Игорь Алексеевич — специалист в области исследования электромагнитных процессов в крупных электрических машинах и системах возбуждения, прикладной сверхпроводимости и криогенной техники, Герой Социалистического Труда, лауреат Государственной премии СССР, Государственной премии Украины, премии им. П.Н. Яблочкова АН СССР, заслуженный деятель науки и техники России, награжден орденами Ленина, Октябрьской Революции, Трудового Красного Знамени, Дружбы народов. Родился 21 января 1914 г., в 1964 г. защитил докторскую диссертацию «Системы возбуждения мощных турбо- и гидрогенераторов», в 1974 г. избран членом-корреспондентом, а в 1976 г. — академиком АН СССР. В настоящее время — директор НИИэлектромаш, президент Союза ученых, инженеров и специалистов Санкт-Петербурга и Ленинградской области. Участник ВОВ, награжден орденами Александра Невского, Красного Знамени, Красной Звезды и двумя орденами Отечественной войны I степени.

Глухих Василий Андреевич — специалист в области разработки элементов и систем термоядерной энергетики, электроустановок с жидко-металлическим рабочим телом, локальной и малой энергетики, лауреат Ленинской и Государственной премий СССР и Государственной премии России. Родился 10 февраля 1929 г., в 1966 г. защитил докторскую диссертацию по исследованию и основам проектирования магнитогидродинамических машин с жидкометаллическим рабочим телом. В 1981 г. избран членом-корреспондентом, а в 1987 г. — академиком АН СССР. В настоящее время директор НИИ электрофизической аппаратуры, заведующий кафедрой Санкт-Петербургского государственного технического университета, председатель научного совета РАН по мощной импульсной энергетике, член президиума Санкт-Петербургского научного центра РАН.

Данилевич Януш Брониславович — специалист в области малой энергетики, систем энергоснабжения и диагностики, лауреат премии им. П.Н. Яблочкова АН СССР. Родился 6 декабря 1931 г., в 1974 г. защитил докторскую диссертацию «Добавочные потери в турбо- и гидрогенераторах», в 1987 г. избран членом-корреспондентом АН СССР, в 1997 г. — академиком РАН. В настоящее время директор Отдела электроэнергетических проблем РАН, профессор Санкт-Петербургского государственного технического университета, член бюро Отделения физико-технических проблем энергетики РАН, заместитель председателя президиума Дома ученых РАН в Санкт-Петербурге, президент Ассоциации инженеров-электриков, член редколлегии журнала «Электричество».

Демирчян Камо Серопович — специалист в области теоретической электротехники, общей энергетики, вычислительной математики и информатики, лауреат Государственной премии СССР и премии им. П.Н. Яблочкова РАН. Родился 25 октября 1928 г., в 1968 г. защитил докторскую диссертацию «Моделирование и расчет магнитных полей в электроэнергетических устройствах». В 1976 г. избран членом-корреспондентом, а в 1984 г. — академиком АН СССР. В настоящее время заместитель академика-секретаря Отделения физико-технических проблем энергетики РАН, заведующий кафедрой Московского энергетического института (технического университета), председатель научного совета РАН по электрофизике, электроэнергетике и электротехнике, главный редактор журнала «Известия РАН. Энергетика».

Бвтихиев Николай Николаевич — специалист в области информационно-измерительной техники и прикладной информатики, заслуженный деятель науки и техники, Герой Социалистического Труда, награжден орденами Ленина, За заслуги перед отечеством III-й степени, Трудового Красного Знамени. Родился 16 октября 1922 г., в 1973 г., защитил докторскую диссертацию, в 1979 г. избран членом-корреспондентом, а в 1987 г. — академиком АН СССР. В настоящее время президент Московского государственного института радиотехники, электроники и автоматики (технического университета), член комиссии РАН по связям с высшей школой.

Емельянов Станислав Васильевич — специалист в области теории управления нелинейными неопределенными системами, системного анализа и информационных систем, лауреат Ленинской премии и трех Государственных премий, награжден орденами Октябрьской Революции и Дружбы народов. Родился 18 мая 1929 г., в 1963 г. защитил докторскую диссертацию «Основные положения теории и принципы построения систем автоматического управления с переменной структурой», в 1970 г. избран членом-корреспондентом, а в 1984 г. — академиком АН СССР. В настоящее время академик-секретарь Отделения информатики, вычислительной техники и автоматизации РАН, директор Международного научно-исследовательского института проблем управления, директор Института системного анализа РАН, член президиума Государственного высшего аттестационного комитета России, член Комитета по Государственным премиям России.

Журавлев Юрий Иванович — специалист в области математики, распознавания образов, обработки изображений, исследования операций, лауреат Ленинской премии и премии Совета Министров СССР. Родился 14 января 1925 г., в 1965 г. защитил докторскую диссертацию «Локальные алгоритмы вычисления информации», в 1984 г. избран членом-корреспондентом АН СССР, а в 1992 г. — академиком РАН. В настоящее время председатель научного совета (с правами института) по кибернетике РАН, заместитель директора Вычислительного центра РАН, заведующий кафедрой в МГУ, председатель экспертного совета Российского фонда фундаментальных исследований.

Маслов Виктор Павлович — специалист в области математической физики, лауреат Ленинской и Государственной премий СССР, Государственной премии России, награжден медалью им. A.M. Ляпунова РАН. Родился 15 июня 1930 г., в 1966 г. защитил докторскую диссертацию «Теория возмущений и асимптотические методы», в 1984 г. был избран академиком АН СССР. В настоящее время профессор Московского института электроники и математики, заведующий кафедрой в Московском государственном университете, главный редактор журнала «Математические заметки».

Месяц Геннадий Андреевич — специалист в области явления взрывной электронной эмиссии, исследования закономерностей воздействия внешнего ионизирующего излучения на процессы развития импульсных разрядов высокого давления в сильно перенапряженных газовых промежутках, лауреат Государственных премий СССР и России, премии Совета министров СССР, премии Ленинского комсомола. Родился 28 февраля 1936 г., в 1968 г. защитил докторскую диссертацию «Исследования по генерированию наносекундных импульсов больших мощностей», в 1979 г. избран членом-корреспондентом, а в 1984 г. — академиком АН СССР. В настоящее время вице-президент РАН, директор Института электрофизики Уральского отделения РАН, в 1993 г. стал основателем Демидовского научного фонда, председатель совета РАН по экспортному контролю.

Мизин Игорь Александрович — специалист в области теории и практики построения крупномасштабных информационно-вычислительных сетей передачи и защиты информации на базе новых информационных технологий, лауреат Ленинской и Государственной премий. Родился 12 апреля 1935 г., в 1972 г. защитил докторскую диссертацию, в 1984 г. избран членом-корреспондентом АН СССР, а в 1997 г. — академиком РАН. В настоящее время директор Института проблем информатики РАН, заведующий кафедрами в Московском институте радиотехники, электроники и автоматики и в Московском техническом университете связи и информатики, председатель научного совета РАН по информационно-вычислительным сетям, член Государственной комиссии по информатизации, член научно-технического совета в Минэкономике.

Новиков Иван Иванович — специалист в области изучения теплофизических свойств веществ, термодинамики, электрохимических генераторов, награжден орденами Ленина, Трудового Красного Знамени, двумя орденами «Знак Почета». Родился 28 января 1916 г., в 1948 г. защитил докторскую диссертацию по термодинамике необратимых процессов, в 1958 г. избран членом-корреспондентом АН СССР, а в 1992 г. — академиком РАН. В настоящее время советник РАН в Институте металлургии им. А.А. Байкова, член Международного оргкомитета Европейской теплофизической конференции, председатель секции научного совета РАН по теплофизике и теплотехнике.

Патон Борис Евгеньевич — специалист в области электросварки. Родился в 1918 г., в 1941 г. окончил Киевский индустриальный институт и стал сотрудником Института электросварки (ИЭС) АН УССР, в 1950–1953 гг. он заместитель директора ИЭС, а с 1953 г. директор. В 1958 г. избран академиком АН СССР, а в 1962 г. — президентом АН Украины. Б.Е. Патон — лауреат Ленинской и Государственной премий. Под руководством Б.Е. Патона в 50-х годах разработан новый способ электросварки — электрошлаковая сварка, которая позволяет сваривать детали практически неограниченной толщины. На Всемирной выставке в Брюсселе в 1958 г. этот способ удостоен высшей премии — «Гран-при». Позднее предложил использовать электрошлаковый переплав в специальной электрометаллургии при производстве качественных сталей. Под руководством Б.Е. Патона созданы первые в мире электрошлаковые печи, которые в 1958 г. введены в эксплуатацию на заводе «Днепроспецсталь» и Новокраматорском машиностроительном заводе. Большой вклад внесен им также в развитие новых методов сварки: электронно-лучевой, плазменной и др. и использовании этих методов в спецметаллургии.

Тиходеев Николай Николаевич — специалист в области техники высоких, сверх- и ультравысоких напряжений, техники передачи электрической энергии, лауреат Государственной премии СССР и премии им. П.Н. Яблочкова РАН, заслуженный член СИГРЭ, старший член IEEE (Института инженеров электриков и электронщиков, США). Родился 7 декабря 1927 г., в 1966 г. защитил докторскую диссертацию по статической координации изоляции линий электропередачи высокого класса напряжений, в 1979 г. избран членом-корреспондентом АН СССР, а в 1992 г. — академиком РАН. В настоящее время научный руководитель отдела Научно-исследовательского института постоянного тока, ведущий научный сотрудник Отдела электроэнергетических проблем РАН, профессор Санкт-Петербургского государственного технического университета, член редколлегии журналов «Известия РАН. Энергетика» и «Техническая физика».

Фаворский Олег Николаевич — специалист в области разработки и исследования газотурбинных двигателей и установок теплообмена и горения, лауреат Ленинской премии, награжден орденом «Знак Почета». Родился 27 января 1929 г., в 1966 г. защитил докторскую диссертацию «Космические электрореактивные двигательные установки», в 1981 г. избран членом-корреспондентом, а в 1990 г. — академиком АН СССР. В настоящее время академик-секретарь Отделения физико-технических проблем энергетики РАН, заместитель директора Центрального института авиационного моторостроения, вице-президент Академии авиации и воздухоплавания, вице-президент Международной энергетической академии.

Шереметьевский Николай Николаевич — специалист по космической электромеханике и системам ориентации космических станций на базе силовых гироскопов-гиродинов, заслуженный деятель науки и техники, лауреат Ленинской и двух Государственных премий, Герой Социалистического Труда, награжден двумя орденами Ленина, орденами Октябрьской Революции и Трудового Красного Знамени. Родился 5 ноября 1916 г., в 1959 г. защитил докторскую диссертацию «Электрооборудование баллистических ракет и ракетоносителей космических аппаратов», в 1979 г. избран членом-корреспондентом, а в 1984 г. — академиком АН СССР. В настоящее время советник генерального директора Научно-производственного предприятия «Всероссийский научно-исследовательский институт электромеханики», заведующий кафедрой Московского института радиотехники, электроники и автоматики (технического университета), член бюро Отделения информатики, вычислительной техники и автоматики РАН.

13.2.2. ЧЛЕНЫ-КОРРЕСПОНДЕНТЫ РАН

Александров Георгий Николаевич — специалист в области передачи электроэнергии переменным током, электрических аппаратов высокого напряжения, разряда в газах, полимерной изоляции, награжден орденом «Знак Почета». Родился 7 января 1930 г., в 1967 г. защитил докторскую диссертацию «Коронный и искровой разряды в электрических сетях», в 1991 г. избран членом-корреспондентом РАН. В настоящее время заведующий кафедрой Санкт-Петербургского государственного технического университета, главный научный сотрудник Отдела электроэнергетических проблем РАН, член редколлегий журналов «Электричество» и «Известия вузов. Энергетика».

Батенин Вячеслав Михайлович — специалист в области физики газового разряда и низкотемпературной плазмы, новых технологий комплексного использования ископаемого топлива и производства электроэнергии, награжден орденами «Знак Почета» и Трудового Красного Знамени. Родился 12 марта 1939 г., в 1975 г. защитил докторскую диссертацию «Сверхвысокочастотные разряды и непрерывное излучение плотной низкотемпературной плазмы», в 1987 г. избран членом-корреспондентом АН СССР. В настоящее время директор Объединенного института высоких температур РАН, профессор Московского физико-технического института, вице-президент Международной топливно-энергетической ассоциации, член бюро Отделения физико-технических проблем РАН, председатель научного совета РАН по методам прямого преобразования видов энергии.

Вершинин Юрий Николаевич — специалист в области физики диэлектриков, сильных полей, материаловедения, лауреат Государственной премии СССР, награжден орденами Октябрьской Революции и Трудового Красного Знамени. Родился 10 января 1932 г., в 1968 г. защитил докторскую диссертацию «Энергетический анализ импульсной электрической прочности твердых диэлектриков», в 1987 г. избран членом-корреспондентом АН СССР. В настоящее время заведующий лабораторией Института электрофизики Уральского отделения (УрО) РАН, профессор Уральского государственного технического. университета, член президиума УрО РАН.

Волков Эдуард Петрович — специалист в области процессов пиролиза, газификации, горения энергетических топлив, снижения вредных выбросов тепловых электростанций, стратегии развития электроэнергетики России, лауреат Государственной премии СССР и премии Совета Министров СССР, награжден орденом «Знак Почета». Родился 18 июля 1938 г., в 1979 г. защитил докторскую диссертацию «Контроль загазованности атмосферы выбросами тепловых электростанций», в 1997 г. избран членом-корреспондентом РАН. В настоящее время генеральный директор Энергетического института им. Г.М. Кржижановского, заведующий кафедрой МЭИ, генеральный директор российско-американской компании «Экоэнергетика», член Мирового энергетического совета и Московского международного энергетического клуба.

Диденко Андрей Николаевич — специалист в области физики сильноточных пучков, ускорителей заряженных частиц, физической электроники и релятивисткой СВЧ-электроники, СВЧ-энергетики, награжден орденом Трудового Красного Знамени. Родился 5 января 1932 г., в 1966 г. защитил докторскую диссертацию «Теоретические и экспериментальные исследования волновых синхротронов», в 1984 г. избран членом-корреспондентом АН СССР. В настоящее время заместитель академика-секретаря Отделения физико-технических проблем РАН, заведующий кафедрой Московского инженерно-физического института.

Дьяков Анатолий Федорович — специалист в области человеко-машинных систем в энергетике, надежности электроэнергетических систем, проблем снижения отрицательного влияния энергетических объектов на окружающую среду, награжден орденами Октябрьской Революции и Трудового Красного Знамени. Родился 10 ноября 1936 г., в 1989 г. защитил докторскую диссертацию, в 1994 г. избран членом-корреспондентом РАН. В настоящее время президент корпорации «Единый электроэнергетический комплекс», заведующий кафедрой Московского энергетического института, президент Международной энергетической академии, председатель Российского национального комитета СИГ-РЭ, главный редактор журналов «Энергетик» и «Вестник электроэнергетики».

Клюев Владимир Владимирович — специалист в области неразрушающего контроля и технической диагностики, лауреат Государственной премии России и премии Совета Министров СССР, награжден двумя орденами Красного Знамени и орденом Дружбы народов. Родился 2 января 1937 г., в 1972 г. защитил докторскую диссертацию «Исследование электромагнитных методов и разработка комплекса приборов для неразрушающего контроля дефектов, толщины и смещения изделий в процессе производства и технологических испытаний», в 1977 г. избран членом-корреспондентом АН СССР В настоящее время генеральный директор МНПО «Спектр», президент Российского общества по неразрушающему контролю и технической диагностике, президент делового клуба научно-технических организаций прикладной науки «Русский инженер».

Коровин Сергей Константинович — специалист в области теории обратной связи, нелинейного анализа, оптимизации, лауреат премии Совета Министров СССР и Государственной премии России. Родился 24 мая 1945 г., в 1984 г. защитил докторскую диссертацию «Системы управления с автоматически регулируемыми связями», в 1994 г. избран членом-корреспондентом РАН. В настоящее время профессор МГУ, заведующий лабораторией в Институте системного анализа РАН, заместитель главного редактора журнала «Дифференциальные уравнения».

Костенко Михаил Владимирович — специалист в области электромагнитной экологии, техники высоких напряжений, волновых процессов в системах с нелинейными, частотно-зависимыми и линейными распределенными и сосредоточенными параметрами, лауреат премии им. П.Н. Яблочкова АН СССР Родился 28 сентября 1912 г., в 1953 г. защитил докторскую диссертацию «Волновые процессы в воздушных линиях высокого напряжения», в 1962 г. избран членом-корреспондентом АН СССР. В настоящее время профессор-консультант в Санкт-Петербургском государственном техническом университете, главный научный сотрудник Отдела электроэнергетических проблем РАН, член президиума научного совета РАН по электрофизике, электроэнергетике и электротехнике.

Ли Доренко Николай Степанович — специалист в области физики и технологии безмашинных способов производства электричества, теории плазменных состояний жидких, твердых и газообразных сред и их сопряжений, Герой Социалистического Труда, лауреат Ленинской и двух Государственных премий, награжден тремя орденами Ленина, орденом Октябрьской Революции, тремя орденами Трудового Красного Знамени, золотой и серебряной медалью им. Петра I. Родился 2 апреля 1916 г., в 1956 г. защитил докторскую диссертацию, в 1966 г. избран членом-корреспондентом АН СССР. В настоящее время советник РАН в ГНПП «Квант», член совета ветеранов космонавтики.

Мешков Игорь Николаевич — специалист в области физики пучков заряженных частиц и ускорительной техники, экспериментальной физики, технологий на основе ускорителей заряженных частиц. Родился 7 января 1936 г., в 1975 г. защитил докторскую диссертацию «Электронный пучок для демпфирования колебаний тяжелых частиц», в 1991 г. избран членом-корреспондентом РАН. В настоящее время главный инженер Объединенного института ядерных исследований в г. Дубне, заведующий кафедрой Липецкого государственного технического университета, председатель научного совета по ускорителям заряженных частиц РАН.

Мокеров Владимир Григорьевич — специалист в области электронных приборов и интегральных схем на основе гетероструктур нанотехнологий, награжден орденом Дружбы народов. Родился 2 мая 1940 г., в 1983 г. защитил докторскую диссертацию по оптоэлектронике на основе фазовых переходов в оксидах ванадия, в 1990 г. избран членом-корреспондентом АН СССР. В настоящее время заместитель директора Института радиотехники и электроники РАН, заведующий кафедрой Московского института радиотехники, электроники и автоматики, член редколлегий академических журналов «Микроэлектроника» и «Радиотехника и электроника», член научных советов РАН по суперкомпьютерам и полупроводникам.

Пешехонов Владимир Григорьевич — специалист в области интегрированных навигационных систем, радиофизических и электромеханических прецизионных приборов навигации, лауреат Ленинской и Государственной премий. Родился 14 июня 1934 г., в 1974 защитил докторскую диссертацию «Антенные системы радиоастропеленгаторов», в 1987 г. избран членом-корреспондентом АН СССР. В настоящее время директор Государственного научного центра России — ЦНИИэлектроприбор, заведующий кафедрой Санкт-Петербургского института точной механики и оптики (технического университета), главный редактор журнала «Гироскопия и навигация», президент общественной организации «Академия навигации и управления движением», председатель санкт-петербургской секции научного совета РАН по управлению движением и навигации.

Савин Геннадий Иванович — специалист в области системного анализа, автоматизации проектирования, вычислений на суперкомпьютерах, лауреат премии Совета Министров СССР. Родился 15 января 1948 г., в 1984 г. защитил докторскую диссертацию «Системы моделирования сложных процессов», в 1990 г. избран членом-корреспондентом АН СССР. В настоящее время заместитель академика-секретаря Отделения информатики, вычислительной техники и автоматизации РАН, директор-организатор Межведомственного суперкомпьютерного центра, профессор МГУ, главный редактор журнала «Автоматизация проектирования».

Соломенцев Юрий Михайлович — специалист в области компьютерных интегрированных производств и систем автоматизированного проектирования в машиностроении, лауреат Ленинской и Государственной премий. Родился 25 июня 1932 г., в 1974 г. защитил докторскую диссертацию «Технологические основы оптимизации процесса обработки деталей на станках», в 1987 г. избран членом-корреспондентом АН СССР. В настоящее время ректор Московского государственного технологического университета «Станкин», директор Института конструкторско-технологической информации РАН, член президиума совета ректоров г. Москвы.

Филиппов Геннадий Алексеевич — специалист в области исследования и разработки различных видов оборудования для атомных и тепловых электрических станций, фундаментальных исследований потоков двухфазных сред, заслуженный деятель науки и техники РСФСР, лауреат Государственной премии и премии Совета Министров СССР. Родился 6 января 1932 г., в 1971 г. защитил докторскую диссертацию «Исследование потоков влажного пара в элементах проточных частей турбин», в 1987 г. избран членом-корреспондентом АН СССР. В настоящее время директор Всероссийского научно-исследовательского института атомного энергетического машиностроения, член нескольких научных советов РАН, редколлегий журналов «Атомная энергетика» и «Тяжелое машиностроение».

Чубраева Лидия Игоревна — специалист в области электромеханических преобразователей энергии, прикладной сверхпроводимости, нетрадиционных электрических машин. Родилась 3 февраля 1946 г., в 1992 г. защитила докторскую диссертацию «Сверхпроводниковые турбогенераторы (вопросы теории и расчета)», в 1997 г. избрана членом-корреспондентом РАН. В настоящее время заместитель директора Отдела электроэнергетических проблем РАН, заведующая отделом в НИИэлектромаш.


13.3. ПОЧЕТНЫЕ АКАДЕМИКИ, ДЕЙСТВИТЕЛЬНЫЕ ЧЛЕНЫ И ЧЛЕНЫ-КОРРЕСПОНДЕНТЫ АЭН РФ

13.3.1. ПОЧЕТНЫЕ АКАДЕМИКИ АЭН РФ

1. Александров Николай Васильевич (род. в 1908 г.) — доктор техн. наук, профессор, лауреат Государственной премии, научный сотрудник ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Москва).

2. Антонов Алексей Константинович (род. в 1912 г.) — лауреат Государственной премии, советник президента Межреспубликанской электротехнической и приборостроительной корпорации (г. Москва).

3. Баранов Александр Потапович (род. в 1925 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, начальник кафедры ГМА им. адмирала Макарова (г. Санкт-Петербург).

4. Бессонов Лев Алексеевич (род. в 1915 г.) — доктор техн. наук, профессор,.зав. кафедрой МИРЭА (г. Москва).

5. Вилесов Дмитрий Васильевич (род. в 1919 г.) — доктор техн. наук, профессор СПбГМТУ (г. Санкт-Петербург).

6. Глазенко Татьяна Анатольевна (род. в 1924 г.) доктор техн. наук, заслуженный деятель науки и техники РФ, профессор СПбГИТМО (ТУ) (г. Санкт-Петербург).

7. Завадовская Екатерина Константинова (род. в 1913 г.) — доктор техн. наук, профессор ТПУ (г. Томск).

8. Иванов-Смоленский Алексей Владимирович (род. в 1922 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, профессор МЭИ (г. Москва).

9. Исаев Игорь Петрович (род. в 1916 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, профессор МГУПС (г. Москва).

10. Кавалеров Гений Иванович (род. в 1925 г.) — доктор техн. наук, профессор, лауреат Государственной премии, главный научный сотрудник НИИ медицинского приборостроения (г. Москва).

11. Кадомская Кира Пантелеймоновна (род. в 1927 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, профессор НГТУ (г. Новосибирск).

12. Ключев Владимир Иванович (род. в 1925 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, профессор МЭИ (г. Москва).

13. Конев Юрий Иванович (род. в 1921 г.) — доктор техн. наук, профессор, зав. кафедрой МАИ (г. Москва).

14. Кононенко Евгений Васильевич (род. в 1928 г.) — доктор техн. наук, профессор, зав. кафедрой ВГТУ (г. Воронеж).

15. Константинов Виталий Георгиевич (род. в 1917 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, лауреат Государственной премии, гл. научный сотрудник НПП «ВНИИЭМ» (г. Москва).

16. Копылов Игорь Петрович (род. в 1924 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, лауреат Государственной премии, профессор МЭИ (г. Москва).

17. Кучинский Георгий Станиславович (род. в 1923 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург).

18. Ларионов Владимир Петрович (род. в 1923 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, профессор МЭИ (г. Москва).

19. Лидоренко Николай Степанович (род. в 1916 г.) доктор техн. наук, профессор, член-корр. РАН, лауреат Ленинской и Государственных премий, ГНПП «Квант» (г. Москва).

20. Литвинов-Лунц Виктор Семенович (род. в 1924 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

21. Мамиконянц Лев Гразданович (род. в 1915 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, лауреат Государственной премии, ученый секретарь АО «ВНИИЭ» (г. Москва).

22. Михайлов Алексей Константинович (род. в 1927 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, лауреат Государственной премии, профессор Военного инженерно-технического ун-та (г. Санкт-Петербург).

23. Новиков Иван Иванович (род. в 1916 г.) — доктор техн. наук, профессор, академик РАН, советник РАН Института металлургии им. А.А. Байкова (г. Москва). 

24. Пятин Юрий Михайлович (род. в 1907 г.) — доктор техн. наук, профессор МГАДИ (г. Москва).

25. Рекус Григорий Гаврилович (род. в 1923 г.) — доктор техн. наук, профессор МХТИ им. Д.И. Менделеева (г. Москва).

26. Рохлин Георгий Николаевич (род. в 1911 г.) — доктор техн. наук, профессор (г. Москва).

27. Свечарник Давид Вениаминович (род. в 1910 г.) — доктор техн. наук, профессор МГУПС (г. Москва).

28. Серов Виктор Иванович (род. в 1925 г.) — доктор техн. наук, профессор, зав. отделением ИГД им. А.Л. Скочинского (г. Москва).

29. Слежановский Ольгерд Владиславович (род. в 1920 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, гл. научный сотрудник НПО «Электропривод» (г. Москва).

30. Тареев Борис Михайлович (род. в 1906 г.) — доктор техн. наук, профессор, лауреат Государственной премии, гл. научный сотрудник ВИНИТИ (г. Москва).

31. Татур Татьяна Андреевна (род. в 1918 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, профессор МГИЭМ (г. Москва).

32. Трембач Владимир Викторович (род. в 1917 г.) — доктор техн. наук, профессор (г. Санкт-Петербург).

33. Троп Абрам Ефимович (род. в 1915 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, профессор УГГА (г. Екатеринбург).

34. Филиппова Тамара Арсентьевна (род. в 1930 г.) — доктор техн. наук, профессор НГТУ (г. Новосибирск).

35. Фотин Владилен Пантелеймонович (род. в 1926 г.) — доктор техн. наук, профессор, лауреат Государственной премии, гл. научный сотрудник ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Москва).

36. Хрущев Виталий Васильевич (род. в 1920 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, лауреат Государственной премии, профессор СПбГААП (г. Санкт-Петербург).

37. Чебан Владимир Матвеевич (род. в 1925 г.) — доктор техн. наук, профессор НГТУ (г. Новосибирск).

38. Юньков Михаил Григорьевич (род. в 1922 г.) — доктор техн. наук, профессор, ученый секретарь НПО «Электропривод» (г. Москва).

39. Юринов Виктор Макарович (род. в 1927 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург). 

13.3.2. ДЕЙСТВИТЕЛЬНЫЕ ЧЛЕНЫ АЭН РФ

1. Аверин Станислав Иванович (род. в 1937 г.) — доктор электротехники, лауреат Государственной премии, академик-секретарь АЭН РФ, действ, чл. МАЭН, вице-президент АО «Концерн точного машиностроения» (г. Москва).

2. Айзенберг Юлиан Борисович (род. в 1931 г.) — доктор техн. наук, профессор, зав. лабораторией АО «ВНИСИ им. С.Н. Вавилова» (г. Москва).

3. Александров Георгий Николаевич (род. в 1930 г.) — доктор техн. наук, профессор, член-корр. РАН, зав кафедрой СПбГТУ (г. Санкт-Петербург).

4. Альтов Валерий Александрович (род. в 1941 г.) — доктор техн. наук, заслуженный деятель науки РФ, лауреат Государственной премии, первый вице-президент АЭН РФ, президент МАЭН, профессор МЭИ (г. Москва).

5. Арзамасов Владимир Борисович (род. в 1945 г.) — доктор техн. наук, профессор, зав. кафедрой МГТУ «МАМИ» (г. Москва).

6. Атаев Артем Еремович (род. в 1938 г.) — доктор техн. наук, профессор, зав. кафедрой МЭИ (г. Москва).

7. Баринов Валентин Александрович (род. в 1942 г.) — доктор техн. наук, зав. отделением ЭНИН им. Г.М. Кржижановского (г. Москва).

8. Батенин Вячеслав Михайлович (род. в 1929 г.) — доктор техн. наук, профессор, член-корр. РАН, директор ОИВТ РАН (г. Москва).

9. Бацких Геннадий Иванович (род. в 1928 г.) — доктор техн. наук, лауреат Государст-венной премии, директор Московского радиотехнического института (г. Москва).

10. Беспалов Виктор Яковлевич (род. в 1937 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

11. Близнюк Владислав Александрович (род. в 1941 г.) — доктор электротехники, начальник — гл. конструктор ГОКБ «Горизонт» (г. Москва).

12. Богуславский Илья Зеликович (род. в 1933 г.) — доктор техн. наук, профессор, начальник сектора ЛПО «Электросила» (г. Санкт-Петербург).

13. Бондалетов Владимир Николаевич (род. в 1938 г.) — доктор техн. наук, профессор, директор Высоковольтного НИЦ ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Истра-2, Московская область).

14. Бондаренко Анатолий Васильевич (род. в 1938 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург).

15. Боровиков Михаил Алексеевич (род. в 1937 г.) — доктор техн. наук, профессор, зав. кафедрой УлПИ (г. Ульяновск).

16. Бородин Юрий Иванович (род. в 1936 г.) — доктор электротехники, профессор, директор ЦНИИ «Курс» (г. Москва).

17. Воронин Виталий Николаевич (род. в 1938 г.) — доктор техн. наук, профессор, проректор, зав. кафедрой СПбГТУ (г. Санкт-Петербург).

18. Бортник Иван Михайлович (род. в 1940 г.) — доктор техн. наук, профессор, академик-секретарь АЭН РФ, действ, чл. МАЭН, президент Фонда содействия развитию малых форм предприятий в научно-технической сфере (г. Москва).

19. Браславский Исаак Яковлевич (род. в 1936 г.) — доктор техн. наук, профессор, зав. кафедрой УГТУ (г. Екатеринбург).

20. Будагов Юлиан Абрамович (род. в 1932 г.) — доктор физ.-мат. наук, профессор, действ, чл. МАЭН, руководитель отдела ОИЯИ (г. Дубна).

21. Булатов Олег Георгиевич (род. в 1937г.) — доктор техн. наук, профессор (г. Москва).

22. Булеков Владимир Павлович (род. в 1938 г.) — доктор техн. наук, профессор, зав. кафедрой МАИ (г. Москва).

23. Бут Дмитрий Александрович (род. в 1932 г.) — доктор техн. наук, профессор, заслуженный деятель науки РФ, зав. кафедрой МАИ (г. Москва).

24. Бутырин Павел Анфимович (род. в 1949 г.) — доктор техн. наук, профессор МЭИ, ученый секретарь научного совета РАН (г. Москва).

25. Бушенин Дмитрий Васильевич (род. в 1927 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, зав. кафедрой ВГУ (г. Владимир).

26. Быков Юрий Маркович (род. в 1937 г.) — доктор техн. наук, профессор, начальник лаборатории НПП «ВНИИЭМ» (г. Москва).

27. Васильев Александр Сергеевич (род. в 1926 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, академик-секретарь АЭН РФ, действ, чл. МАЭН, профессор СПбГЭТУ (г. Санкт-Петербург).

28. Васильев Атлант Анатольевич (род. в 1928 г.) — доктор техн. наук, действ, чл. МАЭН, зам. директора Московского радиотехнического института (г. Москва).

29. Верещагин Владимир Петрович (род. в 1936 г.) — доктор техн. наук, заслуженный деятель науки РФ, лауреат Государственной премии, начальник отдела НПП «ВНИИЭМ» (г. Москва).

30. Верещагин Игорь Петрович (род. в 1931 г.) — доктор техн. наук, заслуженный деятель науки РФ, профессор МЭИ (г. Москва).

31. Верхотуров Анатолий Демьянович (род. в 1936 г.) — доктор техн. наук, профессор, директор Института материаловедения ДВО РАН (г. Хабаровск).

32. Вершинин Юрий Николаевич (род. в 1932 г.) — доктор техн. наук, профессор, член- корр. РАН, лауреат Государственной премии, вице-президент АЭН РФ, действ, чл. МАЭН, зав. лабораторией Института электрофизики РАН (г. Екатеринбург).

33. Веселовский Олег Николаевич (род. в 1928 г.) — доктор техн. наук, профессор НГТУ (г. Новосибирск).

34. Викторов Владимир Андреевич (род. в 1933 г.) — доктор техн. наук, профессор, лауреат Государственной премии, ген. директор ЗАО «ВНИИМП-ВИТА» (г. Москва).

35. Винокуров Владимир Алексеевич (род. в 1917г.) — доктор техн. наук, член президиума АЭН РФ, действ, член МАЭН, профессор МГУПС (г. Москва).

36. Виссарионов Владимир Иванович (род. в 1939 г.) — доктор техн. наук, профессор, зав. кафедрой МЭИ (г. Москва).

37. Волков Эдуард Петрович (род. в 1938 г.) — доктор техн. наук, профессор, член-корр. РАН, лауреат Государственной премии, ген. директор ЭНИН им. Г.М. Кржижановского (г. Москва).

38. Волохонский Лев Абрамович (род. в 1933 г.) — доктор техн. наук, профессор, директор НПО «Термоэкология» АО «ВНИИЭТО» (г. Москва).

39. Воронин Геннадий Петрович (род. в 1941 г.) — доктор эконом, наук, профессор, лауреат Государственных премий, академик-секретарь АЭН РФ, действ, чл. МАЭН, председатель Государственного комитета РФ по стандартизации и метрологии (г. Москва).

40. Воронов Виктор Николаевич (род. в 1946 г.) — доктор техн. наук, профессор, действ, чл. МАЭН, проректор МЭИ (г. Москва)

41. Воропай Николай Иванович (род. в 1943 г.) — доктор техн. наук, лауреат Государственной премии, зам. директора СЭИ им. Л.К. Мелентьева СО РАН (г. Иркутск).

42. Вылов Цветан Димитров (род. в 1941 г.) — доктор физ.-мат. наук, профессор, действ, чл. МАЭН, вице-директор ОИЯИ (г. Дубна).

43. Гамм Александр Зельманович (род. в 1938 г.) — доктор техн. наук, профессор, лауреат Государственной премии, зав. лабораторией СЭИ им. Л.К. Мелентьева СО РАН (г. Иркутск).

44. Герасимов Виктор Григорьевич (род. в 1928 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, лауреат Государственной премии, президент АЭН РФ, действ, чл. МАЭН, профессор МЭИ (г. Москва).

45. Гераскин Олег Тимофеевич (род. в 1937 г.) — доктор техн. наук, профессор, заслуженный деятель науки РФ, зав. кафедрой Института повышения квалификации госслужащих Рос. академии госслужбы при Президенте РФ (г. Москва).

46. Гладышев Сергей Павлович (род. в 1939 г.) — доктор техн. наук, профессор, зав. кафедрой ЧГТУ (г. Челябинск).

47. Глебов Игорь Алексеевич (род. в 1914 г.) — доктор техн. наук, профессор, академик РАН, лауреат Государственной премии, почетный чл. МАЭН, директор ВНИИэлектромаш (г. Санкт-Петербург).

48. Глудкин Олег Павлович (род. в 1936 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ зав. кафедрой МГАТУ им. К.Э. Циолковского (г. Москва).

49. Глухих Василий Андреевич (род. в 1929 г.) — доктор техн. наук, профессор, академик РАН, лауреат Ленинской и Государственной премий, директор НИИЭФА НПО «Электрофизика» (г. Санкт-Петербург).

50. Голубков Аркадий Семенович (род. в 1939 г.) — доктор техн. наук, профессор, лауреат Государственной премии, академик-секретарь АЭН РФ, действ, чл. МАЭН (г. Москва).

51. Гольдберг Оскар Давидович (род. в 1926 г.) — доктор техн. наук, профессор, зав. кафедрой МГОУ (г. Москва).

52. Грязнов Георгий Михайлович (род. в 1926 г.) — доктор техн. наук, профессор, лауреат Государственной премии, научный руководитель ГП «Красная звезда» (г. Москва).

53. Губанков Владимир Николаевич (род. в 1941 г.) — доктор физ.-мат. наук, профессор, зав. отделом ИРЭ РАН (г. Москва).

54. Гуров Алексей Алексеевич (род. в 1936 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, профессор Военной академии им. Ф.Э. Дзержинского (г. Москва).

55. Гусельников Эдуард Митрофанович (род. в 1936 г.) — доктор техн. наук, профессор, директор СКБ НПО «Сибэлектромотор» (г. Томск).

56. Данилевич Януш Брониславович (род. в 1931 г.) — доктор техн. наук, профессор, академик РАН, директор Отдела электроэнергетических проблем РАН (г. Санкт-Петербург).

57. Дашук Павел Никанорович (род. в 1929 г.) — доктор техн. наук, профессор, гл. научный сотрудник СПбГТУ (г. Санкт-Петербург).

58. Дащенко Анатолий Иосифович (род. в 1929 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, действ, чл. МАЭН, зав. кафедрой МГТУ «МАМИ» (г. Москва).

59. Демирчян Камо Серопович (род. в 1928 г.) — доктор техн. наук, профессор, академик, зам. академика-секретаря РАН, лауреат Государственной премии, академик-секретарь АЭН РФ, действ, чл. МАЭН, зав. кафедрой МЭИ (г. Москва).

60. Денель Александр Кириллович (род. в 1932 г.) — доктор техн. наук, профессор, гл. научный сотрудник НПО «ВИАМ» (г. Москва).

61. Диденко Андрей Николаевич (род. в 1932 г.) — доктор техн. наук, профессор, член-корр. РАН, зам. академика-секретаря РАН, зав. кафедрой МИФИ (г. Москва).

62. Динкель Альфред Данилович (род. в 1932 г.) — доктор техн. наук, профессор, зав. кафедрой ПГТУ (г. Пермь).

63. Долкарт Владимир Михайлович (род. в 1930 г.) — доктор техн. наук, гл. научный сотрудник НПП «ВНИИЭМ» (г. Москва).

64. Дресвин Сергей Вячеславович (род. в 1933 г.) — доктор техн. наук, профессор, зав. кафедрой СПбГТУ (г. Санкт-Петербург).

65. Дьяков Анатолий Федорович (род. в 1936 г.) — доктор техн. наук, профессор, член-корр. РАН, лауреат Государственной премии, академик-секретарь АЭН РФ, действ, чл. МАЭН, президент корпорации «Единый электроэнергетический комплекс», зав. кафедрой МЭИ (г. Москва).

66. Бвтихиев Николай Николаевич (род. в 1922 г.) — доктор техн. наук, профессор, академик РАН, заслуженный деятель науки и техники РФ, президент МИРЭА (г. Москва).

67. Емельянов Станислав Васильевич (род. в 1929 г.) — доктор техн. наук, профессор, академик-секретарь РАН, лауреат Ленинской и Государственной премий, член президиума АЭН РФ, действ, чл. МАЭН, директор Международного НИИ проблем управления, директор Института системного анализа РАН (г. Москва).

68. Журавлев Юрий Иванович (род. в 1935 г.) — доктор техн. наук, профессор, академик РАН, лауреат Ленинской премии, председатель научного совета ко кибернетике РАН, зам. директора ВЦ РАН (г. Москва).

69. Загороднюк Витольд Трофимович (род. в 1927 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, зав. кафедрой НГТУ (г. Новочеркасск).

70. Засыпкин Александр Сергеевич (род. в 1937 г.) — доктор техн. наук, профессор, зав. кафедрой НГТУ (г. Новочеркасск).

71. Зенкевич Владимир Борисович (род. в 1936 г.) — доктор техн. наук, профессор, лауреат Государственной премии, директор НЦ ОИВТ РАН (г. Москва).

72. Зорин Юрий Николаевич (род. в 1932 г.) — доктор техн. наук, профессор, зав. кафедрой МГТУ им. Н.Э. Баумана (г. Москва).

73. Иванов Владимир Николаевич (род. в 1945 г.) — доктор физ.-мат. наук, профессор, президент-организатор совместного Росс.-Америк, ун-та информатики, технологии и компьютерного моделирования (г. Пермь).

74. Иванов Гелий Михайлович (род. в 1932 г.) — доктор техн. наук, профессор, зам. директора НПО «Электропривод» (г. Москва).

75. Иванченко Георгий Евтихиевич (род. в 1919 г.) — доктор техн. наук, академик-секретарь АЭН РФ, профессор МГСУ (г. Москва).

76. Ивоботенко Борис Алексеевич (род. в 1932 г.) — доктор техн. наук, профессор, лауреат Государственных премий, гл. научный сотрудник МЭИ (г. Москва).

77. Ильинский Николай Федотович (род. в 1931 г.) — доктор техн. наук, лауреат Государственной премии, профессор МЭИ (г. Москва).

78. Иньков Юрий Моисеевич (род. в 1937 г.) — доктор техн. наук, заслуженный деятель науки РФ, профессор МГУПС (г. Москва).

79. Кадышевский Владимир Георгиевич (род. в 1937 г.) — доктор физ.-мат. наук, профессор, член-корр. РАН, действ, чл. МАЭН, директор О ИЯИ(г. Дубна).

80. Калашников Михаил Анатольевич (род. в 1935 г.) — доктор техн. наук, профессор, гл. научный сотрудник Государственного внедренческого предприятия «МИКРЕП» (г. Казань).

81. Калявин Владимир Петрович (род. в 1937 г.) — доктор техн. наук, профессор СПбГЭТУ (г. Санкт-Петербург).

82. Камынин Юлий Николаевич (род. в 1928 г.) — доктор техн. наук, профессор, гл. научный сотрудник НИИ «Гипроуглеавтоматизация» (г. Москва).

83. Карелин Владимир Яковлевич (род. в 1931 г.) — доктор техн. наук, профессор, ректор МГСУ (г. Москва).

84. Карунин Анатолий Леонидович (род. в 1938 г.) — профессор, ректор МГТУ «МАМИ» (г. Москва).

85. Кейлин Виктор Ефимович (род. в 1933 г.) — доктор техн. наук, профессор, лауреат Государственных премий, зам. директора РНЦ «Курчатовский институт» (ИАЭ) (г. Москва).

86. Кекелидзе Владимир Георгиевич (род. в 1947 г.) — доктор физ.-мат. наук, профессор, действ, чл. МАЭН, директор лаборатории ОИЯИ (г. Дубна).

87. Кидалов Валентин Иванович (род. в 1934 г.) — доктор электротехники, профессор, лауреат Ленинской и Государственной премий, ген. директор НПО «Марс» (г. Ульяновск).

88. Киншт Николай Владимирович (род. в 1939 г.) — доктор техн. наук, профессор, зав. лабораторией ИАПУ ДВО РАН (г. Владивосток).

89. Клюев Владимир Владимирович (род. в 1937 г.) — доктор техн. наук, профессор, член-корр. РАН, лауреат Государственной премии, ген. директор МНПО «Спектр» (г. Москва).

90. Ковалев Феликс Иванович (род. в 1928 г.) — доктор техн. наук, профессор, президент Ассоциации инженеров силовой электроники (г. Москва).

91. Ковалев Юрий Захарович (род. в 1940 г.) — доктор техн. наук, профессор, зав. кафедрой ОГТУ (г. Омск).

92. Козлов Вадим Борисович (род. в 1938 г.) — доктор электротехники, лауреат Государственной премии, директор ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Москва).

93. Койков Сергей Николаевич (род. в 1931 г.) — доктор физ.-мат. наук, профессор СПбГТУ (г. Санкт-Петербург).

94. Колесников Анатолий Аркадьевич (род. в 1935 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, зав. кафедрой ТагРИ (г. Таганрог).

95. Коровин Сергей Константинович (род. в 1945 г.) — доктор техн. наук, профессор, член-корр. РАН, лауреат Государственной премии, зав лабораторией Института системного анализа РАН (г. Москва).

96. Костенко Михаил Владимирович (род. в 1912 г.) — доктор техн. наук, член-корр. РАН, профессор-консультант СПбГТУ (г. Санкт-Петербург).

97. Кочетков Виктор Дмитриевич (род. в 1935 г.) — доктор электротехники, директор НПО «Электропривод» (г. Москва).

98. Красиков Николай Николаевич (род. в 1938 г.) — доктор техн. наук, профессор, зав. кафедрой КТА (г. Ковров).

99. Кузнецов Вячеслав Алексеевич (род. в 1939 г.) — доктор техн. наук, профессор, действ, чл. МАЭН, зав. кафедрой МЭИ (г. Москва).

100. Кунгурцев Вадим Владимирович (род. в 1940 г.) — доктор мед. наук, профессор ММСИ (г. Москва).

101. Купеев Юрий Александрович (род. в 1928 г.) — доктор электротехники, профессор, зам директора НИИАЭ (г. Москва).

102. Курносое Николай Михайлович (род. в 1933 г.) — доктор электротехники, заслуженный деятель науки и техники РФ, лауреат Государственной премии, директор ГНЦ РФ «НИИ-теплоприбор» (г. Москва).

103. Кутузов Владимир Кузьмич (род. в 1931 г.) — доктор техн. наук, профессор, лауреат Государственной премии, зав. кафедрой КТА (г. Ковров).

104. Кучумов Владислав Алексеевич (род. в 1938 г.) — доктор техн. наук, профессор, зав. лабораторией ВНИИЖТ (г. Москва).

105. Лазарев Игорь Алексеевич (род. в 1933 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, отв. секретарь экспертного совета при Правительстве РФ (г. Москва).

106. Ларюшин Александр Иванович (род. в 1938 г.) — доктор техн. наук, профессор, зам. директора НИИ «Полюс» (г. Москва).

107. Леонов Борис Иванович (род. в 1935 г.) — доктор техн. наук, профессор, президент МАМТ, действ, чл. МАЭН, член президиума АЭН РФ. ген. директор МГЮ «Экран» (г. Москва).

108. Маковеев Владимир Григорьевич (род. в 1938 г.) — доктор электротехники, действ, чл. МАЭН, первый зам. руководителя Федеральной службы по телевидению и радиовещанию (г. Москва).

109. Максимов Борис Константинович (род. в 1934 г.) — доктор техн. наук, профессор, декан МЭИ (г. Москва).

110. Мамедов Фуад Али-оглы (род. в 1936 г.) — доктор техн. наук, профессор, зав. кафедрой ВСХИЗО (г. Балашиха, Московская область).

111. Маслов Виктор Павлович (род. в 1930 г.) — доктор физ.-мат. наук, профессор, академик РАН, лауреат Ленинской и Государственной премий, зав. кафедрой МГУ (г. Москва).

112. Матвеев Александр Борисович (род. в 1926 г.) — доктор техн. наук, профессор МЭИ (г. Москва)..

113. Месяц Геннадий Андреевич (род. в 1936 г.) — доктор техн. наук, профессор, вице-президент РАН, лауреат Государственных премий, директор Института электрофизики (г. Екатеринбург).

114. Метелкин Борис Александрович (род. в 1929 г.) — доктор техн. наук, профессор, зав. кафедрой МГУПС (г. Москва).

115. Мешков Игорь Николаевич (род. в 1936 г.) — доктор физ.-мат. наук, профессор, член-корр. РАН, гл. научный сотрудник ОИЯИ (г. Дубна).

116. Мещанов Геннадий Иванович (род. в 1940 г.) — доктор электротехники, первый зам. ген. директора АО «ВНИИКП» (г. Москва).

117. Мигачев Борис Сергеевич (род. в 1933 г.) — действ, чл. МАЭН, ген. директор «Ростест-Москва» (г. Москва).

118. Мизин Игорь Александрович (род. в 1935 г.) — доктор техн. наук, профессор, член-корр. РАН, лауреат Ленинской и Государственной премий, директор Института проблем информатики РАН (г. Москва).

119. Миронов Владимир Георгиевич (род. в 1939 г.) — доктор техн. наук, лауреат Государственной премии, профессор МЭИ (г. Москва).

120. Миронов Юрий Михайлович (род. в 1937 г.) — доктор техн. наук, профессор, зав. кафедрой ЧГУ (г. Чебоксары).

121. Михайлов Валерий Александрович (род. в 1939 г.) — доктор электротехники, действ, чл. МАЭН, начальник департамента аппарата Правительства РФ (г. Москва).

122. Михайлов Виктор Никитович (род. в 1934 г.) — доктор техн. наук, профессор, академик РАН, лауреат Государственной премии, действ, чл. МАЭН, первый зам. министра РФ по атомной энергии (г. Москва).

123. Михеев Юрий Александрович (род. в 1936 г.) — доктор эконом, наук, профессор, директор ВНИИ проблем вычислительной техники и информатизации (г. Москва).

123. Мокеров Владимир Григорьевич (род. в 1940 г.) — доктор техн. наук, профессор, член-корр. РАН, зав. кафедрой МИРЭА (г. Москва).

125. Недялков Константин Викторович (род. в 1931 г.) — доктор техн. наук, профессор, зав. кафедрой СПбГУВК (г. Санкт-Петербург).

126. Неклепаев Борис Николаевич (род. в 1926 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, лауреат Государственной премии, профессор МЭИ (г. Москва).

127. Несенюк Леонид Петрович (род. в 1940 г.) — доктор техн. наук, профессор, начальник отдела ГНЦ РФ «ЦНИИэлектроприбор» (г. Санкт-Петербург).

128. Никольцев Владимир Александрович (род. в 1939 г.) — доктор электротехники, ген. директор ЦНИИ «Гранит» (г. Санкт-Петербург).

129. Новиков Олег Яковлевич (род. в 1928 г.) — доктор техн. наук, профессор СГТУ (г. Самара).

130. Окрепилов Владимир Валентинович (род. в 1944 г.) — доктор эконом, наук, заслуженный деятель науки и техники РФ, ген. директор Центра испытаний и сертификации «ТЕСТ-СПб.» (г. Санкт-Петербург).

131. Онищенко Георгий Борисович (род. в 1931 г.) — доктор техн. наук, профессор, зав. кафедрой МГОУ (г. Москва).

132. Панфилов Дмитрий Иванович (род. в 1948 г.) — доктор техн. наук, профессор, зав. кафедрой МЭИ (г. Москва).

133. Первачев Сергей Владимирович (род. в 1932 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

134. Переводчиков Владимир Иннокентьевич (род. в 1928 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, зам. директора ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Москва).

135. Петленко Борис Иванович (род. в 1942 г.) — доктор техн. наук, профессор, заслуженный деятель науки РФ, первый вице-президент АЭН РФ, президент Фонда поддержки ученых-электротехников, действ, чл. МАЭН, зав. кафедрой МГТУ «МАМИ» (г. Москва).

136. Пешехонов Владимир Григорьевич (род. в 1934 г.) — доктор техн. наук, профессор, член-корр. РАН, директор ГНЦ РФ «ЦНИИэлектроприбор» (г. Санкт-Петербург).

137. Пешков Изяслав Борисович (род. в 1936 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, вице-президент АЭН РФ, действ, чл. МАЭН, ген. директор АО «ВНИИКП» (г. Москва).

138. Пинский Феликс Ильич (род. в 1930 г.) — доктор техн. наук, профессор, МГТУ «МАМИ» (г. Москва).

139. Пищиков Всеволод Илларионович (род. в 1933 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

140. Платонов Василий Васильевич (род. в 1928 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, зав. кафедрой НГТУ (г. Новочеркасск).

141. Подоплекин Юрий Федорович (род. в 1939 г.) — доктор техн. наук, профессор, зам ген. директора ЦНИИ «Гранит» (г. Санкт-Петербург).

142. Поздеев Анатолий Дмитриевич (род. в 1929 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, профессор ЧувашГТУ (г. Чебоксары).

143. Полянин Константин Павлович (род. в 1936 г.) — доктор техн. наук, профессор, ген. директор МНПО «Гамма» (г. Москва).

144. Попов Александр Николаевич (род. в 1939 г.) — доктор техн. наук, профессор, действ, чл. МАЭН, ген. директор АО «ВНИИЭТО» (г. Москва).

145. Попов Анатолий Игоревич (род. в 1944 г.) — доктор техн. наук, профессор, академик-секретарь АЭН РФ, действ, чл. МАЭН, проректор МЭИ (г. Москва).

146. Попов Виктор Васильевич (род. в 1932 г.) — доктор техн. наук, профессор, СПбГТУ (г. Санкт-Петербург).

147. Похолков Юрий Петрович (род. в 1939 г.) — доктор техн. наук, профессор, ректор ТПУ (г. Томск).

148. Приймак Алексей Алексеевич (род. в 1932 г.) — доктор мед. наук, заслуженный деятель науки РФ, лауреат Государственной премии, академик-секретарь АЭН РФ, действ, чл. МАЭН (г. Москва).

149. Прохоров Николай Леонидович (род. в 1936 г.) — доктор техн. наук, профессор, ген. директор АООТ «Институт электронных управляющих машин» (г. Москва).

150. Растрелин Анатолий Матвеевич (род. в 1937 г.) — доктор техн. наук, профессор, лауреат Государственной премии, ген. директор АООТ «НИИ систем автоматизации» (г. Москва).

151.Реморов Андрей Алексеевич (род. в 1926 г.) — доктор электротехники, профессор, МГУПС (г. Москва).

152. Розанов Алексей Викторович (род. в 1926 г.) — доктор техн. наук, профессор, зав. кафедрой Академии оборонных отраслей промышленности (г. Москва).

153. Розанов Юрий Константинович (род. в 1939 г.) — доктор техн. наук, профессор, зав. кафедрой МЭИ (г. Москва).

154. Рубцов Виктор Петрович (род. в 1937 г.) — доктор техн. наук, профессор, зав. кафедрой МЭИ (г. Москва).

155. Рульнов Анатолий Анатольевич (род. в 1936 г.) — доктор техн. наук, профессор, зав. кафедрой МГСУ (г. Москва).

156. Рябов Сергей Николаевич (род. в 1953 г.) — доктор техн. наук, профессор, зам. председателя Госстандарта РФ (г. Москва).

157. Савин Геннадий Иванович (род. в 1948 г.) — доктор техн. наук, профессор, член-корр. РАН, зам. академика-секретаря ОИВТ РАН (г. Москва).

158. Сарапулов Федор Никитич (род. в 1940 г.) — доктор техн. наук, профессор, член президиума АЭН РФ, действ, чл. МАЭН, зав. кафедрой УГТУ (г. Екатеринбург).

159. Свалов Григорий Геннадьевич (род. в 1942 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, академик-секретарь АЭН РФ, действ, чл. МАЭН, зам. ген. директора АО «ВНИИКП» (г. Москва).

160. Селиванов Арнольд Сергеевич (род. в 1935 г.) — доктор техн. наук, профессор, лауреат Государственной премии, зам. ген. директора — гл. конструктор Российского НИИ космического приборостроения (г. Москва).

161. Сергеев Алексей Георгиевич (род. в 1940 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, ректор ВГУ (г. Владимир).

162. Сергеев Валерий Владимирович (род. в 1936 г.) — доктор техн. наук, зам. ген. директора НПП «ВНИИЭМ» (г. Москва).

163. Сергеев Виктор Георгиевич (род. в 1937 г.) — доктор техн. наук, профессор, лауреат Государственной премии (г. Москва).

164. Серебряников Нестор Иванович (род. в 1929 г.) — действ, чл. МАЭН, лауреат Государственных премий, президент АО «Мосэнерго» (г. Москва).

165. Сипайлов Геннадий Антонович (род. в 1920 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, профессор ТПУ (г. Томск).

166. Смирнов Олег Леонидович (род. в 1944 г.) — доктор техн. наук, профессор, директор Института автоматизированных систем Миннауки РФ и РАН (г. Москва).

167. Смоловик Сергей Владимирович (род. в 1940 г.) — доктор техн. наук, профессор, зав. кафедрой СПбГТУ (г. Санкт-Петербург).

168. Смольский Сергей Михайлович (род. в 1946 г.) — доктор техн. наук, профессор, действ, чл. МАЭН, проректор, зав. кафедрой МЭИ (г. Москва).

169. Соломатин Валентин Васильевич (род. в 1938 г.) — доктор эконом, наук, профессор, ген. директор ВНИИ автоматизации управления в непромышленной сфере (г. Москва).

170. Соломенцев Юрий Михайлович (род. в 1932 г.) — доктор техн. наук, профессор, член-корр. РАН, лауреат Государственной премии, ректор МГТУ «Станкин» (г. Москва).

171. Соустин Борис Порфирьевич (род. в 1933 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, зав. кафедрой КГТУ (г. Красноярск).

172. Старовойтов Александр Владимирович (род. в 1940 г.) — доктор техн. наук, профессор, президент Академии криптографии (г. Москва).

173. Столбов Владимир Иванович (род. в 1932 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, ректор ТолПИ (г. Тольятти).

174. Стома Степан Андреевич (род. в 1932 г.) — доктор электротехники, заслуженный деятель науки и техники РФ, лауреат Государственной премии, ген. директор НПП «ВНИИЭМ» (г. Москва).

175. Строев Владимир Андреевич (род. в 1937 г.) — доктор техн. наук, профессор, действ, чл. МАЭН, член президиума АЭН, зав. кафедрой МЭИ (г. Москва).

176. Сычев Вячеслав Владимирович (род. в 1933 г.) — доктор техн. наук, профессор, лауреат Государственных премий, главный ученый секретарь АЭН РФ, действ, чл. МАЭН, гл. научный сотрудник ОИВТ РАН (г. Москва).

177. Тиходеев Николай Николаевич (род. в 1927 г.) — доктор техн. наук, профессор, академик РАН, лауреат Государственной премии, научный руководитель отдела Института постоянного тока (г. Санкт-Петербург).

178. Трещев Иван Ильич (род. в 1916 г.) — доктор техн. наук, профессор МГТУ «МАМИ» (г. Москва).

179. Трифонов Юрий Валерьевич (род. в 1930 г.) — доктор техн. наук, зам. ген. директора НПП «ВНИИЭМ» (г. Москва).

180. Усов Николай Николаевич (род. в 1941 г.) — доктор техн. наук, профессор, ген. директор АО НПП «Сапфир» (г. Москва).

181. Ушаков Василий Яковлевич (род. в 1939 г.) — доктор техн. наук, профессор, проректор ТПУ (г. Томск).

182. Фаворский Олег Николаевич (род. в 1929 г.) — доктор техн. наук, профессор, академик РАН, член президиума АЭН РФ, действ, чл. МАЭН, лауреат Ленинской премии, академик-секретарь РАН (г. Москва).

183. Фельдман Юрий Израилович (род. в 1938 г.) — доктор электротехники, профессор, ген. директор АЭК «Динамо» (г. Москва).

184. Филиков Виталий Андреевич (род. в 1938 г.) — профессор, действ, чл. МАЭН, декан, зав. кафедрой МЭИ (г. Москва).

185. Филиппов Геннадий Алексеевич (род. в 1932 г.) — доктор техн. наук, профессор, член-корр. РАН, лауреат Государственной премии, директор ВНИИАМ (г. Москва).

186. Фишер Леонид Михайлович (род. в 1940 г.) — доктор физ.-мат. наук, профессор, директор НИЦ ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Москва).

187. Хасиков Виктор Владимирович (род. в 1941 г.) — доктор электротехники, зам. директора ГНЦ РФ «НИИтеплоприбор» (г. Москва).

188. Цветков Владимир Александрович (род. в 1935 г.) — доктор техн. наук, профессор, зав. лабораторией ВНИИЭ (г. Москва).

189. Чередниченко Владимир Семенович (род. в 1939 г.) — доктор техн. наук, профессор, зав. кафедрой НГТУ (г. Новосибирск).

190. Черний Александр Николаевич (род. в 1939 г.) — доктор техн. наук, вед. научный сотрудник НПО «Фтизиопульмонология» (г. Москва).

191. Чечурин Владимир Леонидович (род. в 1939 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург).

192. Чубраева Лидия Игоревна (род. в 1946 г.) — доктор техн. наук, член-корр. РАН, зав. отделом ВНИИэлектромаш (г. Санкт-Петербург).

193. Чудинов Станислав Михайлович (род. в 1935 г.) — доктор техн. наук, профессор, зам. ген. директора НИИсуперЭВМ (г. Москва).

194. Шакарян Юрий Гевондович (род. в 1933 г.) — доктор техн. наук, профессор, зам. директора АО «ВНИИЭ» (г. Москва).

195. Шалаев Павел Александрович (род. в 1943 г.) — доктор техн. наук, профессор, управляющий Московским филиалом ДИН ГОСТ ТЮФ (г. Берлин — г. Бранденбург).

196. Шапиро Давид Исаакович (род. в 1929 г.) — доктор физ.-мат. наук, руководитель лаборатории ВНИИ проблем вычислительной техники (г. Москва).

197. Шатерников Виктор Егорович (род. в 1935 г.) — доктор техн. наук, профессор, зав. кафедрой МГАПИ (г. Москва).

198. Шахнов Вадим Анатольевич (род. в 1941 г.) — доктор техн. наук, профессор, лауреат Государственной премии, зав. кафедрой МГТУ им. Н.Э. Баумана (г. Москва).

199. Шереметьевский Николай Николаевич (род. в 1916 г.) — доктор техн. наук, профессор, академик РАН, лауреат Ленинской и Государственных премий, советник ген. директора НПП «ВНИИЭМ», зав. кафедрой МИРЭА (г. Москва).

200. Шлифер Эдуард Давидович (род. в 1928 г.) — доктор техн. наук, начальник лаборатории АООТ «Плутон» (г. Москва).

201. Шмид Александр Викторович (род. в 1946 г.) — доктор техн. наук, профессор, начальник отделения ЦП ЭВМ НИЦЭВТ (г. Москва).

202. Шнеерсон Герман Абрамович (род. в 1932 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург).

203. Шулаков Николай Васильевич (род. в 1931 г.) — доктор техн. наук, профессор, зав. кафедрой ПГТУ (г. Пермь).

204. Щербаков Виктор Гаврилович (род. в 1936 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, ген. директор ОАО «ВЭлНИИ» (г. Новочеркасск).

205. Щербинин Петр Иванович (род. в 1930 г.) — доктор электротехники, лауреат Государственной премии, действ, чл. МАЭН, главный конструктор ЦНИИСЭТ (г. Санкт-Петербург).

206. Щуцкий Виталий Иванович (род. в 1932 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, зав. кафедрой МГГУ (г. Москва).

207. Ютт Владимир Евсеевич (род. в 1940 г.) — доктор техн. наук, профессор, зав. кафедрой МГАДИ (г. Москва).

208. Янышев Юрий Алексеевич (род. в 1931 г.) — доктор техн. наук, профессор, лауреат Государственной премии, зам. главного конструктора АНПК «МИГ им. А.И. Микояна» (г. Москва).

13.3.3. ЧЛЕНЫ-КОРРЕСПОНДЕНТЫ АЭН РФ

1. Абакумов Алексей Алексеевич (род. в 1946 г.) — доктор техн. наук, профессор, зав. кафедрой Института атомной энергетики (г. Обнинск).

2. Аветисян Джон Амаякович (род. в 1933 г.) — доктор техн. наук, профессор МГОУ (г. Москва).

3. Авилов Валерий Дмитриевич (род. в 1939 г.) — доктор техн. наук, профессор, зав. кафедрой ОИИЖТ (г. Омск).

4. Аипов Рустам Сагитович (род. в 1946 г.) — доктор электротехники, УГАТУ (г. Уфа).

5. Акимов Олег Алексеевич (род. в 1938 г.) — профессор МГТУ «МАМИ» (г. Москва).

6. Акопян Иосиф Григорьевич (род. в 1931 г.) — доктор техн. наук, профессор, ген. директор МНИИ «Агат» (г. Москва).

7. Алексейчик Леонард Валентинович (род. в 1940 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

8. Алиевский Борис Львович (род. в 1932 г.) — доктор техн. наук, профессор МАИ (г. Москва).

9. Амелин Валерий Михайлович (род. в 1946 г.) — доктор электротехники, профессор, директор Московского локомотиворемонтного завода (г. Москва).

10. Антонов Николай Григорьевич (род. в 1946 г.) — доктор электротехники, ген. директор ПО «Аналитприбор» (г. Смоленск).

11. Аржанников Борис Алексеевич (род. в 1938 г.) — доктор техн. наук, профессор УрГАПС (г. Екатеринбург).

12. Арсеньев Павел Александрович (род. в 1939 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

13. Архангельский Вячеслав Алексеевич (род. в 1945 г.) — доктор электротехники, ген. директор АО НПФ «Агрегатный завод» (г. Москва).

14. Архангельский Юрий Сергеевич (род. в 1936 г.) — доктор техн. наук, профессор, проректор СГТУ (г. Саратов).

15. Ахунов Турсун Абдалимович (род. в 1937 г.) — доктор электротехники, ген. директор АООТ «Ярославский электромашиностроительный завод» (г. Ярославль).

16. Ацюковский Владимир Акимович (род. в 1930 г.) — доктор техн. наук, начальник лаборатории НИИАО (г. Жуковский, Московская область).

17. Башкатов Вениамин Андреевич (род. в 1926 г.) — доктор техн. наук, профессор, зав. лабораторией ОИВТ РАН (г. Москва).

18. Белавин Владимир Алексеевич (род. в 1934 г.) — доктор техн. наук, профессор, зав. кафедрой КФ МЭИ (г. Казань).

19. Белкин Герман Сергеевич (род. в 1939 г.) — доктор техн. наук, нач. отдела ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Москва).

20. Белов Владимир Федорович (род. в 1952 г.) — доктор техн. наук, профессор, зав. кафедрой МГУ (г. Саранск).

21. Беляев Ремир Александрович (род. в 1925 г.) — доктор техн. наук, профессор, гл. научный сотрудник АмурКНИИ АмурНЦ ДВО РАН (г. Благовещенск).

22. Беляшин Виктор Владимирович (род. в 1937 г.) — доктор электротехники, зам. начальника департамента Минэкономики РФ, (г. Москва).

23. Богатырев Леонард Леонардович (род. в 1938 г.) — доктор техн. наук, профессор, декан УГТУ (г. Екатеринбург).

24. Боксимер Эвир Абрамович (род. в 1937 г.) — доктор электротехники, ген. директор АО «Сарансккабель» (г. Саранск).

25. Братухин Павел Иванович (род. в 1939 г.) — доктор техн. наук, зам. директора ВНИИ проблем вычислительной техники (г. Москва).

26. Брызгалов Валентин Иванович (род. в 1931 г.) — доктор техн. наук, ген. директор ОАО «Саяно-Шушенская ГЭС» (Республика Хакассия).

27. Брянцев Александр Михайлович (род. в 1951 г.) — доктор техн. наук, профессор, ра-менский электротехнический завод «Энергия» (г. Раменское, Московская область).

28. Бургин Борис Шимельевич (род. в 1928 г.) — доктор техн. наук, профессор НГТУ (г. Новосибирск).

29. Бурковский Виктор Леонидович (род. в 1950 г.) — доктор техн. наук, профессор, декан ВГТУ (г. Воронеж).

30. Бурман Алексей Петрович (род. в 1936 г.) — доктор электротехники, зам. директора ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Москва).

31. Бухтояров Василий Федорович (род. в 1936 г.) — доктор техн. наук, зав. лабораторией НИПК Институт по добыче полезных ископаемых открытым способом» (г. Челябинск).

32. Бычков Юрий Александрович (род. в 1936 г.) — доктор техн. наук, профессор, зав. кафедрой СПбГЭТУ (г. Санкт-Петербург).

33. Ванин Валерий Кузьмич (род. в 1939 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург).

34. Васильев Александр Юрьевич (род. в 1962 г.) — доктор мед. наук, профессор, начальник рентгеновского центра, главный рентгенолог ВВС ЦВНИ авиационного госпиталя (г. Москва).

35. Васильев Игорь Евгеньевич (род. в 1937 г.) — доктор техн. наук, профессор, зав. кафедрой СКГМИ (г. Владикавказ).

36. Вейнберг Дмитрий Моисеевич (род. в 1934 г.) — доктор техн. наук, лауреат Государственной премии, нач. лаборатории НПП «ВНИИЭМ» (г. Москва).

37. Виннер Игорь Борисович (род. в 1935 г.) — доктор техн. наук, вице-президент Фонда под-держки ученых РАН (г. Москва).

38. Винокур Вадим Мотельич (род. в 1945 г.) — доктор техн. наук, профессор, зав. кафедрой ПГТУ (г. Пермь).

39. Вишневский Юрий Иосифович (род. в 1935 г.) — профессор, ген. директор АО «НИИ-ВА» (г. Санкт-Петербург).

40. Власов Матвей Анатольевич (род. в 1934 г.) — доктор физ.-мат. наук, нач. сектора ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Москва).

41. Волдорин Анатолий Николаевич (род. в 1937 г.) — доктор электротехники, зам. руководителя департамента Минэкономики РФ (г. Москва).

42. Волков Вячеслав Дмитриевич (род. в 1946 г.) — доктор электротехники, ВГАСА (г. Воронеж).

43. Волович Георгий Иосифович (род. в 1946 г.) — доктор техн. наук, профессор ЧГТУ (г. Челябинск).

44. Воронин Петр Андреевич (род. в 1927 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, зав. кафедрой СКГТУ (г. Владикавказ).

45. Воронин Сергей Григорьевич (род. в 1942 г.) — доктор техн. наук, профессор, зав. кафедрой ЧГТУ (г. Челябинск).

46. Гайтов Багаудин Хамидович (род. в 1937 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, зав. кафедрой Кубанского ГТУ (г. Краснодар).

47. Гафиятуллин Рафаиз Хазеевич (род. в 1929 г.) — доктор техн. наук, профессор, зав. кафедрой ЧГТУ (г. Челябинск).

48. Глебов Сергей Савельевич (род. В 1947 г.) — доктор электротехники, зам. ген. директора АО «Электроника» (г. Воронеж).

49. Голенищев-Кутузов Вадим Алексеевич (род. в 1932 г.) — доктор физ.-мат. наук, профессор, зав. кафедрой КФ МЭИ (г. Казань).

50. Гордеев Георгий Иванович (род. в 1928 г.) — доктор техн. наук, профессор, лауреат Государственной премии, ген. директор АО «Фонд конверсии Пермской области» (г. Пермь).

51. Григорьев Юрий Григорьевич (род. в 1925 г.) — доктор мед. наук, профессор, ген. директор Центра биомагнитной совместимости (г. Москва).

52. Гроздов Александр Григорьевич (род. в 1936 г.) — доктор хим. наук, зав. лабораторией ВНИИЭИМ (г. Москва).

53. Гурницкий Владимир Николаевич (род. в 1938 г.) — доктор техн. наук, профессор, зав. кафедрой СГСХА (г. Ставрополь).

54. Гуров Александр Иванович (род. в 1953 г.) — доктор электротехники, ген. директор Международного фонда попечителей МГАТУ им. К.Э. Циолковского (г. Москва).

55. Гурьянов Дмитрий Иванович (род. в 1942 г.) — доктор электротехники, зав. лабораторией ТолПИ (г. Тольятти).

56. Дерменжи Пантелей Георгиевич (род. в 1939 г.) — доктор техн. наук, начальник сектора ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Москва).

57. Дробышев Георгий Федорович (род. в 1933 г.) — доктор техн. наук, профессор МГТУ им. Н.Э. Баумана (г. Москва).

58. Евдокунин Георгий Анатольевич (род. в 1944 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург).

59. Елисеев Владислав Борисович (род. в 1933 г.) — доктор электротехники, зам. ген. директора ГНПП «Квант» (г. Москва).

60. Елистратов Виктор Васильевич (род. в 1953 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург).

6L Еременко Владимир Григорьевич (род. в 1937 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

62. Ершов Михаил Сергеевич (род. в 1952 г.) — доктор техн. наук, профессор, зав. кафедрой ГАНГ им. И.М. Губкина (г. Москва).

63. Жарков Владимир Дмитриевич (род. в 1926 г.) — доктор электротехники, консультант АО «Аэроэлектрик» (г. Москва).

64. Желбаков Игорь Николаевич (род. в 1952 г.) — доктор техн. наук, профессор, зав. кафедрой МЭИ (г. Москва).

65. Жемчугов Георгий Александрович (род. в 1940 г.) — доктор электротехники, первый зам. ген. директора — главный конструктор НПП «ВНИИЭМ» (г. Москва).

66. Завьялов Михаил Александрович (род. в 1939 г.) — доктор техн. наук, нач. отдела ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Москва).

67. Закурдаев Игорь Васильевич (род. в 1941 г.) — доктор физ.-мат. наук, профессор, проректор РГРТА (г. Рязань).

68. Затопляев Борис Семенович (род. в 1937 г.) — доктор электротехники, ген. директор АО «Янтарьэнерго» (г. Калининград).

69. Зиновьев Геннадий Степанович (род. в 1939 г.) — доктор техн. наук, профессор НГТУ (г. Новосибирск).

70. Иванов Геннадий Петрович (род. в 1936 г.) — доктор электротехники, директор Государственного завода «Топаз» (г. Москва).

71. Ивашин Виктор Васильевич (род. в 1934 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, зав. кафедрой ТолПИ (г. Тольятти).

72. Инкин Алексей Иванович (род. в 1938 г.) — доктор техн. наук, профессор, зав. ка-федрой НГТУ (г. Новосибирск).

73. Казаков Виталий Анатольевич (род. в 1945 г.) — доктор электротехники, ген. директор Научно-производственной фирмы «Ритм-2» (г. Москва).

74. Казаков Владимир Александрович (род. в 1941 г.) — доктор техн. наук, профессор, зав. кафедрой РГРТА (г. Рязань).

75. Каллистратов Виктор Александрович (род. в 1944 г.) — доктор электротехники, вице-президент АО «ВНИИЭТО» (г. Москва).

76. Каримов Альберт Хамзович (род. в 1935 г.) — доктор техн. наук, профессор, зав. кафедрой КГТУ (г. Казань).

77. Катанаев Николай Трофимович (род. в 1939 г.) — доктор техн. наук, профессор, зав. кафедрой МГТУ «МАМИ» (г. Москва).

78. Киреев Юрий Никитович (род. в 1937 г.) — доктор техн. наук, профессор, зав. кафедрой СПбМТУ (г. Санкт-Петербург).

79. Кислицын Анатолий Леонидович (род. в 1937 г.) — доктор электротехники, профессор УлГТУ (г. Ульяновск).

80. Китушин Викентий Георгиевич (род. в 1936 г.) — доктор техн. наук, профессор, зав. кафедрой НГТУ (г. Новосибирск).

81. Ковалев Виктор Дмитриевич (род. в 1945 г.) — доктор техн. наук, зам. ген. директора ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Москва).

82. Кокинов Андрей Михайлович (род. в 1938 г.) — доктор техн. наук, ген. директор ВНИИИС им. А.Н. Лодыгина АО «Лисма» (г. Саранск).

83. Колечицкий Егор Сергеевич (род. в 1932 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

84. Колоколов Юрий Васильевич (род. в 1948 г.) — доктор техн. наук, профессор, зав. кафедрой ОГТУ (г. Орел).

85. Кольниченко Георгий Иванович (род. в 1941 г.) — доктор техн. наук, профессор, зав. кафедрой МГУЛ (г. Москва).

86. Кондаков Виктор Иванович (род. в 1947 г.) — доктор электротехники, зам. главного конструктора ЦКБ тяжелого машиностроения (г. Москва).

87. Копылов Олег Григорьевич (род. в 1948 г.) — доктор электротехники, глава администрации Пушкинского р-на (г. Пушкино, Московская область).

88. Коровин Николай Васильевич (род. в 1927 г.) — доктор хим. наук, заслуженный деятель науки и техники РФ, профессор МЭИ (г. Москва).

89. Короткое Борис Александрович (род. в 1938 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург).

90. Корякин Юрий Алексеевич (род. в 1951 г.) — доктор электротехники, директор ЦНИИ «Морфизприбор» (г. Санкт-Петербург).

91. Костроминов Александр Михайлович (род. в 1944 г.) — доктор техн. наук, профессор, декан СПбГУПС (г. Санкт-Петербург).

92. Коськин Юрий Павлович (род. в 1927 г.) — доктор техн. наук, профессор, зав. кафедрой СПбГЭТУ (г. Санкт-Петербург).

93. Краснопольский Александр Евгеньевич (род. в 1932 г.) — доктор техн. наук, профессор, зав. кафедрой МИСиС (г. Москва).

94. Кручинин Анатолий Михайлович (род. в 1938 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

95. Кубарев Леонид Петрович (род. в 1941 г.) — доктор электротехники, вице-президент Международного союза машиностроителей (г. Москва).

96. Кувалдин Александр Борисович (род. в 1935 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

97. Кузнецов Иван Филиппович (род. в 1928 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург).

98. Кузнецов Сергей Бмельянович (род. в 1938 г.) — доктор техн. наук, профессор, зав. кафедрой ГМА им. СО. Макарова (г. Санкт-Петербург).

99. Кузовкин Владимир Александрович (род. в 1942 г.) — доктор техн. наук, профессор, зав. кафедрой МГТУ «Станкин» (г. Москва).

100. Кузьмин Вадим Аркадьевич (род. в 1933 г.) — доктор физ.-мат. наук, профессор, нач. отдела ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Москва).

101. Курбатов Павел Александрович (род. в 1949 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

102. Кустарев Юрий Степанович (род. в 1940 г.) — доктор техн. наук, профессор, зав. кафедрой МГТУ «МАМИ» (г. Москва).

103. Кучук Владимир Васильевич (род. в 1943 г.) — доктор электротехники, начальник научно-технического комплекса НПО «Марс» (г. Ульяновск).

104. Кушнарев Федор Андреевич (род. в 1944 г.) — доктор электротехники, ген. директор АО «Ростовэнерго» (г. Ростов-на-Дону).

105. Лакаев Анатолий Семенович (род. в 1952 г.) — доктор электротехники, директор ГНЦ «Интек» (г. Москва).

106. Лаптев Николай Николаевич (род. в 1936 г.) — доктор электротехники, гл. конструктор АКБ «Якорь» (г. Москва).

107. Лебедев Александр Валерьевич (род. в 1952 г.) — доктор электротехники, председатель ПК «ЭТО» АО «ВНИИЭТО» (г. Москва).

108. Лебедев Евгений Федорович (род. в 1937 г.) — доктор техн. наук, профессор, зам. ди-ректора НИЦ ОИВТ РАН (г. Москва).

109. Левицкий Юрий Тимофеевич (род. в 1933 г.) — доктор физ.-мат. наук, профессор, зав. отделом АмурКНИИ АмурНЦ ДВО РАН (г. Благовещенск).

ПО. Левченко Иван Иванович (род. в 1937 г.) — доктор электротехники, ген. директор РП «Южэнерготехнадзор» РАО «ЕЭС России» (г. Ессентуки).

111. Лисе Александр Рудольфович (род. в 1946 г.) — доктор техн. наук, профессор, зав. кафедрой СПбГЭТУ (г. Санкт-Петербург).

112. Литюшкин Владимир Васильевич (род. в 1948 г.) — доктор электротехники, ген. директор ОАО «Лисма» (г. Саранск).

113. Лутидзе Шота Иванович (род. в 1927 г.) — доктор техн. наук, профессор, гл. научный сотрудник ЭНИН им. Г.М. Кржижановского (г. Москва).

114. Маевский Владимир Александрович (род. в 1939 г.) — доктор электротехники, гл. конструктор ГОКБ «Горизонт» (г. Москва).

115. Мазнев Александр Сергеевич (род. в 1939 г.) — доктор техн. наук, профессор СПбГУПС (г. Санкт-Петербург).

116. Малинин Николай Константинович (род. в 1938 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

117. Малышенко Александр Максимович (род. в 1937 г.) — доктор техн. наук, профессор, Кибернетический центр при ТПУ (г. Томск).

118. Марченко Владимир Иосифович (род. в 1930 г.) — доктор физ.-мат. наук, профессор, зав. кафедрой МГУПС (г. Москва).

119. Медведев Виктор Тихонович (род. в 1941 г.) — профессор, зав. кафедрой МЭИ (г. Москва).

120. Мещеряков Виталий Михайлович (род. в 1941 г.) — доктор электротехники, профессор, лауреат Государственной премии, ген. директор АО «Электроника» (г. Воронеж).

121. Мисиченко Анатолий Павлович (род. в 1941 г.) — доктор электротехники, ген. директор ОАО «НПО НЭВЗ» (г. Новочеркасск).

122. Митин Анатолий Владимирович (род. в 1938 г.) — доктор физ.-мат. наук, профессор, зав. кафедрой КФ МЭИ (г. Казань).

123. Мнацаканов Тигран Тигранович (род. в 1944 г.) — доктор физ.-мат. наук, нач. сектора ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Москва).

124. Мороз Владимир Иванович (род. в 1944 г.) — доктор электротехники, зам. руководителя департамента Минэкономики РФ (г. Москва).

125. Мужицкий Владимир Федорович (род. в 1939 г.) — доктор техн. наук, лауреат Государственной премии, зав. научным отделом МНПО «Спектр» (г. Москва).

126. Муслимов Равиль Абдуллович (род. в 1937 г.) — доктор электротехники, ген. директор «Таттрансгаз» РАО «Газпром» (г. Казань).

127. Надоров Валерий Петрович (род. в 1946 г.) — доктор электротехники, ген. директор ГНПП «Квант» (г. Москва).

128. Никитина Валентина Николаевна (род. в 1938 г.) — доктор мед. наук, вед. научный сотрудник СПбНИИ гигиены, труда и профзаболеваний (г. Санкт-Петербург).

129. Никоренко Леонид Леонидович (род. в 1936 г.) — доктор электротехники, нач. отдела АОЗТ «Метап» (г. Москва).

130. Новгородцев Александр Борисович (род. в 1940 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург).

131. Оболенский Николай Васильевич (род. в 1938 г.) — доктор электротехники, ген. директор ООО «Термаш» (г. Нижний-Новгород).

132. Орданьян Сукяс Семенович (род. в 1934 г.) — доктор техн. наук, профессор, зав. кафедрой С.-Пб. технологического института (ТУ) (г. Санкт-Петербург).

133. Павленко Владимир Иванович (род. в 1944 г.) — доктор электротехники, директор АО «Аэроэлектрик» (г. Москва).

134. Певзнер Виталий Вульфович (род. в 1936 г.) — доктор электротехники, зав. лаб. — гл. конструктор АСУ ТП ГНЦ РФ «НИИтеплоприбор» (г. Москва).

135. Передельский Геннадий Иванович (род. в 1937 г.) — доктор техн. наук, профессор ОГТУ (г. Орел).

136. Перфильев Юрий Серафимович (род. в 1943 г.) — профессор, зав. кафедрой КрГТУ (г. Красноярск).

137. Петрунин Вадим Федорович (род. в 1939 г.) — доктор физ.-мат. наук, профессор-консультант ГП «Красная звезда» (г. Москва).

138. Пластун Анатолий Трофимович (род, в 1937 г.) — доктор техн. наук, профессор, зав. кафедрой УГТУ (г. Екатеринбург).

139. Подаруев Аркадий Иванович (род. в 1934 г.) — доктор электротехники, директор НТ ассоциации «Прогрессэлектро» (г. Москва).

140. Покровский Алексей Дмитриевич (род. в 1937 г.) — доктор техн. наук, лауреат Государственной премии, профессор МЭИ (г. Москва).

141. Покровский Георгий Павлович (род. в 1922 г.) — доктор техн. наук, профессор МГТУ «МАМИ» (г. Москва).

142. Покровский Феликс Николаевич (род. в 1937 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

143. Полонский Юрий Александрович (род. в 1935 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург).

144. Попов Анатолий Петрович (род. в 1937 г.) — доктор техн. наук, профессор, зав. кафедрой ОГТУ (г. Омск).

145. Попов Виктор Иванович (род. в 1938 г.) — доктор техн. наук, профессор Волжского инж.-пед. института (г. Нижний Новгород).

146. Потапов Леонид Алексеевич (род. в 1939 г.) — доктор техн. наук, профессор, зав. кафедрой Брянского института транспортного машиностроения (г. Брянск).

147. Пронин Виталий Петрович (род. в 1939 г.) — доктор техн. наук, профессор, зав. кафедрой ССХА (г. Саратов).

148. Рассудов Лев Николаевич (род. в 1940 г.) — докт. техн. наук, профессор, зав. кафедрой СПбГЭТУ (г. Санкт-Петербург).

149. Рахманов Александр Львович (род. в 1948 г.) — доктор физ.-мат. наук, зав. сектором ОИВТ РАН (г. Москва).

150. Рембеза Станислав Иванович (род. в 1939 г.) — доктор физ.-мат. наук, профессор, зав. кафедрой ВГТУ (г. Воронеж).

151. Розанов Михаил Николаевич (род. в 1926 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, лауреат Государственной премии, гл. научный сотрудник СЭИ им. Л.А. Мелентьева СО РАН (г. Иркутск).

152. Романов Алексей Александрович (род. в 1933 г.) — доктор электротехники, директор Волжской ГЭС РАО «ЕЭС России» (г. Жигулевск).

153. Ромаш Эдуард Михайлович (род. в 1937 г.) — доктор техн. наук, профессор МГАЛП (г. Москва).

154. Рубисов Генрих Васильевич (род. в 1932 г.) — доктор техн. наук, профессор, зав. кафедрой СПбАХиТП (г. Санкт-Петербург).

155. Ружников Валерий Африканович (род. в 1941 г.) — профессор, зав. кафедрой ИГТУ (г. Иркутск).

156. Савельев Виталий Андреевич (род. в 1940 г.) — доктор техн. наук, профессор, зав. кафедрой ИГЭУ (г. Иваново).

157. Самосейко Вениамин Францевич (род. в 1947 г.) — доктор техн. наук, профессор СПбГУВК (г. Санкт-Петербург).

158. Сарычев Алексей Петрович (род. в 1962 г.) — доктор электротехники, зам. ген. директора НПП «ВНИИЭМ» (г. Москва).

159. Сарычев Генрих Сергеевич (род. в 1932 г.) — доктор техн. наук, гл. научный сотрудник АО «ВНИСИ им. СИ. Вавилова» (г. Москва).

160. Сенилов Георгий Николаевич (род. в 1912 г.) — доктор техн. наук, вед. научный сотрудник МЭИ (г. Москва).

161. Сербин Виктор Иванович (род. в 1935 г.) — доктор техн. наук, профессор, лауреат Государственной премии, первый зам. директора — главный конструктор ГП «Красная звезда» (г. Москва).

162. Сидельников Борис Викторович (род. в 1937 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург).

163. Симановский Игорь Викторович (род. в 1939 г.) — доктор электротехники, зам. ген. директора ЦНИИ «Гранит» (г. Санкт-Петербург).

164. Скачков Юрий Васильевич (род. в 1941 г.) — доктор техн. наук, вед. научный сотрудник ЦНИИМФ (г. Санкт-Петербург).

165. Славин Вадим Соломонович (род. в 1946 г.) — доктор физ.-мат. наук, декан КрГТУ (г. Красноярск).

166. Смазнов Петр Петрович (род. в 1941 г.) — доктор электротехники, директор Московского филиала АООТ «Урал — Морган Карбон» (г. Москва).

167. Смелков Герман Иванович (род. в 1939 г.) — доктор техн. наук, профессор, гл. научный сотрудник ВНИИ противопожарной обороны МВД РФ (г. Балашиха, Московская область).

168. Суворов Николай Иванович (род. в 1940 г.) — доктор электротехники, ОАО «НИИПТИЭМ» (г. Владимир).

169. Сухинин Борис Владимирович (род. в 1943 г.) — доктор техн. наук, профессор, зам. главного конструктора ЦКБ аппаратостроения (г. Тула).

170. Сытников Виктор Евгеньевич (род. в 1949 г.) — доктор техн. наук, зав. отделом АО «ВНИИКП» (г. Москва).

171. Тазов Геннадий Васильевич (род. в 1943 г.) — доктор техн. наук, профессор, зам. директора АО «ВНИИМЭМ» (г. Санкт-Петербург).

172. Тарасов Владимир Иннокентьевич (род. в 1945 г.) — доктор техн. наук, профессор, зав. кафедрой ИГТУ (г. Иркутск).

173. Тарасов Владимир Николаевич (род. в 1937 г.) — доктор техн. наук, профессор, гл. научный сотрудник МЭИ (г. Москва).

174. Тимофеев Виктор Николаевич (род. в 1950 г.) — доктор техн. наук, профессор, зав. кафедрой КрГТУ (г. Красноярск).

175. Трегубое Иван Андреевич (род. в 1937 г.) — доктор электротехники, начальник лаборатории ВНИИгаз РАО «Газпром» (Московская область).

176. Тубис Яков Борисович (род. в 1932 г.) — доктор электротехники, зав. отделом ОАО «НИИПТИЭМ» (г. Владимир).

177. Ушаков Евгений Иванович (род. в 1940 г.) — доктор техн. наук, вед. научный сотрудник СЭИ СО РАН (г. Иркутск).

178. Федоров Владимир Кузьмич (род. в 1948 г.) — доктор техн. наук, профессор, зав. кафедрой ОГТУ (г. Омск).

179. Федоров Владимир Михайлович (род. в 1938 г.) — доктор физ.-мат. наук, лауреат Государственной премии, гл. научный сотрудник ОИВТ РАН (г. Москва).

180. Федосенко Юрий Кириллович (род. в 1935 г.) — доктор техн. наук, лауреат Государственной премии, зав. научным отделом МНПО «Спектр» (г. Москва).

181. Феоктистов Валерий Павлович (род. в 1939 г.) — доктор техн. наук, профессор, зав. кафедрой МГУПС (г. Москва).

182. Финкель Эдуард Эммануилович (род. в 1927 г.) — доктор техн. наук, лауреат Государственной премии, гл. научный сотрудник АО «ВНИИКП» (г. Москва).

183. Фисун Владимир Владимирович (род. в 1941 г.) — доктор электротехники, зам. директора ЦНИИ «Курс» (г. Москва).

184. Флоренцев Станислав Николаевич (род. в 1947 г.) — доктор электротехники, ген. директор НПК «Силовая интеллектуальная электроника» (г. Москва).

185. Фоминич Эдуард Николаевич (род. в 1940 г.) — доктор техн. наук, профессор Военного инженерно-технического ун-та (г. Санкт- Петербург).

186. Хайруллин Рафик Гумарович (род. в 1939 г.) — доктор электротехники, ПЭО «Татэнерго» (г. Казань).

187. Халилов Фирудин Халилович (род. в 1939 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург).

188. Халин Евгений Васильевич (род. в 1951 г.) — доктор электротехники, ген. директор НИИПФ «Техинтелл» (г. Москва).

189. Хватов Станислав Вячеславович (род. в 1938 г.) — доктор техн. наук, профессор, заслуженный деятель науки и техники РФ, зав. кафедрой НГТУ (г. Нижний Новгород).

190. Холодный Станислав Дмитриевич (род. в 1933 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

191.Хотин Владимир Алексеевич (род. в 1930 г.) — доктор электротехники, ученый секретарь АО «ВНИИЭТО» (г. Москва).

192. Хохлов Юрий Иванович (род. в 1944 г.) — доктор техн. наук, профессор, зав. кафедрой ЧГТУ (г. Челябинск).

193. Хронусов Геннадий Сергеевич (род. в 1937 г.) — доктор техн. наук, профессор, зав. кафедрой УГГА (г. Екатеринбург).

194. Хузмиев Измаил Каурбекович (род. в 1938 г.) — доктор техн. наук, профессор (г. Владикавказ).

195. Цгоев Руслан Сергеевич (род. в 1941 г.) — доктор техн. наук, профессор, вед. научный сотрудник АО «ВНИИЭ» (г. Москва).

196. Целебровский Юрий Викторович (род. в 1938 г.) — доктор техн. наук, профессор, зав. кафедрой НГТУ (г. Новосибирск).

197. Чванов Вячеслав Александрович (род. в 1937 г.) — доктор техн. наук, профессор, нач. отдела ГНЦ РФ «ВЭИ им. В.И. Ленина» (г. Москва).

198. Червонный Евгений Максимович (род. в 1930 г.) — доктор техн. наук, профессор, зав. кафедрой НГТУ (г. Нижний Новгород).

199. Черепанов Вячеслав Васильевич (род. в 1946 г.) — доктор техн. наук, профессор, зав. кафедрой Вятского ГТУ (г. Вятка).

200. Чернышев Александр Иванович (род. в 1939 г.) — доктор техн. наук, профессор, лауреат Государственной премии, ген. директор ГНПП «Полюс» (г. Томск).

201.Чижков Юрий Павлович (род. в 1941 г.) — профессор, зав. кафедрой МГТУ «МАМИ» (г. Москва).

202. Чиндяскин Владимир Иванович (род. в 1955 г.) — доктор электротехники, директор ООО «Мысль» (г. Оренбург).

203. Шакиров Мансур Акмелович (род. в 1937 г.) — доктор техн. наук, профессор СПбГТУ (г. Санкт-Петербург).

204. Шаров Сергей Николаевич (род. в 1939 г.) — доктор техн. наук, профессор, гл. научный сотрудник ЦНИИ «Гранит» (г. Санкт-Петербург).

205. Шахпарунянц Геннадий Рубенович (род. в 1938 г.) — доктор электротехники, директор АО «ВНИСИ им. СИ. Вавилова» (г. Москва).

206. Шевченко Владимир Васильевич (род. в 1926 г.) — доктор техн. наук, заслуженный деятель науки и техники РФ, профессор МЭИ (г. Москва).

207. Шелихов Геннадий Степанович (род. в 1927 г.) — доктор техн. наук, вед. научный сотрудник НИИРЭАТ (г. Люберцы, Московская область).

208. Шепель Георгий Александрович (род. в 1935 г.) — доктор техн. наук, профессор, зав. кафедрой Архангельского лесотехнич. ун-та (г. Архангельск).

209. Шиков Александр Константинович (род. в 1948 г.) — доктор техн. наук, лауреат Государственной премии, директор отделения ГНЦ РФ ВНИИ неорганических материалов им. акад. A.M. Бочвара (г. Москва).

210. Шипицын Виктор Васильевич (род. в 1936 г.) — доктор техн. наук, профессор, зав. кафедрой УГТУ (г. Екатеринбург).

211. Широков Владимир Леонидович (род. в 1945 г.) — доктор техн. наук, профессор СПбГААП (г. Санкт-Петербург).

212. Шиянов Анатолий Иванович (род. в 1940 г.) — доктор техн. наук, профессор, проректор ВГТУ (г. Воронеж).

213. Шмелев Сергей Константинович (род. в 1942 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

214. Шоффа Вадим Николаевич (род. в 1935 г.) — доктор техн. наук, профессор МЭИ (г. Москва).

215. Шошмин Владимир Александрович (род. в 1938 г.) — доктор техн. наук, профессор, зав! кафедрой СПбГУВК (г. Санкт-Петербург).

216. Шпилевой Виталий Алексеевич (род. в 1936 г.) — доктор техн. наук, профессор, директор НИИ энергетики и энергоснабжения нефтегазового комплекса ТГНУ (г. Тюмень).

217. Шульга Игорь Яковлевич (род. в 1933 г.) — доктор электротехники, ген. директор ВНИИЭИМ (г. Москва).

218. Шунаев Николай Андреевич (род. в 1940 г.) — доктор электротехники, начальник — гл. конструктор КБ «Аметист» (г. Москва).

219. Ютландов Юрий Дмитриевич (род. в 1934 г.) — доктор электротехники, АО «Электровыпрямитель» (г. Саранск).

220. Явленский Александр Константинович (род. в 1945 г.) — доктор техн. наук, профессор, зав. кафедрой СПбГААП (г. Санкт-Петербург).

221. Яковлев Александр Васильевич (род. в 1946 г.) — чл.-корр. МАЭН, председатель МНТОЭЭ (г. Москва).


13.4. КОЛЛЕКТИВНЫЕ ЧЛЕНЫ АЭН РФ

1. Авиационный научно-промышленный комплекс (АНПК) «МиГ им. А.И. Микояна», г. Москва.

2. Акционерная электротехническая компания (АЭК) «Динамо», г. Москва.

3. Акционерное общество «Автоэлектроарматура» (АО «Авар»), г. Псков.

4. Акционерное общество «Аэроэлектрик», г. Москва.

5. Акционерное общество «Волжская ГЭС», г. Жигулевск.

6. Акционерное общество «Всероссийский научно-исследовательский институт кабельной промышленности» (АО «ВНИИКП), г. Москва.

7. Акционерное общество «Всероссийский научно-исследовательский проектно-конструкторский и технологический институт кранового и тягового электрооборудования» Акционерной электротехнической компании «Динамо» (АО «ВНИИПТИ» АЭК «Динамо»), г. Москва.

8. Акционерное общество «Всероссийский научно-исследовательский проектно-конструкторский и технологический институт электротермического оборудования (АО «ВНИИЭТО»), г. Москва.

9. Акционерное общество «Всероссийский научно-исследовательский проектно-конструкторский светотехнический институт (АО «ВНИСИ им. С.И. Вавилова»), г. Москва.

10. Акционерное общество «Всероссийский научно-исследовательский проектно-конструкторский институт электровозостроения» (АО «ВЭлНИИ»), г. Новочеркасск.

11. Акционерное общество «ДИЭКС». г. Москва.

12. Акционерное общество «Евромастер», г. Москва.

13. Акционерное общество «Автосвет» (АО «Автосвет»), г. Киржач, Владимирская область.

14. Акционерное общество «Завод автотракторных запальных свечей» (АО «ЗАЗС»), г. Энгельс, Саратовская область.

15. Акционерное общество «Инженерно-производственная фирма (АО ИПФ) “Сибнефтеавтоматика”», г. Тюмень.

16. Акционерное общество «Инкар», г. Пермь.

17. Акционерное общество «Калужский завод автомотоэлектрооборудования» (АО «КЗА-МЭ»), г. Калуга.

18. Акционерное общество «Камкабель», г. Пермь.

19. Акционерное общество «Красноярская ГЭС», г. Дивногорск, Красноярский край.

20. Акционерное общество «Красноярскэнерго», г. Красноярск.

21. Акционерное общество «Лисма», г. Саранск.

22. Акционерное общество «Метап», г. Москва.

23. Акционерное общество «Мордовэнерго», г. Саранск.

24. Акционерное общество «Московский завод автотракторной электроаппаратуры» (АО «МЗАТЭ-2»), г. Москва.

25. Акционерное общество «Научно-исследовательский институт СуперЭВМ» (АО «НИИсуперЭВМ»), г. Москва.

26. Акционерное общество «Научно-исследовательский проектно-конструкторский и технологический институт электромашиностроения» (АО «НИПТИЭМ»), г. Владимир.

27. Акционерное общество «Научно-производственная фирма (АО НПФ) “Агрегатный завод”», г. Москва.

28. Акционерное общество «Научно-производственное объединение “Новочеркасский электровозостроительный завод”» (АО «НПО “НЭВЗ”»), г. Новочеркасск.

29. Акционерное общество «Научно-производственное объединение “Электропривод”» (АО «НПО “Электропривод”»), г. Москва.

30. Акционерное общество «Научно-производственное предприятие (АО НПП) “Сапфир”», г. Москва.

31. Акционерное общество «Объединенные электрические сети (АО ОЭС) Урала» («Урал-энерго»), г. Екатеринбург.

32. Акционерное общество «Оргсинтез», г. Казань.

33. Акционерное общество «Орловский электромеханический завод», г. Орел.

34. Акционерное общество «Пермская приборостроительная компания», г. Пермь.

35. Акционерное общество «Правдинский опытный завод источников тока» (АО «Позит»). г. Правдинский, Московская область.

36. Акционерное общество «Привод», г. Лысьва, Пермская область.

37. Акционерное общество «Ростовэнерго», г. Ростов.

38. Акционерное общество «Саранский приборостроительный завод», г. Саранск.

39. Акционерное общество «Сарансккабель», г. Саранск.

40. Акционерное общество «Светлогорск», г. Светлогорск, Ленинградская область.

41. Акционерное общество «Симбирскдиалог», г. Ульяновск.

42. Акционерное общество «Ставровский завод автотракторного оборудования», г. Ставров, Владимирская область.

43. Акционерное общество «Татнефтепродукт-холдинг», г. Казань.

44. Акционерное общество «Таттрансгаз», г. Казань.

45. Акционерное общество «Татхимтранс», г. Казань.

46. Акционерное общество «Томскэнерго», г. Томск.

47. Акционерное общество «Троллейбусный завод», г. Энгельс, Саратовская область.

48. Акционерное общество «Тюменьэнерго», г. Сургут, Тюменской область.

49. Акционерное общество «Электровыпрямитель», г. Саранск.

50. Акционерное общество «Электролуч», г. Москва.

51. Акционерное общество «Электропривод», г. Москва.

52. Акционерное общество «Электротехнические устройства общего и специального назначения» (АО «Ритм-2»), г. Москва.

53. Акционерное общество «НП “Эра”», г. Нижний Новгород.

54. Акционерное общество «Янтарьэнерго», г. Калининград.

55. Акционерное общество «Ярославский электромашиностроительный завод», г. Ярославль.

56. Акционерное общество — холдинговая компания «Калужские заводы автомотоэлектрооборудования» (АО «КЗАМЭхолдинг»), г. Калуга.

57. Ассоциация «Автоматизированный электропривод», г. Москва.

58. Акционерное общество «Всероссийский научно-исследовательский проектно-конструкторский институт малых электрических машин» (АО «ВНИИМЭМ»), г. Санкт-Петербург.

59. Горный журнал. Известия вузов, г. Екатеринбург.

60. Горэлектросети г. Красноярска Акционерного общества «Красноярскэнерго», г. Красноярск.

61. Государственное научно-производственное объединение «Агат», г. Москва.

62. Государственное научно-производственное предприятие «Квант», г. Москва.

63. Государственное особое конструкторское бюро «Горизонт», г. Москва.

64. Государственное предприятие «Красная звезда», г. Москва.

65. Государственное предприятие «Научно-производственное объединение “Марс” («ГНПО “Марс”»), г. Ульяновск.

66. Государственное предприятие «Тулаточмаш», г. Тула.

67. Государственный завод «Топаз», г. Москва.

68. Государственный научный центр РФ «Всероссийский электротехнический институт им. В.И. Ленина» (ГНЦ «ВЭИ им. В.И. Ленина»), г. Москва.

69. Государственный научный центр РФ «Центральный научно-исследовательский институт «Электроприбор» (ГНЦ РФ «ЦНИИэлектроприбор»), г. Санкт-Петербург.

70. Дом ученых (центральный) Российской академии наук, г. Москва.

71. Журнал «Светотехника», г. Москва.

72. Журнал «Электричество», г. Москва.

73. Журнал «Электротехника», г. Москва.

74. Институт бизнеса и менеджмента металлургии Комитета РФ по металлургии, г. Москва.

75. Калининградский государственный технический университет, г. Калининград.

76. Конструкторское бюро «Аметист», г. Москва.

77. Конструкторское бюро «Связьморпроект», г. Санкт-Петербург.

78. Красноярскэлектронадзор, г. Красноярск.

79. Локомотивное депо Ленинград-пассажирский Московской Октябрьской железной дороги, г. Санкт-Петербург.

80. Международный фонд попечителей МГАТУ им. К.Э. Циолковского

81. Межотраслевой научный центр оборонных отраслей промышленности «Атаке» (НЦ «Атаке»), г. Москва.

82. Мордовский государственный университет им. Н.П. Огарева, г. Саранск.

83. Московский государственный строительный университет, г. Москва.

84. Московский государственный технический университет «МАМИ», г. Москва.

85. Московский завод электромеханизмов (МЗЭМ), г. Москва.

86. Московский завод электротермического оборудования (МЗЭО), г. Москва.

87. Московский локомотиворемонтный завод (МЛРЗ), г. Москва.

88. Московский радиотехнический институт, г. Москва.

89. Московский филиал совместного российско-английского предприятия «Урал — Морган Карбон», г. Москва.

90. Московский энергетический институт (технический университет), г. Москва.

91. Московское научно-производственное объединение «Гамма», г. Москва.

92. Московское научно-производственное объединение «Спектр», г. Москва.

93. Муниципальное предприятие «Трамвайно-троллейбусное управление г. Екатеринбурга», г. Екатеринбург.

94. Научно-инженерный центр «Электронные системы электроники» Всероссийского

электротехнического института им. В.И. Ленина (НИЦ «Элсиэл» ВЭИ), г. Москва.

95. Научно-исследовательская производственная фирма «Техинтелл», г. Москва.

96. Научно-исследовательский и проектно-конструкторский институт средств автоматизации на железнодорожном транспорте МПС РФ (НИИЖА), г. Москва.

97. Научно-исследовательский и экспериментальный институт автомобильной электроники и электрооборудования (НИИАЭ), г. Москва.

98. Научно-исследовательский институт теплоэнергетического приборостроения (НИИтеплоприбор), г. Москва.

99. Научно-исследовательский институт энергетики и энергоснабжения нефтегазового комплекса Тюменского государственного нефтегазового университета (НИИЭ НГК ТюмГНГУ), г. Тюмень.

100. Научно-производственное объединение «Машиностроение», г. Реутов, Московская область.

101. Научно-производственное объединение «Элекон», г. Казань.

102. Научно-производственное объединение «Электроника», г. Воронеж

103. Научно-производственное предприятие «Всероссийский научно-исследовательский институт электромеханики» (НПП «ВНИИЭМ») (с заводом), г. Москва.

104. Научно-производственное предприятие «Элвест», г. Екатеринбург.

105. Научно-промышленный консорциум «Силовая интеллектуальная электроника», г. Москва.

106. Научно-техническая ассоциация «Прогрессэлектро», г. Москва.

107. Научно-техническая фирма «Мью и Носби», г. Москва.

108. Научно-технический центр Всероссийского электротехнического института им. В.И. Ленина (НТЦ ВЭИ), г. Тольятти.

109. Новосибирский технический университет, г. Новосибирск.

110. Новочеркасский промышленно-гуманитарный колледж, г. Новочеркасск.

111. Общество с ограниченной ответственностью «Ай-Си-Эс», г. Москва.

112. Общество с ограниченной ответственностью «Сжиженный газ» РАО «Газпром», г. Казань.

113. Общество с ограниченной ответственностью «Татхимтранс», г. Казань.

114. Общество с ограниченной ответственностью «Яз», г. Казань.

115. Объединенное диспетчерское управление энергосистем Урала (ОДУ Урала), г. Екатеринбург.

116. Объединенные электрические сети «Сибирьэнерго», г. Красноярск.

117. Открытое акционерное общество «Предприятие “Оренбурггазпром” РАО «Газпром», г. Оренбург.

118. Открытое акционерное общество «Татгазселькомплект», г. Казань.

119. Первый центральный научно-исследовательский институт военного кораблестроения Министерства обороны РФ (1-й ЦНИИ МО РФ), г. Санкт-Петербург.

120. Пермские городские сети, г. Пермь.

121. Производственное энергетическое объединение «Татэнерго», г. Казань.

122. Региональная общественная организация инвалидов — центр «Древо жизни», г. Москва.

123. Ремонтно-строительное управление «Таттрансгаз», с. Константиновка Высокогорского р-на, Татарстан.

124. Российское акционерное общество «Единая энергетическая система России», (РАО «ЕЭС России»), г. Москва.

125. Сакмарская ТЭЦ АО «Оренбургэнерго» г. Оренбург.

126. Санкт-Петербургский технологический университет, г. Санкт-Петербург.

127. Саратовский электротехнический завод Министерства путей сообщения РФ, г. Саратов.

128. Северные электрические сети АО «Красноярскэнерго», г. Лесосибирск.

129. Смоленское производственное объединение «Аналитприбор», г. Смоленск.

130. Специализированный центр по электроэнергетике ГНЦ РФ «Научно-исследовательский институт “Теплоприбор”» (СЦ «НИИтеплоприбор»), г. Москва.

131. Товарищество с ограниченной ответственностью «Мысль», г. Оренбург.

132. Товарищество с ограниченной ответственностью «Норма», г. Казань.

133. Товарищество с ограниченной ответственностью «Райтроник», г. Москва.

134. Товарищество с ограниченной ответственностью «Тавридаэлектрик», г. Москва.

135. Тольяттинский политехнический институт, г. Тольятти.

136. Томский политехнический университет, г. Томск.

137. Ульяновский государственный технический университет, г. Ульяновск.

138. Управление энергетики РАО «Газпром», г. Москва.

139. Уральский компьютерный дом, г. Пермь.

140. Федеральный научный центр — Научно-исследовательский институт «Гранит», г. Санкт-Петербург.

141. Центральное конструкторское бюро морской техники «Рубин», г. Санкт-Петербург.

142. Центральное конструкторское бюро тяжелого машиностроения, г. Москва.

143. Центральные электрические сети АО «Красноярскэнерго», г. Красноярск.

144. Центральный научно-исследовательский институт «Гидроприбор», г. Санкт-Петербург.

145. Центральный научно-исследовательский институт «Курс», г. Москва.

146. Центральный научно-исследовательский институт «Морфизприбор», г. Санкт-Петербург.

147. Центральный научно-исследовательский институт судовой электротехники и технологии (ЦНИИСЭТ), г. Санкт-Петербург.

148. Юго-восточные электрические сети АО «Красноярскэнерго», г. Заозерный, Красноярский край.


Примечания

1

Термин «электрический ток» был введен A.M. Ампером (см. § 2.5).

(обратно)

2

Если цепь питается от батареи, то ток пропорционален ЭДС элемента (в числителе), а в знаменателе кроме сопротивления цепи указывается и внутреннее сопротивление элемента.

(обратно)

3

Термин «электротехника» стал употребляться именно после Международной «электротехнической» выставки 1881 г. и последовавшего за ней конгресса электриков.

(обратно)

4

Без линии электропередачи постоянного тока 800 кВ (0,48 тыс. км).

(обратно)

5

Указаны линейные напряжения в группе трансформаторов.

(обратно)

6

Каждому габариту соответствовал свой внутренний диаметр корпуса статора (станины).

(обратно)

7

При f = 100 кГц

(обратно)

Оглавление

  • ПРЕДИСЛОВИЕ
  • ВВЕДЕНИЕ
  • Глава 1. ПРЕДЫСТОРИЯ ЭЛЕКТРОТЕХНИКИ (ДО 1800 г.)
  •   1.1. ПЕРВЫЕ НАБЛЮДЕНИЯ МАГНИТНЫХ И ЭЛЕКТРИЧЕСКИХ ЯВЛЕНИЙ
  •   1.2. НАЧАЛО ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ЭЛЕКТРИЧЕСТВА И МАГНЕТИЗМА
  •   1.3. ОТКРЫТИЕ НОВЫХ СВОЙСТВ ЭЛЕКТРИЧЕСТВА
  •   1.4. ИЗУЧЕНИЕ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА
  •   1.5. УСТАНОВЛЕНИЕ СХОДСТВА И ПОДОБИЯ МЕЖДУ ЭЛЕКТРИЧЕСКИМИ И МАГНИТНЫМИ ЯВЛЕНИЯМИ
  • Глава 2. НАЧАЛЬНЫЙ ЭТАП РАЗВИТИЯ ЭЛЕКТРОТЕХНИКИ (1800–1870 гг.)
  •   2.1. ИССЛЕДОВАНИЯ ЛУИДЖИ ГАЛЬВАНИ
  •   2.2. СОЗДАНИЕ ПЕРВОГО ИСТОЧНИКА ЭЛЕКТРИЧЕСКОГО ТОКА
  •   2.3. ОБНАРУЖЕНИЕ И ИЗУЧЕНИЕ ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА
  •   2.4. ОТКРЫТИЕ ЭЛЕКТРИЧЕСКОЙ ДУГИ И ЕЕ ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ
  •   2.5. ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА И МАГНИТА
  •   2.6. ОТКРЫТИЕ ЯВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСТВА И УСТАНОВЛЕНИЕ ЗАКОНОВ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
  •   2.7. ОТКРЫТИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ
  •   2.8. ЗАРОЖДЕНИЕ ТЕОРЕТИЧЕСКИХ ОСНОВ ЭЛЕКТРОТЕХНИКИ
  •   2.9. ИСТОРИЯ ОТКРЫТИЯ ЗАКОНА СОХРАНЕНИЯ И ПРЕВРАЩЕНИЯ ЭНЕРГИИ
  •   2.10. ПЕРВЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ
  •     2.10.1. ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ
  •     2.10.2. ЭЛЕКТРИЧЕСКИЕ ГЕНЕРАТОРЫ
  •   2.11. ЗАРОЖДЕНИЕ ЭЛЕКТРОАВТОМАТИКИ, ЭЛЕКТРОПРИБОРОСТРОЕНИЯ И ИНФОРМАЦИОННОЙ ЭЛЕКТРОТЕХНИКИ
  •   2.12. ПЕРВЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ОСВЕЩЕНИЯ
  • Глава 3. СТАНОВЛЕНИЕ ЭЛЕКТРОТЕХНИКИ КАК САМОСТОЯТЕЛЬНОЙ ОТРАСЛИ ТЕХНИКИ (1870–1890 гг.)
  •   3.1. ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ
  •   3.2. ИЗОБРЕТЕНИЕ ТРАНСФОРМАТОРА
  •   3.3. ПОИСКИ ПУТЕЙ ПЕРЕДАЧИ ЭЛЕКТРОЭНЕРГИИ НА БОЛЬШИЕ РАССТОЯНИЯ
  •   3.4. РАННИЕ ЭЛЕКТРОСТАНЦИИ
  •   3.5. ОТКРЫТИЕ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ И СОЗДАНИЕ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ
  •   3.6. ТРЕХФАЗНЫЕ СИСТЕМЫ И АСИНХРОННЫЕ ЭЛЕКТРОДВИГАТЕЛИ
  •   3.7. ЭЛЕКТРОПРИВОД, ЭЛЕКТРОТРАНСПОРТ И ЭЛЕКТРОТЕХНОЛОГИИ
  • Глава 4. ТЕОРЕТИЧЕСКАЯ ЭЛЕКТРОТЕХНИКА
  •   4.1. ВВЕДЕНИЕ
  •   4.2. СТАНОВЛЕНИЕ ФИЗИЧЕСКИХ ОСНОВ ТЭ
  •   4.3. РАЗВИТИЕ ОТЕЧЕСТВЕННОЙ ШКОЛЫ ТЭ
  •   4.4. ТЕОРЕТИЧЕСКАЯ ЭЛЕКТРОТЕХНИКА В СССР
  •   4.5. ТЕОРИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
  •   4.6. ТЕОРИЯ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЛЦ
  •   4.7. ПРОБЛЕМЫ СИНТЕЗА ЛЦ
  •   4.8. ОБЩИЕ ВОПРОСЫ ТЕОРИИ НЕЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
  •   4.9. ТЕОРИЯ ЭМП
  •   4.10. РАСЧЕТЫ И ИССЛЕДОВАНИЯ ПОЛЕЙ
  •   4.11. ЭЛЕКТРОМАГНИТНЫЕ ПРОЦЕССЫ В ВЕЩЕСТВЕННЫХ СРЕДАХ
  •   4.12. ДИНАМИКА СВОБОДНЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ И ТЕЛ В ЭМП
  •   4.13. ПРЕОБРАЗОВАНИЕ И ГЕНЕРАЦИЯ ЭМП В ТЕХНОЛОГИЧЕСКИХ ЦЕЛЯХ
  •   4.14. ВЛИЯНИЕ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ НА РАЗВИТИЕ ТЭ
  •   4.15. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ
  •   4.16. ПЕРСПЕКТИВЫ РАЗВИТИЯ ТЭ
  • Глава 5. ЭЛЕКТРОЭНЕРГЕТИКА И ЭЛЕКТРИФИКАЦИЯ
  •   5.1. ЭЛЕКТРОЭНЕРГЕТИКА В КОНЦЕ XIX И В XX ВЕКЕ
  •     5.1.1. ПЕРВАЯ ТРЕХФАЗНАЯ ЛИНИЯ ЭЛЕКТРОПЕРЕДАЧИ
  •     5.1.2. ВОЗНИКНОВЕНИЕ РАЙОННЫХ ЭЛЕКТРОСТАНЦИЙ И ЭНЕРГЕТИЧЕСКИХ СИСТЕМ
  •     5.1.3. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ЭЛЕКТРОЭНЕРГЕТИКИ В НАШЕЙ СТРАНЕ
  •     5.1.4. ИНТЕГРАЦИОННЫЕ ПРОЦЕССЫ В МИРОВОЙ ЭЛЕКТРОЭНЕРГЕТИКЕ
  •   5.2. ЭЛЕКТРИЧЕСКАЯ ЧАСТЬ ЭЛЕКТРОСТАНЦИЙ
  •   5.3. ТЕХНИКА ПЕРЕДАЧИ И РАСПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
  •     5.3.1. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ
  •     5.3.2. СОЗДАНИЕ ЭЛЕКТРОПЕРЕДАЧ СВН И УВН — ВЫДАЮЩЕЕСЯ ДОСТИЖЕНИЕ РОССИЙСКИХ ЭЛЕКТРОЭНЕРГЕТИКОВ
  •     5.3.3. ЭЛЕКТРОПЕРЕДАЧИ ПОСТОЯННОГО ТОКА
  •     5.3.4. РАСПРЕДЕЛИТЕЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ СЕТИ
  •     5.3.5. ПОТЕРИ И КАЧЕСТВО ЭЛЕКТРОЭНЕРГИИ
  •   5.4. ТЕХНИКА ЗАЩИТЫ ОБЪЕКТОВ ЭЛЕКТРОЭНЕРГЕТИКИ ОТ ГРОЗОВЫХ И ВНУТРЕННИХ ПЕРЕНАПРЯЖЕНИЙ
  •     5.4.1. ПЕРЕНАПРЯЖЕНИЯ И ИХ ОГРАНИЧЕНИЕ
  •     5.4.2. РАЗВИТИЕ МЕТОДОВ И АППАРАТУРЫ ДЛЯ ЗАЩИТЫ ОТ ПЕРЕНАПРЯЖЕНИЙ
  •     5.4.3. КООРДИНАЦИЯ ИЗОЛЯЦИИ И МЕТОДЫ ЕЕ ИСПЫТАНИЙ
  •     5.4.4. ИСТОЧНИКИ НАПРЯЖЕНИЙ И ТОКОВ ДЛЯ ИСПЫТАНИЙ ЭЛЕКТРООБОРУДОВАНИЯ
  •   5.5. ТЕХНИКА РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ УПРАВЛЕНИЯ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИМИ СИСТЕМАМИ
  •     5.5.1. РЕЛЕЙНАЯ ЗАЩИТА
  •     5.5.2. ПРОТИВОАВАРИЙНАЯ АВТОМАТИКА
  •     5.5.3. АВТОМАТИКА УПРАВЛЕНИЯ
  •     5.5.4. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ И КОМПЛЕКСЫ ПРОТИВОАВАРИЙНОГО УПРАВЛЕНИЯ
  •   5.6. УПРАВЛЕНИЕ СОВРЕМЕННЫМИ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИМИ СИСТЕМАМИ
  •     5.6.1. ФОРМИРОВАНИЕ РЫНОЧНЫХ ОТНОШЕНИЙ В РОССИЙСКОЙ ЭЛЕКТРОЭНЕРГЕТИКЕ
  •     5.6.2. АВТОМАТИЗИРОВАННАЯ СИСТЕМА ДИСПЕТЧЕРСКОГО УПРАВЛЕНИЯ ЕЭС РОССИИ
  •     5.6.3. ЧЕЛОВЕКО-МАШИННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ СОВРЕМЕННЫМИ ЭЭС
  •   5.7. ЭЛЕКТРОТЕХНИКА В ВОЕННОМ ДЕЛЕ
  •     5.7.7. ИСТОЧНИКИ ЭЛЕКТРОЭНЕРГИИ, ЭЛЕКТРИЧЕСКИЕ СЕТИ И ФОРМИРОВАНИЕ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ ВОЕННОГО НАЗНАЧЕНИЯ
  •     5.7.2. ПЕРЕДВИЖНЫЕ ЭЛЕКТРОСТАНЦИИ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ
  •     5.7.3. СОВРЕМЕННЫЙ ЭТАП ЭЛЕКТРОСНАБЖЕНИЯ ВОЕННЫХ ОБЪЕКТОВ
  •     5.7.4. ЭЛЕКТРИФИКАЦИЯ ОСНОВНЫХ МЕХАНИЗМОВ ВОЕННОЙ ТЕХНИКИ
  •     5.7.5. ЭЛЕКТРООСВЕТИТЕЛЬНЫЕ УСТРОЙСТВА ДЛЯ ВОЕННЫХ ЦЕЛЕЙ
  • Глава 6. ЭЛЕКТРОМЕХАНИКА
  •   6.1. ЭЛЕКТРОМЕХАНИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ ЭНЕРГИИ
  •   6.2. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ДЛЯ ЭЛЕКТРОЭНЕРГЕТИКИ И ОБЩЕГО НАЗНАЧЕНИЯ
  •     6.2.1. ОБЩИЕ СВЕДЕНИЯ
  •     6.2.2. МАШИНЫ ПОСТОЯННОГО ТОКА ЕДИНЫХ СЕРИЙ
  •     6.2.3. ТЯГОВЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА
  •     6.2.4. КРУПНЫЕ МАШИНЫ ПОСТОЯННОГО ТОКА
  •     6.2.5. ТИРИСТОРНЫЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА
  •     6.2.6. ТУРБОГЕНЕРАТОРЫ
  •     6.2.7. ГИДРОГЕНЕРАТОРЫ
  •     6.2.8. СИНХРОННЫЕ КОМПЕНСАТОРЫ
  •     6.2.9. КРУПНЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА (КЭМ)
  •     6.2.10. ВЕНТИЛЬНЫЕ ЭЛЕКТРОДВИГАТЕЛИ
  •     6.2.11. СИСТЕМЫ ВОЗБУЖДЕНИЯ И АВТОМАТИЧЕСКИЕ РЕГУЛЯТОРЫ ВОЗБУЖДЕНИЯ
  •     6.2.12. АСИНХРОННЫЕ ДВИГАТЕЛИ
  •     6.2.13. ИЗОЛЯЦИЯ ОБМОТОК ЭЛЕКТРИЧЕСКИХ МАШИН
  •     6.2.14. МЕТАЛЛОВЕДЕНИЕ ВТ КРУПНОМ ЭЛЕКТРОМАШИНОСТРОЕНИИ
  •   6.3. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ МАЛОЙ МОЩНОСТИ
  •   6.4. ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ
  •     6.4.1. ОБЩИЕ СВЕДЕНИЯ
  •     6.4.2. АППАРАТЫ ВЫСОКОГО НАПРЯЖЕНИЯ
  •     6.4.3. АППАРАТЫ УПРАВЛЕНИЯ, РЕГУЛИРОВАНИЯ И АВТОМАТИКИ
  •   6.5. ТРАНСФОРМАТОРЫ
  •   6.6. ЭЛЕКТРИЧЕСКИЙ ПРИВОД
  •     6.6.1. РАННИЙ ПЕРИОД РАЗВИТИЯ ЭЛЕКТРОПРИВОДА
  •     6.6.2. ПЕРЕХОД ОТ ГРУППОВОГО ПРОМЫШЛЕННОГО ЭЛЕКТРОПРИВОДА К ИНДИВИДУАЛЬНОМУ
  •     6.6.3. РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД — ПОИСК РЕШЕНИЙ
  •     6.6.4. ИНДИВИДУАЛЬНЫЙ ЭЛЕКТРОПРИВОД В ТЕХНОЛОГИЧЕСКИХ УСТАНОВКАХ
  •     6.6.5. АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ В ЭЛЕКТРОПРИВОДЕ
  •     6.6.6. ЭЛЕКТРОПРИВОДЫ СО СТАТИЧЕСКИМИ ПРЕОБРАЗОВАТЕЛЯМИ. ЗАВЕРШЕНИЕ РАЗВИТИЯ «ДОПОЛУПРОВОДНИКОВОГО» ЭЛЕКТРОПРИВОДА
  •     6.6.7. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ В ЭЛЕКТРОПРИВОДЕ. СИСТЕМЫ ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ — ДВИГАТЕЛЬ (ТП — Д) И ИСТОЧНИК ТОКА — ДВИГАТЕЛЬ (ИТ — Д)
  •     6.6.8. РАЗВИТИЕ АСИНХРОННОГО И ДИСКРЕТНОГО ЭЛЕКТРОПРИВОДОВ
  •     6.6.9. СИСТЕМЫ ПОДЧИНЕННОГО РЕГУЛИРОВАНИЯ
  •     6.6.10. МИКРОПРОЦЕССОРЫ В ЭЛЕКТРОПРИВОДЕ
  •     6.6.11. СОВРЕМЕННЫЙ ЭЛЕКТРОПРИВОД
  • Глава 7. ЭЛЕКТРОТЕХНОЛОГИЯ
  •   ВВЕДЕНИЕ
  •   7.1. ЭЛЕКТРОТЕРМИЯ
  •     7.1.1. РЕЗИСТИВНЫЙ НАГРЕВ
  •     7.1.2. ЭЛЕКТРОДУГОВОЙ НАГРЕВ
  •     7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ
  •     7.1.4. ДИЭЛЕКТРИЧЕСКИЙ НАГРЕВ
  •     7.7.5. ПЛАЗМЕННЫЙ НАГРЕВ
  •     7.1.6. ЭЛЕКТРОННО-ЛУЧЕВОЙ НАГРЕВ
  •     7.1.7. ЛАЗЕРНЫЙ НАГРЕВ
  •   7.2. ЭЛЕКТРИЧЕСКАЯ СВАРКА
  •     7.2.1. ЭЛЕКТРИЧЕСКАЯ ДУГОВАЯ СВАРКА
  •     7.2.2. СВАРКА ЗА СЧЕТ РЕЗИСТИВНОГО НАГРЕВА
  •     7.2.3. ПРОЧИЕ ВИДЫ ЭЛЕКТРОСВАРКИ
  •   7.3. ЭЛЕКТРОФИЗИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
  •     7.3.1. ЭЛЕКТРОЭРОЗИОННАЯ ОБРАБОТКА
  •     7.3.2. ЭЛЕКТРОИМПУЛЬСНАЯ ОБРАБОТКА ДАВЛЕНИЕМ
  •     7.3.3. ПРОЧИЕ МЕТОДЫ ЭЛЕКТРОФИЗИЧЕСКОЙ ОБРАБОТКИ
  •   7.4. ЭЛЕКТРОХИМИЧЕСКАЯ ТЕХНОЛОГИЯ
  •     7.4.1. ЗАРОЖДЕНИЕ И РАЗВИТИЕ ЭЛЕКТРОХИМИЧЕСКОЙ ТЕХНОЛОГИИ
  •     7.4.2. ЭЛЕКТРОЛИТИЧЕСКОЕ РАЗЛОЖЕНИЕ (ЭЛЕКТРОЛИЗ) ВОДЫ
  •     7.4.3. ПОЛУЧЕНИЕ ХЛОРА И ЩЕЛОЧИ
  •     7.4.4. ЭЛЕКТРОХИМИЧЕСКОЕ ПОЛУЧЕНИЕ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ
  •     7.4.5. ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ И РАФИНИРОВАНИЕ МЕТАЛЛОВ
  •     7.4.6. ГАЛЬВАНОТЕХНИКА
  •     7.4.7. АНОДНАЯ ОБРАБОТКА МЕТАЛЛОВ
  • Глава 8. ЭЛЕКТРОТЕХНИЧЕСКИЕ СИСТЕМЫ ТРАНСПОРТА И АВИАКОСМИЧЕСКОЙ ТЕХНИКИ
  •   8.1. ЭЛЕКТРОТЕХНИЧЕСКИЕ СИСТЕМЫ ЖЕЛЕЗНОДОРОЖНОГО, ГОРОДСКОГО ТРАНСПОРТА И ПОДЪЕМНО-ТРАНСПОРТНОГО ОБОРУДОВАНИЯ
  •     8.1.1. ЖЕЛЕЗНОДОРОЖНЫЙ ТРАНСПОРТ
  •     8.1.2. ГОРОДСКОЙ ЭЛЕКТРИЧЕСКИЙ ТРАНСПОРТ
  •     8.1.3. ПОДЪЕМНО-ТРАНСПОРТНОЕ ОБОРУДОВАНИЕ
  •   8.2. СУДОВЫЕ ЭЛЕКТРОТЕХНИЧЕСКИЕ СИСТЕМЫ
  •     8.2.1. ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ
  •     8.2.2. ГРЕБНЫЕ ЭЛЕКТРИЧЕСКИЕ УСТАНОВКИ (СИСТЕМЫ ЭЛЕКТРОДВИЖЕНИЯ)
  •     8.2.3. ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ
  •   8.3. АВТОТРАКТОРНОЕ ЭЛЕКТРИЧЕСКОЕ И ЭЛЕКТРОННОЕ ОБОРУДОВАНИЕ
  •     8.3.1. СИСТЕМЫ ЗАЖИГАНИЯ
  •     8.3.2. СИСТЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ
  •     8.3.3. СИСТЕМЫ ПУСКА
  •     8.3.4. СИСТЕМЫ ОСВЕЩЕНИЯ И СВЕТОВОЙ СИГНАЛИЗАЦИИ
  •     8.3.5. КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
  •     8.3.6. ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ И КОММУТАЦИОННАЯ АППАРАТУРА
  •     8.3.7. ЭЛЕКТРОННОЕ ОБОРУДОВАНИЕ
  •     8.3.8. ТЯГОВЫЕ ЭЛЕКРОПРИВОДЫ БОЛЬШЕГРУЗНЫХ КАРЬЕРНЫХ АВТОСАМОСВАЛОВ БЕЛАЗ
  •   8.4. АВИАКОСМИЧЕСКАЯ ЭЛЕКТРОТЕХНИКА
  •     8.4.1. АВИАЦИОННОЕ ЭЛЕКТРООБОРУДОВАНИЕ
  •     8.4.2. ЭЛЕКТРОТЕХНИЧЕСКИЕ СИСТЕМЫ КОСМИЧЕСКИХ АППАРАТОВ (КА)
  • Глава 9. СВЕТОТЕХНИКА
  •   9.1. ВВЕДЕНИЕ
  •   9.2. ИСТОЧНИКИ ИЗЛУЧЕНИЯ
  •   9.3. ПРИБОРЫ ДЛЯ ПЕРЕРАСПРЕДЕЛЕНИЯ ЭНЕРГИИ ИЗЛУЧЕНИЯ В ПРОСТРАНСТВЕ
  •   9.4. СВЕТОТЕХНИЧЕСКИЕ УСТАНОВКИ
  • Глава 10. ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ
  •   10.1. ОБЩИЕ СВЕДЕНИЯ
  •   10.2. ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ
  •   10.3. КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ
  •   10.4. МАГНИТНЫЕ МАТЕРИАЛЫ В ЭЛЕКТРОПРОМЫШЛЕННОСТИ
  •     10.4.1. МАГНИТОМЯГКИЕ МАТЕРИАЛЫ
  •     10.4.2. АМОРФНЫЕ МАГНИТОМЯГКИЕ МАТЕРИАЛЫ (АММ)
  •     10.4.3. ФЕРРИМАГНИТНЫЕ МАТЕРИАЛЫ
  •     10.4.4. МАГНИТОТВЕРДЫЕ МАТЕРИАЛЫ
  •     10.5. КАБЕЛЬНЫЕ ИЗДЕЛИЯ
  • Глава 11. ПРОМЫШЛЕННАЯ ЭЛЕКТРОНИКА
  •   11.1. ОБЩИЕ ПОЛОЖЕНИЯ
  •   11.2. СИЛОВАЯ (ЭНЕРГЕТИЧЕСКАЯ) ЭЛЕКТРОНИКА
  •     11.2.1. ПЕРВЫЕ РТУТНЫЕ ВЫПРЯМИТЕЛИ
  •     11.2.2. УПРАВЛЯЕМЫЕ РТУТНЫЕ ПРЕОБРАЗОВАТЕЛИ
  •     11.2.3. УСИЛИТЕЛЬНЫЕ ГЕНЕРАТОРНЫЕ ЛАМПЫ
  •     11.2.4. СИЛОВЫЕ ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ
  •     11.2.5. ПРЕОБРАЗОВАТЕЛИ ЛИНИЙ ПЕРЕДАЧИ ПОСТОЯННОГО ТОКА
  •     11.2.6. РАЗВИТИЕ И ПЕРСПЕКТИВЫ СИЛОВОЙ ЭЛЕКТРОНИКИ
  •   11.3. ТЕХНОЛОГИЧЕСКАЯ ЭЛЕКТРОНИКА
  •     11.3.1. ИСТОЧНИКИ ЭЛЕКТРОННЫХ И ИОННЫХ ПОТОКОВ
  •     11.3.2. ЛАЗЕРНЫЕ ИСТОЧНИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ
  •     11.3.3. ИСТОЧНИКИ СВЧ-ИЗЛУЧЕНИЙ
  •     11.3.4. МОЩНЫЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ ИНДУКЦИОННОГО НАГРЕВА
  •   11.4. ИНФОРМАЦИОННАЯ ЭЛЕКТРОНИКА
  •     11.4.1. ЭТАПЫ РАЗВИТИЯ
  •     11.4.2. УСИЛИТЕЛИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ
  •     11.4.3. ИМПУЛЬСНЫЕ УСТРОЙСТВА
  •     11.4.4. РАЗВИТИЕ ПОЛУПРОВОДНИКОВОЙ ИНФОРМАЦИОННОЙ ТЕХНИКИ
  •     11.4.5. ИНТЕГРАЛЬНЫЕ ЛОГИЧЕСКИЕ И АНАЛОГОВЫЕ МИКРОСХЕМЫ
  •     11.4.6. ЭЛЕКТРОННЫЕ АВТОМАТЫ С ПАМЯТЬЮ
  •     11.4.7. МИКРОПРОЦЕССОРЫ И МИКРОКОНТРОЛЛЕРЫ
  • Глава 12. ЭЛЕКТРОИЗМЕРИТЕЛЬНАЯ ТЕХНИКА
  •   12.1. ВВЕДЕНИЕ
  •   12.2. ЭЛЕКТРОМЕХАНИЧЕСКИЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
  •   12.3. АНАЛОГОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ
  •   12.4. ЦИФРОВЫЕ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
  •   12.5. ТЕНДЕНЦИИ РАЗВИТИЯ ЭЛЕКТРОИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ
  • Глава 13. ПЕРСОНАЛИИ
  •   13.1. КРАТКИЕ СВЕДЕНИЯ О РОССИЙСКИХ И ЗАРУБЕЖНЫХ УЧЕНЫХ, ВНЕСШИХ ЗНАЧИТЕЛЬНЫЙ ВКЛАД В РАЗВИТИЕ ЭЛЕКТРОТЕХНИКИ
  •   13.2. КРАТКИЕ СВЕДЕНИЯ ОБ АКАДЕМИКАХ И ЧЛЕНАХ-КОРРЕСПОНДЕНТАХ АН СССР И РАН, ЯВЛЯЮЩИХСЯ ПОЧЕТНЫМИ И ДЕЙСТВИТЕЛЬНЫМИ ЧЛЕНАМИ АКАДЕМИИ ЭЛЕКТРОТЕХНИЧЕСКИХ НАУК РФ (АЭН РФ)
  •     13.2.1. Академики РАН
  •     13.2.2. ЧЛЕНЫ-КОРРЕСПОНДЕНТЫ РАН
  •   13.3. ПОЧЕТНЫЕ АКАДЕМИКИ, ДЕЙСТВИТЕЛЬНЫЕ ЧЛЕНЫ И ЧЛЕНЫ-КОРРЕСПОНДЕНТЫ АЭН РФ
  •     13.3.1. ПОЧЕТНЫЕ АКАДЕМИКИ АЭН РФ
  •     13.3.2. ДЕЙСТВИТЕЛЬНЫЕ ЧЛЕНЫ АЭН РФ
  •     13.3.3. ЧЛЕНЫ-КОРРЕСПОНДЕНТЫ АЭН РФ
  •   13.4. КОЛЛЕКТИВНЫЕ ЧЛЕНЫ АЭН РФ

  • Наш сайт является помещением библиотеки. На основании Федерального закона Российской федерации "Об авторском и смежных правах" (в ред. Федеральных законов от 19.07.1995 N 110-ФЗ, от 20.07.2004 N 72-ФЗ) копирование, сохранение на жестком диске или иной способ сохранения произведений размещенных на данной библиотеке категорически запрешен. Все материалы представлены исключительно в ознакомительных целях.

    Copyright © читать книги бесплатно